
Rally, a One Stop-Shop for Reddit data

and Insights

by

Kevin J. Eger

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

B.SC. COMPUTER SCIENCE HONOURS

in

Unit 5

(Computer Science)

THE UNIVERSITY OF BRITISH COLUMBIA

(Okanagan)

April 2016

c© Kevin J. Eger, 2016

Abstract

Reddit is the front page of the internet, a slogan the company has coined
and rightfully lived up to. It is a website which brings together members of
all communities in a similar style to a typical forum but with much more
structure and a lot more tra�c. The open nature of Reddit captures over
200 million unique visitors a month. With such tra�c screams the demand
for data analysis through a human-interpretable medium. Data analysis on
Reddit has been done before, but this thesis focuses on bringing the data
gathered into an easily consumable format. We will explore the implementa-
tion and results of querying the Reddit API, generating aggregate statistics,
querying large data dumps of historic Reddit data with Google BigQuery,
analyzing and labelling the content of Reddit using Google Cloud Vision's
image recognition, providing an innovative technique for consuming Reddit
and the use of unsupervised machine learning to draw powerful conclusions.
The result is a system called Rally which brings together the busy and wild
community of Reddit through clear and e�ective data aggregation, inference
and visualization.

ii

Table of Contents

Abstract . ii

Table of Contents . iii

List of Tables . v

List of Figures . vi

Acknowledgements . vii

Chapter 1: Introduction . 1

Chapter 2: Background . 3
2.1 Key Terms and De�nitions . 3
2.2 Reddit . 4

2.2.1 History . 4
2.2.2 Community . 4

Chapter 3: Technical Stack . 5
3.1 Laravel . 5

3.1.1 MVC . 5
3.2 Storage . 8

3.2.1 MySQL . 8
3.2.2 BigQuery . 9

3.3 SciPy . 12

Chapter 4: Algorithms and Methods 14
4.1 Hierarchical Clustering . 14

4.1.1 The Clustering Process 16
4.2 Image Classi�cation . 21

iii

TABLE OF CONTENTS

Chapter 5: Implementation . 23
5.1 phpRaw . 23
5.2 Rally . 24

5.2.1 User Statistics . 24
5.2.2 Subreddit Clustering 27
5.2.3 Big Data . 27

5.3 RallySearch . 31
5.3.1 Overview . 32
5.3.2 User Interface . 33
5.3.3 Technical Overview . 37
5.3.4 Public Reception . 40
5.3.5 Analytics . 42
5.3.6 Open Source . 43
5.3.7 Moving Forward . 43

Chapter 6: Conclusions . 45

Bibliography . 47

iv

List of Tables

Table 5.1 Operating system and browser of users. 42
Table 5.2 Countries of users accessing the site. 43

v

List of Figures

Figure 3.1 Example of Model . 6
Figure 3.2 Example of View . 6
Figure 3.3 Example of Controller 7
Figure 3.4 Example of Repository 8
Figure 3.5 MySQL Database schema 9
Figure 3.6 Query �nding the best hours to post on Reddit 10
Figure 3.7 Query �nding the best hours to post on Reddit 11
Figure 3.8 Registering the Google service provider 12

Figure 4.1 Dendrogram of /r/movies 15
Figure 4.2 BigQuery for retrieving clustering data 17
Figure 4.3 Preparing the BigQuery response data for clustering. 18
Figure 4.4 Drawing the dendrogram using matplotlib 20

Figure 5.1 Requiring phpRaw as a dependency in composer. . . . 24
Figure 5.2 Example of call to phpRaw through controller via

repository . 26
Figure 5.3 Code to generate vector of active hours 26
Figure 5.4 Query for getting the best time to post on various

subreddits . 29
Figure 5.5 U.S. elections candidate mention frequency 30
Figure 5.6 Query for getting the frequency of U.S. candidate

mentions . 31
Figure 5.7 A single card without and with hover. 35
Figure 5.8 A card's modal. 36
Figure 5.9 A single card without and with hover. 36
Figure 5.10 The site menu closed and open. 37

vi

Acknowledgements

Work on this thesis was widely facilitated with help from my supervisor,
Dr. Ramon Lawrence, through weekly meetings where ideas and progress
were discussed extensively. It is also important to acknowledge Dr. Je�
Andrews for his support in advising on machine learning techniques which
were implemented as described later. I would also like to acknowledge the
Reddit community as a whole for their feedback on a portion of this project
which was launched for public use.

vii

Chapter 1

Introduction

Reddit is a news and entertainment website whose content is generated by
members of the community. Users submit text posts or direct links similar to
a typical forum setting. Registered users can vote on submissions, yielding
an ordered online bulletin board. Furthermore, what makes Reddit unique is
that content is subsectioned into di�erent areas of interest called �subreddits�.
Some of the top subreddits include movies, funny, AskReddit, food and news.
As of March 3rd, 2016 Reddit had 231,625,384 unique users a month viewing
a total of 7,517,661,034 pages. The company was founded 10 years ago and
has quickly become the most central place on the internet to partake in
conversation or consume a wide array of content.

For years, data analysis has been used in many industries to give com-
panies and organizations more information in making business decisions and
veri�cation of their models and structures. Whether mining huge data sets,
looking at speci�c use cases or aiming to prove or disprove a theory, com-
panies and organizations alike aim to do one thing: identify and discover
patterns, relationships and inferences that are not immediately apparent.

A motivator for this thesis was existing technology for Twitter insights.
The community-content driven nature of Twitter parallels that of Reddit.
There have been many cases of academic research and production level soft-
ware released for Twitter data management, pattern identi�cation/tracking
and the existing infrastructure in the Twitter space can be largely replicated
and modi�ed to suit Reddit.

Rally is the name of the implemented suite of tools built. The inspi-
ration for the name is derived from the formal de�nition of the word: �to
come together�. Rally combines the accessing, processing, aggregating and
visualising of Reddit data in one central implementation. It is delivered in
the form of a web application so as to be accessible by the largest possible

1

Chapter 1. Introduction

array of people. This thesis will cover the research, experimentation and
considerations that ultimately produced the �nal �product�, Rally.

2

Chapter 2

Background

To best understand this thesis and the work done, it is necessary to be
introduced to the relevant technologies and key terms which will be heavily
referenced and built upon.

2.1 Key Terms and De�nitions

− Reddit : entertainment, social news network service (website)

− Karma: how much good a user has done for the Reddit community
quanti�ed by submissions links that people upvote

− Google Cloud Platform: Google's core infrastructure, data analytics
and machine learning

− API: application program interface

− CUDA: parallel computer platform for harnessing the power of an
Nvidia GPU (graphics processing unit)

− Subreddit: a niche forum on Reddit focused around a common topic
or content type

− AJAX: web development techniques used on the client-side to create
asynchronous requests

3

2.2. Reddit

2.2 Reddit

2.2.1 History

The company was founded by two new graduates of the University of
Virginia, Steve Hu�man and Alexis Ohanian, in June 2005 [Gua05]. After a
couple years of growth, Reddit 's tra�c exploded and the service went viral.
The creators were quick to release Reddit Gold, which o�ered new features
and usability improvements, providing the company with a primary source
of income.

2.2.2 Community

Reddit thrives on its open nature and diverse content fully generated by
the community [Atl14]. The demographics Reddit serves allows for a wide
range of subject areas thus having the ability for smaller communities to
digest their niche content. Subreddits provide a very unique opportunity by
raising attention and fostering discussion that may not be seen as mainstream
and covered by other news or entertainment mediums.

Reddit as a company and as a community has been known for several
philanthropic projects both short and long term. A few notable e�orts are:

− Users donated $185,356 to Direct Relief for Haiti after the earthquake
that struck the country in January 2010

− Reddit donates 10% of it's yearly annual ad revenue to non-pro�ts
voted upon by its users [Red14]

− Members from Reddit donated over $600,000 to DonorsChoose in sup-
port of Stephen Colbert's March to Keep Fear Alive [Don10]

4

Chapter 3

Technical Stack

Rally is a project that explores many di�erent types of data accessing
methods, processing techniques and visualizations. Due to the nature of
web applications, it is no surprise that Rally is implemented with modular
programming as a key focus. Several design choices and system architecture
decisions are what will allow this project to be easily continued and built on.
The technical stack is broken into components as follows.

3.1 Laravel

Laravel is a PHP web application framework with expressive, elegant
syntax [Lar14]. Laravel is designed primarily with the motive of removing
the repetitive and trivial tasks associated with the construction of a majority
of web projects (ie: authentication, routing, sessions, etc.). Laravel aims
to make the development process a pleasing one for the developer without
sacri�cing application functionality [Lar14]. The accessible and powerful
framework was chosen for its existing familiarity and power to implement a
project spanning many domains.

3.1.1 MVC

Laravel follows the traditional Model-View-Controller design pattern.
Models interact with the database through the Eloquent ORM providing
an object oriented handle on information. Controllers handle the requests
and retrieve data by leveraging the models. Views render the web pages and
are returned to the user.

This intrinsic design pattern was followed tightly alongside the addition of

5

3.1. Laravel

a repository layer. As discussed later, Rally interacts with several external
resources such as the Reddit API and the Google Cloud Platform. These
external resources house gigabytes of data, thus storing them locally and
accessing them through a model is counterproductive. To retain the structure
of the MVC framework, a repository layer is built on top of the models. This
allows for the convenience of a seemingly object oriented interaction with
data outside of the application. Not only does it allow for convenient method
calls but also abstracts logic away from the controllers, leaving them as slim
as possible. This is a vital design philosophy to modern web development as
it modularizes code to ensure a more rigid �ow and testable code-base. Basic
examples from Rally utilizing each level of the MVC framework as well as
the repository layer. An example of model, view, controller and repository
use are seen in Figure 3.1, 3.2, 3.3 and 3.4 respectively.

$c luster_image = Clus te r : : where ("name" , $subredd i t)−>
↪→ f i r s t () ;

Figure 3.1: Example of retrieving the �rst Cluster model where the name
�eld matches.

<s e l e c t name=" l a b e l s " . . . mu l t ip l e="">
@foreach ($ l a b e l s as $ l a b e l)
<opt ion value="{{ $ l ab e l }}">{{ $ l ab e l }}</option>

@endforeach
</s e l e c t >

Figure 3.2: Example demonstrating how objects passed to the view are
utilized and iterated over to display the options for the index page of Content
Search. Laravel leverages an HTML templating engine called Blade which
allows for convenient variable dumping and interaction.

6

3.1. Laravel

pub l i c func t i on show (Request $ reques t)
{

$subredd i t = $request−>get (" subredd i t ") ;
$about = $th i s−>phpraw−>aboutSubreddit ($subredd i t) ;

r e turn response ()−>view (" subredd i t . show" , [
" subredd i t " => $subreddit ,
"about" => $about−>data ,
" t a g l i n e " => "A look at / r /" . $ subredd i t

]) ;
}

Figure 3.3: Example of the show() function in the SubredditController.
This method retrieves the necessary data, sends the data to a blade view
(subreddit/show.blade.php) and �nally returns a rendered instance of that
view.

The repository layer is utilized primarily to wrap auxiliary data sources.
This gives them a similar feel and interaction as a traditional model. Seen in
Figure 3.4, a RedditorRepository instance is injected into the RedditorsCon-
troller class which is then used in its internal functions to gather data using
the phpRaw Reddit API wrapper in a chainable method technique identical
to a traditional model.

7

3.2. Storage

protec ted $ r edd i t o r ;

pub l i c func t i on __construct (RedditorRepos i tory
↪→ $ r edd i t o r)

{
$th i s−>redd i t o r = $r edd i t o r ;

}
. . .
pub l i c func t i on show (Request $ reques t)
{

$user = $request−>redd i t o r ;
$ subredd i t s = $th i s−>redd i to r−>getUserSubmitted ($user

↪→)−>ge tSubr edd i t sL i s t () ;
. . .

}

Figure 3.4: Code snippets from the RedditorController which leverages the
power of a repository layer to make chain-able function calls to an auxiliary
data source.

3.2 Storage

Databases used to house the necessary persistent information for the
application. A local MySQL database and cloud-based BigQuery database.

3.2.1 MySQL

MySQL is an open-source relational database management system (DBMS).
In Laravel, it is the default database system largely because of its plug and
play nature. The MySQL database is what saves the caching layer as de-
scribed in detail throughout the implementation section. A visual represen-
tation of the schema can be seen in Figure 3.5.

8

3.2. Storage

Figure 3.5: An ER diagram representing the MySQL database schema.

3.2.2 BigQuery

Querying massive datasets can not only be time consuming but also
expensive without the right hardware, infrastructure and software. Google
alleviates this problem with BigQuery, an incredibly fast cloud-based storage
platform. It is infrastructure as a service (IaaS) that handles all the hard
work of both creating and accessing large data sets. Using the processing
power of Google, a user can get up and running with BigQuery in a matter
of minutes. The service can be used via their web UI, command-line tool or
the REST API using one of the many client libraries.

In November 2015, user /u/Stuck_In_the_Matrix of Reddit collected all
submission data from 2006 to 2015. He had e�ectively bundled 200 million
submission objects, each with score data, author, title, self_text, media
tags and all the other attributes that are normally available via the Reddit

9

3.2. Storage

API. The dataset complemented the Reddit comment corpus he released a
couple months prior. When the data was initially made publicly available, he
released it as a torrent where developers interested in using it could download
their own local copies. Developers were all downloading the data for use
either on their local machines or a cloud server. The problem with this is
that even with one of the most powerful desktop computers, loading the
entire dataset into RAM is not feasible. Search times and joining (cross
table) operations were expensive.

Soon after the release of this torrent, one of the lead engineers of Google
BigQuery, Felipe Ho�a, uploaded the data to BigQuery and made the dataset
publicly available. Each month, the dataset is updated with the latest infor-
mation collected from the Reddit API.

With the convenience of BigQuery, it is now possible to query gigabytes
of historic Reddit data in a matter of seconds. Listed below are a couple of
the integral queries used in Rally, their sizes and execution times.

SELECT subreddit , t o ta l , sub_hour , num_gte_3000
FROM (

SELECT
HOUR(SEC_TO_TIMESTAMP(created − 60∗60∗5)) as

↪→ sub_hour ,
SUM(sco r e >= 3000) as num_gte_3000 ,
SUM(num_gte_3000) OVER(PARTITION BY subredd i t)

↪→ t o ta l , subreddit ,
FROM [fh−bigquery : Reddit_posts . ful l_corpus_201509]
WHERE YEAR(SEC_TO_TIMESTAMP(created))=2015
GROUP BY sub_hour , subredd i t
ORDER BY subreddit , sub_hour

)
WHERE tota l >700
ORDER BY to t a l DESC, sub_hour

Figure 3.6: The BigQuery SQL for �nding the best hours to post on Reddit.
This query processes 5.00GB across one table in roughly 8 seconds (roughly
1.5 seconds when cached).

10

3.2. Storage

SELECT RIGHT(' 0 '+STRING(peak) ,2)+'− '+subreddit , hour , c
FROM (

SELECT subreddit , hour , c , MIN(IF (rank=1,hour , nu l l))
OVER(PARTITION BY subredd i t) peak
FROM (

SELECT subreddit , HOUR(SEC_TO_TIMESTAMP(created_utc
↪→)) hour , COUNT(∗) c , ROW_NUMBER()

OVER(PARTITION BY subredd i t ORDER BY c) rank
FROM [fh−bigquery : Reddit_comments .2015_08]
WHERE subredd i t IN (%subredd i t s)
AND score >2
GROUP BY 1 , 2)
)

ORDER BY 1 ,2

Figure 3.7: Viewing activity (number of submissions) on subreddits over
time. The wildcard %subreddits is replaced with a comma-separated string
of subreddits. This query processes 1.49GB across one table in roughly 2.5
seconds (roughly 1.1 seconds when cached).

Facades in Laravel with Google Services

In web programming, quite often developers will need access to static
references of classes. Facades provide a static interface to such classes that
are available in the application's service container. By default Laravel ships
with several facades. These static proxies to underlying classes in the service
container provide the bene�t of a terse, expressive syntax while maintaining
more testability and �exibility than traditional static methods.

The facade class itself only needs to implement a single method getFa-

cadeAccessor(). It is that method's job to de�ne what to resolve from the
container. Behind the scenes, the base facade class (which all facades must
extend) makes use of a magic-method, __callStatic(), which defers calls
from the facade to the resolved object.

11

3.3. SciPy

pub l i c func t i on r e g i s t e r ()
{

$th i s−>app−>bind (' goog l e ' , f unc t i on () {
$ c l i e n t = new Google_Client () ;
$ c l i e n t−>useApp l i c a t i onDe fau l tCr eden t i a l s () ;
$ c l i e n t−>addScope (Google_Service_Bigquery : :BIGQUERY

↪→) ;

r e turn new GoogleAPI ($ c l i e n t) ;
}) ;

}

Figure 3.8: Registering the Google service provider and binding the facade
keyword Google to it.

The point of registering a facade may at times seem convoluted and
unnecessary. It has always been a topic of discussion amongst the PHP world
and most often boils down to personal preference and code readability. The
facade approach was chosen particularly for BigQuery in this project for a
few main reasons:

− Expressive syntax without sacri�cing testability of code

− Narrow and well de�ned class responsibility

− Clean constructor injection to automatically connect to Google Services
and access the BigQuery API

− Explicit declaration de�nes what the class needs and what the class
does

3.3 SciPy

SciPy is a Python based ecosystem of open-source software geared to-
wards mathematics, science and engineering. In particular, this project uti-
lizes the NumPy package for array manipulation and processing, the SciPy
package for the hierarchical clustering, linkage matrix generation and den-
drogram presentation and �nally the Matplotlib package for plotting and

12

3.3. SciPy

displaying the dendrogram. Each of the utilizations of the packages are
broken down further in later sections as they are employed.

13

Chapter 4

Algorithms and Methods

This chapter describes algorithms integral to the key components of
Rally. The hierarchical clustering of a subreddit and techniques for image
classi�cation are described in detail.

4.1 Hierarchical Clustering

When observing an open environment, a powerful metric for how the
community is distributed is discovered with clustering. One of the biggest
bene�ts of hierarchical clustering is that you do not need to know the number
of clusters in the data set going into the analysis. It is with hierarchical
clustering that within a subreddit, we are able to detect sub-communities.
Strategies for hierarchical clustering land within two groups: agglomerative
and divisive. Agglomerative is a bottom up approach where each observation
starts in its own cluster and pairs are merged as you move up the hierarchy.
Divisive is a top down approach where all observations begin in a single
cluster and are split recursively down throughout the hierarchy.

To best understand the hierarchical clustering process, we will begin by
showing the end result in what is known as a dendrogram. A clustering of
users amongst the subreddit /r/movies is shown as a dendrogram in Figure
4.1. The dendrogram is a visualization in the form of a tree that shows
the order and distances of merges throughout the hierarchical clustering.
It can be understood as snapshots throughout the linkage of observations.
On the x-axis are labels representing numbers of samples (if in brackets) or
speci�c samples (without brackets). On the y-axis are the relative distances
(using the 'ward' method described later). Beginning at the bottom of the
lines (near the labels), the height of the horizontal joining lines tells us the
distance at which that labelled group merged with another label or cluster.

14

4.1. Hierarchical Clustering

Figure 4.1: A dendrogram representing the hierarchical clustering amongst
the subreddit /r/movies.

For the example shown in Figure 4.1 there are 4265 samples (users) being
processed. Shown is a truncated dendrogram, with only the last 12 merges.
The small black dots along the vertical lines represent joins that happened
prior to the �nal 12. Truncation is an incredibly useful tool when plotting
dendrograms. More often than not, we are only interested in the last few
merges amongst the samples. The merge that carries the largest vertical
distance will be the merge that attaches the most segregated groups. Again
with the example illustrated in Figure 4.1 we see three distinct groups being
formed, identi�ed by their green, red and teal colours (left, center and right
groups respectively).

Before summarizing the process, here is a concise list of the variables and
what they map to:

− X: samples (n*m array), or data points or "singleton clusters"

15

4.1. Hierarchical Clustering

− n: number of samples

− m: number of features

− Z: cluster linkage array

� Contains the hierarchical clustering information

− k: number of clusters

4.1.1 The Clustering Process

To begin the clustering, we �rst gather the necessary data from Google
BigQuery. The query retrieves the most recent 300 posts for the speci�ed
subreddit. A join is then made with the link_id from the inner query and
a UNION ALL with the comment shard tables over the past 3 months. Big-
Query does not directly support the UNION ALL syntax familiar to most sql
languages, but instead supports comma separated tables wrapped in a SE-

LECT *. After joining up the relations, user accounts that were deleted or
made by an auto moderator are �ltered out. The remaining authors are
grouped by link_id and selected out by the number of times they com-
mented on each link. The query as executed in the application can be seen
in Figure 4.2. The query processes 9.95GB of data across a total of 4 tables
and is completed between 5 and 10 seconds (depending on the subreddit
under consideration).

16

4.1. Hierarchical Clustering

SELECT author , l ink_id , COUNT(l ink_id) as cnt
FROM (

SELECT ∗
FROM
[fh−bigquery : Reddit_comments .2016_01] ,
[fh−bigquery : Reddit_comments .2015_12] ,
[fh−bigquery : Reddit_comments .2015_11]

)
WHERE l ink_id IN (

SELECT post s . name
FROM [fh−bigquery : Reddit_posts . ful l_corpus_201512] AS

↪→ pos t s
WHERE post s . subredd i t = (%subredd i t s)
AND post s . num_comments > 0
ORDER BY post s . created_utc DESC LIMIT 300

)
AND author != ` [d e l e t ed] '
AND author != ` AutoModerator '
GROUP BY author , l ink_id
ORDER BY author

Figure 4.2: The query executed on BigQuery to retrieve all cluster data.

Upon retrieving the data, the X matrix needs to be generated which has
n samples and m features. Samples are authors of comments on listings and
features are each of the listings. In Figure 4.3 is the algorithm for processing
the raw BigQuery response into a usable matrix. Because the matrices can
become very large in size, we are currently limiting the data gathered by
using only the most recent 300 posts. Future work could focus on coming
up with a preprocessing technique to predict the anticipated size of response
data from BigQuery and select an appropriate post number.

17

4.1. Hierarchical Clustering

input : raw BigQuery table response
output: n * m matrix of users and submissions with comment

frequency values
1 for each row in response do

// Save the frequency a user commented on a post

2 values[author][linkid]= count;
// Save unique users

3 if user has not been seen before then
// Append username to users array

4 users[]= user;

5 if link has not been seen before then
// Append link to links array

6 links[]= link;

7 for each user in users do
8 for each link in links do

// If a user has commented on a link

9 if values[user] has array key link then
// Set [user][link] = count

10 result[user][link]= values[user][link];

11 else
12 result[user][link]= 0;

13 return result;

Figure 4.3: Preparing the BigQuery response data for clustering.

Upon generating the X matrix, the results are dumped out to a json
encoded �le. The path to the json �le is then passed along with a call to
execute the Python script.

Generating the linkage matrix Z in Python with the help of SciPy is
straightforward. An (n-1) by 4 matrix Z is returned. At the i-th iteration,
clusters with indices Z[i, 0] and Z[i, 1] are combined to form cluster n+i.
A cluster with an index less than n corresponds to one of the n original
observations. The distance between clusters Z[i, 0] and Z[i, 1] is given by Z[i,
2]. The fourth value Z[i, 3] represents the number of original observations
in the newly formed cluster. The algorithm starts with a forest of clusters.

18

4.1. Hierarchical Clustering

When two clusters s and t from this forest are combined into a single cluster
u, s and t are removed from the forest and u is added to the forest. The
algorithm is complete when only one cluster remains in the forest and this
cluster becomes the root. A distance matrix is maintained at each iteration.

The d[i,j] entry corresponds to the distance between cluster i and j in
the original forest. At each iteration, the algorithm must update the dis-
tance matrix to re�ect the distance of the newly formed cluster u with the
remaining clusters in the forest.

There are multiple methods for calculating the distance between newly
formed clusters u and v. We elect to use the ward method. Suppose there are
|u| original observations u[0],...,u[|u|-1] in cluster u and |v| original objects
v[0],...,v[|v|-1] in cluster v. Recall s and t are combined to form cluster
u. Let v be any remaining cluster in the forest that is not u. Given these
de�nitions for observations and objects, the ward method calculates distance
between the newly formed cluster u and v as follows in equation 4.1. Where
u is the newly joined cluster consisting of clusters s and t, v is an unused
cluster in the forest, T = |v| + |s| + |t|.

√
|v|+ |s|

T
d(v, s)2 +

|v|+ |t|
T

d(v, t)2 − |v|
T

d(s, t)2 (4.1)

The �nal piece of the puzzle is visualizing the results using a dendrogram
as introduced at the beginning of this section in Figure 4.1. The full code
used to visualize the linkage matrix is outlined in Figure 4.4. As we can see,
by simply specifying title, label, turning parameters and p (the number of
�nal merges to show) produces an intuitive dendrogram with clear colour
and stage distinction.

19

4.1. Hierarchical Clustering

p l t . t i t l e (' H i e r a r c h i c a l C lu s t e r i ng Dendrogram (
↪→ t runcated) ')

p l t . x l ab e l (' sample index or (c l u s t e r s i z e) ')
p l t . y l ab e l (' d i s t anc e ')
p l t . g c f () . subplots_adjust (bottom=0.15)
dendrogram (

Z ,
truncate_mode=' l a s t p ' , # show only the l a s t p

↪→ merged c l u s t e r s
p=12, # show only the l a s t p merged c l u s t e r s
l e a f_ro t a t i on =90. ,
l e a f_ font_s i z e =12. ,
show_contracted=True , # to ge t a d i s t r i b u t i o n

↪→ impress ion in t runca ted branches
)
p l t . show ()
p l t . s a v e f i g (' /your/ f i l e / l o c a t i o n / c l u s t e r . png ')

Figure 4.4: Drawing the dendrogram using matplotlib.

Summary of the results of a dendrogram:

− horizontal lines are cluster merges

− vertical lines indicate which clusters/labels were part of merge forming
that new cluster

− heights of the horizontal lines express the distance needed to be "bridged"
to form the new cluster

It is the distance jumps and gaps in the dendrogram that are of value when
interpreting the data. When the jump is large, it indicates that two groups
are being merged together that maybe should not be merged. In other words,
we have identi�ed two potentially unique groups that form independent clus-
ters.

20

4.2. Image Classi�cation

4.2 Image Classi�cation

Image recognition was employed to e�ectively automate and scale the
labelling of media content submitted to Reddit.

Human brains make vision seem very trivial, as it doesn't take much
e�ort for humans to distinguish between a jar of alphagetti and a wasps nest
(a seemingly very random example but proved to actually be a di�cult task).
But these are very hard problems to solve with a computer, they only seem
easy because our brains are incredibly good at understanding visual queues.

Over the last few years, the �eld of machine learning has made tremen-
dous progress on addressing these di�cult problems. In particular, deep
convolutional neural networks can achieve reasonable performance on hard
visual recognition tasks. Often matching or exceeding human performance
in some domains [Ten].

To classify images with labels, a �rst attempt was made using Google
TensorFlow, the recently open sourced machine learning toolkit by Google.
In particular, we focused on implementing and leveraging the power of
Inception-V3 [SVI+15] - the newest model for identifying higher level features
into classes.

TensorFlow is a very complex API for programmers to use either CPU,
GPU or in some cases both (using CUDA) devices. The barrier to entry
is quite high, but upon learning the �ow of data and architecture of the
infrastructure is a very powerful tool. We will not go into detail on the
implementation as it is not relevant to the underlying use.

Upon implementing the image recognition class using TensorFlow, an
API was built that allowed for convenient calls to classify images sent along
as POST data. This system was optimal as it allowed for independent testing
and debugging. The major downfall was the lack of speed with the imple-
mentation for analysing the image. To reduce the computation time, CUDA
was used and the algorithm was altered to run in parallel on a GPU. The
main struggle with this implementation was working with the TensorFlow
API on a GPU that did not support the latest version of CUDA, which is
the only version TensorFlow is currently (as of April 2016) targeting.

When the GPU version of the image classi�cation was �nalized and

21

4.2. Image Classi�cation

tested, computation time was cut in half, but still took anywhere between 2
and 6 seconds to analyse a single image. The results of the classi�cation were
also dissatisfying as only an accuracy of roughly 60% was achieved. It was
di�cult not to give into the sunk cost of sticking with an approach that was
built over the course of a month however, as discussed in the implementation
section it was undoubtedly the correct choice to abandon TensorFlow.

22

Chapter 5

Implementation

An in depth overview of the technical implementation of an API wrapper,
Rally and RallySearch.

5.1 phpRaw

The Reddit API has several endpoints. It is through these endpoints
where a client can retrieve posts speci�c to a subreddit, post a comment,
moderate their account and all other actions that are normally available
through the consumable web interface. For a single use or speci�c focus, call-
ing the endpoints explicitly with cURL (or another client-side URL transfer)
works �ne but this strategy quickly fails as needs grow. Due to the wide ar-
ray of endpoint calls utilized, it was necessary to develop an API wrapper
that allowed convenient calls to the API. Such a wrapper already existed for
Python, Java, C and a few other languages but not PHP.

An open source wrapper was discovered on GitHub but was no longer
maintained, was not written to comply with the latest API security require-
ments (OAuth2) and was missing nearly half of the endpoints. By building
on the work done on this API wrapper, a successful implementation was
built and is what Rally utilizes and depends on for direct Reddit data ac-
cess. The GitHub repository from the point at which it was forked and built
on is linked in the appendix.

Listed below are functions from phpRaw to give a feel for the wrapper.

Get the user submitted data.

$phpRaw−>getUserSubmitted ($user , $ l im i t = 25 , $ a f t e r =
↪→ nu l l) ;

23

5.2. Rally

Get the top 10 hottest listings for the speci�ed subreddit, `funny'.

$phpRaw−>getHot (` funny ' , 10) ;

phpRaw was modi�ed to serve as a standalone vendor service brought
in through Laravel's default dependency manager Composer. By extracting
the wrapper to a separate module, updating and maintaining the endpoints
is simple as they are changed over time. Using the power of composer and
package dependencies, by including the declaration as outlined in Figure 5.1,
whenever Composer is updated it automatically updates to the latest version
of phpRaw.

. . .
" r e p o s i t o r i e s " : [

{
"name" : " kevin /phpRAW" ,
" type" : " vcs " ,
" u r l " : " https : // github . com/ kev inege r /phpRAW"

}
] ,
. . .

Figure 5.1: Requiring phpRaw as a dependency for Rally in composer.

5.2 Rally

Rally combines user statistics, big data, subreddit analysis and Rally-
Search into one convenient location.

5.2.1 User Statistics

On Reddit, users have the ability to view their recent activity (comments,
submissions and saved content) and link/comment karma scores. Reddit
serves this information in a similar fashion to how they display submissions
on their site. This technique is e�ective for listing out a history of comments
and submissions but it proves ine�ective for quickly interpreting account

24

5.2. Rally

details. To alleviate this lack of accessibility, upon entering a user name on
the "User Stats" page, users can quickly see the following information on a
user:

− User Card

� Username

� Unique ID

� How long they have been a user for

� Gold and mod status

− Activity over time (Submissions vs. Time of Day)

− Submission Data

� Karma

� Top submission (with link)

� Worst submission (with link)

� Most recent submission (with link)

� Average karma

− Comment Data

� Karma

� Top comment (with link)

� Worst comment (with link)

� Total comments (with link)

� Average karma

− Itemized and labelled list of subreddits posted to with badge counts
for frequency and highlighting for top

The user statistics section gathers information exclusively from the API
wrapper, phpRaw. Calls to the wrapper are made through a repository layer,
as described in the technical stack section under the MVC subsection. It is
in surrounding the phpRaw calls with a repository layer that we can save
on API calls and thus reduce the time it takes to gather the necessary in-
formation through method chaining. An example call from the controller

25

5.2. Rally

to the repository which in turn calls phpRaw is seen in Figure 5.2. When
getUserSubmitted($user) is executed, a large response object consisting of
most the necessary information for the entire page is returned. By storing
this information on the object and making the method chainable (returns an
instance of the object) we can have easy and most importantly expressive
syntax in calling the approriate information, for example:
$this->redditor->getUserSubmitted($user)->getTopUpVotes();.

$ subredd i t s = $th i s−>redd i to r−>getUserSubmitted ($user)
↪→ −>ge tSubr edd i t sL i s t () ;

Figure 5.2: An example of a call to phpRaw through the controller via a
repository.

To demonstrate the importance of wrapping the API with phpRaw and
the ease of calling it, the php code for generating the vector of active hours
for the "Activity Chart" can be seen in Figure 5.3.

pub l i c func t i on act iveHours ()
{

$hours = array_fill (0 , 24 , 0) ;
foreach ($ th i s−>getSubmiss ions () as $submiss ion)
{

$time = Carbon : : createFromTimestampUTC($submiss ion
↪→ −>data−>created_utc) ;

$hour = $time−>hour ;
$hours [$hour]++;

}

re turn $hours ;
}

Figure 5.3: The code to generate the vector of active user hours.

26

5.2. Rally

5.2.2 Subreddit Clustering

The information on what hierarchical clustering is and how it was imple-
mented are discussed in detail in Section 4.1. This section will discuss the
results from the utilization of clustering and how they are presented to the
user.

Upon landing on the "Subreddit" page and entering the desired sub-
reddit, two main pieces of information are presented: "Sub Info" - basic
information card about the subreddit and "Clustering" - the dendrogram.

The "Sub Info" card contains the subreddit name, unique ID, subreddit
logo (if applicable), motto, description and current number of users and
subscribers.

The "Clustering" section displays the dendrogram as previously seen in
Figure 4.1. Prior to implementing the dendrogram, it was anticipated that
sub-communities amongst subreddits would identify and be focused around
a subset of conversation topics/themes amongst posts, this was not the case.
Upon tracing through some of the dendrograms and examining the speci�c
groups and linkages, it was discovered that "types" of users was in fact the
attribute represented by the clustering. In nearly all cases, the largest group
clustered together was that of sparse users who comment only a handful of
times and infrequently at that. In most other cases there are two well de�ned
groups: those that comment on nearly all of the top submissions and those
that comment on just a couple. The results amongst various subreddits have
clear distinctions and de�ning features but tend to follow the same patterns.

5.2.3 Big Data

The Big Data page of Rally is intended to harness and demonstrate the
power of Big Query. From tables spanning sizes of megabytes to tens and
twenties of gigabytes, Big Query delivers the fastest out of the box relational
cloud database.

27

5.2. Rally

The �rst big data snippet on the page is the "Activity Over Time" chart.
Users can easily enter the desired subreddits for analysis in the selection
box and the graph is redrawn and served to the user in a seamless, AJAX
request. As expected, most subreddits take a dip in activity during the night-
time (North American timezones). What is interesting is paring subreddits
together that are very similar, for example /r/Programming and /r/Pro-
grammerHumor. Subreddits with an almost directly equal subscriber list
follow a nearly identical activity over time, just with more or less amplitude.

Because Reddit is a "reward-based" service (you earn karma on sub-
missions and comments), users often inquire when the best time to post a
submission is. This question can be accurately resolved by leveraging the
speed with which Big Query can read high cardinality tables. By grabbing
the highest subscribed subreddits, the results are generated with the query
listed in Figure 5.4.

28

5.2. Rally

SELECT GROUP_CONCAT(STRING(sub_hour)) as hours ,
↪→ subreddit , SUM(num_gte_3000) t o t a l

FROM (
SELECT HOUR(SEC_TO_TIMESTAMP(crea ted − 60∗60∗5)) as

↪→ sub_hour , SUM(sco r e >= 3000) as num_gte_3000 ,
↪→ subreddit , RANK()

OVER(PARTITION BY subredd i t ORDER BY num_gte_3000
↪→ DESC) rank ,

FROM [fh−bigquery : Reddit_posts . ful l_corpus_201509]
WHERE YEAR(SEC_TO_TIMESTAMP(created))=2015
GROUP BY sub_hour , subredd i t
HAVING num_gte_3000 > 100

)
WHERE rank<=3
GROUP BY subredd i t
ORDER BY to t a l DESC

Figure 5.4: Query for getting the best time to post on various subreddits.

Similarly, three other tables exist on the page answering common ques-
tions amongst the community. The source code for the queries can be found
in rally/config/constants.php. Their titles with descriptions are listed
here:

− Most popular comments on Reddit

� Rank

� Count frequency

� Comment body

� Average score

� Count of subreddits comment exists on

� Count of authors using this comment

� An example use case of the comment (link to Reddit)

− Di�erence in Cohorts (Account Creation Date)

� Year account was created

29

5.2. Rally

� Number of users

� Average number of comments

� Number of users still presently active

� Sum of their score

� Number of gilded users

� Average body length of comments

− Number of comments by day of the week

� Day of the week

� Number of comments

To demonstrate the breadth of possibility in analysing community-based
services like Reddit, a query and visualisation of the U.S. election candidate
mentions was generated. A screenshot of the generated graph can be seen in
Figure 5.5 and the query utilized in Figure 5.6.

Figure 5.5: U.S. elections candidate mention frequency screenshot.

30

5.3. RallySearch

SELECT DATE(USEC_TO_TIMESTAMP(UTC_USEC_TO_WEEK(
↪→ created_utc ∗1000∗1000 ,1))) week , SUM(body
↪→ CONTAINS "Bernie Sanders ") BernieSanders ,SUM(body
↪→ CONTAINS " H i l l a r y Cl inton ") H i l l a ryC l in ton ,SUM(
↪→ body CONTAINS "Donald Trump") DonaldTrump ,SUM(
↪→ body CONTAINS "Ted Cruz") TedCruz

FROM TABLE_QUERY([fh−bigquery : Reddit_comments] , '
↪→ REGEXP_MATCH(table_id , "201 ._. . $ ") ')

GROUP BY 1
ORDER BY 1

Figure 5.6: Query for getting the frequency of top U.S. candidate mentions.

5.3 RallySearch

RallySearch is an alternative way of consuming Reddit. Users of Reddit
are very limited by the existing search functionality. Though there exists
a search bar, it is incredibly ine�ective and displays close to no results as
intended. Reddit developers have expressed interest in improving the func-
tionality but have not disclosed any immediate plans to do so. This portion
of the thesis aims to o�er an alternative to browsing Reddit by its content in
a visually pleasing and simple fashion. The name of this standalone service
has been dubbed RallySearch and as discussed later has been launched and
received by the Reddit community.

31

5.3. RallySearch

5.3.1 Overview

The overall goal of RallySearch is to provide users with the opportunity
to search Reddit by its content - the physically linked images, videos, gifs
and articles. Reddit 's existing �ow for browsing content does not give users
the ability to search site-wide for all posts consisting of a speci�c object. For
example, if a user wanted to view all posts pertaining to dogs and cats, they
would have to manually search through all the subreddits. The aforemen-
tioned may or may not contain the desired content and the only option they
would have left is to perform a Google search which is even more ine�cient
and guarantees no degree of accuracy. Using RallySearch, labels can easily
be speci�ed using the search bar at the top and the page instantly loads all
existing classi�ed posts.

When a user �rst lands on the site, they are presented a page already
populated with cards which represent posts. A card consists of the post
preview image, title, labels for the image (from image recognition) as well
as a few other details and options for navigation discussed later in the UI
section.

32

5.3. RallySearch

In summary, top media posts on Reddit are sent through Google Cloud
Vision (Image recognition API) and results are cached. Upon giving each
image (or preview in the case of videos and gifs) labels, users can easily view
similar content by selecting the desired tag(s).

5.3.2 User Interface

A good user interface (UI) can make or break the success of a website.
Too complicated or busy and the site could be left collecting dust on the
internet shelves. With Rally, the UI balances a clean look with the necessary
interactivity coupled with ease of use and simple navigation. The standalone
portion of the site RallySearch will be surveyed and the design choices that
went into designing it as it is slightly more polished than Rally but represents
all the same key features.

Semantic UI

Semantic UI is a framework designed for site theming. Key features
include predi�ned CSS for elements, variable tuning, inheritance and re-
sponsiveness. Semantic is free, open sourced and MIT licensed. It allows
developers to �build beautiful websites fast�, with concise HTML, intuitive
javascript and simpli�ed expressive CSS class naming.

RallySearch

Near all the interaction on the site takes place on the main index page
of the site. Here, users can browse the content and �lter by tags if they so
wish to.

33

5.3. RallySearch

When a user lands on the index page, the most recent annotations are
displayed and are paginated in groups of 20. Splitting the pages is necessary
as to avoid loading thousands of models from the database and to avoid
screen clutter and �jankiness� (a web design term to describe when a screen
stutters while loading dynamic content added with JQuery).

Each of the annotations are divided up into cards. A card displays con-
tent in a manner similar to a playing card. There is the preview image
which is loaded externally from Reddit to reduce server load and increase
performance, the listing title which is trimmed with ellipsis, the subreddit
the image was posted to, all labels given to the annotation and the card
functionality.

34

5.3. RallySearch

Figure 5.7: A single card without and with hover.

A single card has a few aspects of functionality associated with it. First
and foremost is the ability to follow the link through to Reddit. RallySearch
was designed to simply be a more convenient gateway to Reddit content, thus
by hovering and clicking "View on Reddit" or directly clicking the submission
title, the user is redirected to the submission.

If a user wishes to view a larger version of the image, the full title and
label list of a card, they simply have to select the "Expand" button in the
bottom left. Modals display content in a way that temporarily blocks inter-
actions with the main view of the site, an e�ective way for ensuring the user
is focusing on the desired content and removed from the other "distractions"
on the site.

35

5.3. RallySearch

Figure 5.8: A card's modal.

Since the purpose of the site is to browse Reddit by labels (content), it
makes sense there are a few approaches to do so. First and most clear is the
ability to type into the dropdown. As the user enters text, their search is
re�ned from the list of pre-existing labels. There is no limit to the number of
labels a user can enter however they must select from the pre-existing labels
as all results are loaded from already classi�ed annotations. Users also have
the option to select the "Similar" button on a card which instantly loads the
corresponding tags into the dropdown. The �nal way a user can re�ne their
search is by directly clicking on a label in a card. If a user wishes to restart
their search, they are free to click the clear button located to the right of
the dropdown.

Figure 5.9: A single card without and with hover.

To make browsing the site as �uid as possible, AJAX get requests are

36

5.3. RallySearch

made to the server whenever new content is needed. Whether the user is
advancing pages, adding labels or clearing them, the site fetches only the new
necessary information and swaps it out with the current. This experience
is preferable as it removes the �jankiness� with traditional websites when
switching between pages. A single-page application (SPA) is preferable as
the �uid experience, similar to a desktop application, does not interrupt
the user's actions on the site associated with switching between pages. The
dynamically loaded content is also optimized to be as slim as possible, loading
quicker than any possible full page reload.

RallySearch is equipped with a very slim and stylish menu bar. The
bar is hidden by default but can be activated by click the menu tab always
located in the top left of the screen. The tab when not active is an icon of
three lines which has become the universal standard for representing context
menus that all users are used to interacting with. When the user hovers
the icon, it dynamically expands reading "Menu". If the user then clicks on
the tab, the menu rolls in from the left pushing the site content slightly the
the right in a �uid and smooth fashion. The main content is then dimmed
similar to when the modal is displayed as to focus the user on the action
they are undergoing.

Figure 5.10: The site menu closed and open.

5.3.3 Technical Overview

RallySearch is a slim and highly maintainable web project. It uses two
external services, phpRaw (Reddit API wrapper created for this project dis-

37

5.3. RallySearch

cussed previously) and Google Cloud Vision. The technical workings of Rall-
ySearch can be divided into two main domains: building the service and
consuming the service.

Building the Service

The Google Cloud Vision API enables developers to understand the con-
tent of an image by powerful machine learning models in an easy to use
REST API. Images are quickly classi�ed into thousands of categories. Indi-
vidual objects and faces can be detected within an image. The broad set of
objects in images are categorized and help improve the Vision API over time
as new concepts are introduced and accuracy is improved. The key feature
of the API that RallySearch uses is label detection. With it, broad sets of
categories are detected within an image ranging from dog breeds to wedding
dresses.

RallySearch is written with full modularity in mind. This is important
because APIs are always subject to change over time and it incorporates two
(phpRaw and Cloud Vision). To accomplish this, a Laravel Job is written
which runs on a schedule. The job is executed hourly and at a high level,
does the following:

− Creates a new collection

� Laravel iterable object that wraps PHP array

− Retrieves the hottest 100 posts on Reddit

− Retrieves the top 100 posts on Reddit

� Daily

� Weekly

� Monthly

� Yearly

� All time

− Creates Annotation objects for each of the new listings

� Checks against database if record already exists

38

5.3. RallySearch

� Stores unique Reddit id, post url, image url (preview), post title,
subreddit post was submitted to

− Labels each of the Annotations

� Sets labelling parameters (feature type: label and max results: 10

� Builds batch annotation image request object

� Downloads the image to be analyzed and encodes in base 64 to
be sent with the request(s)

� Sends request and saves response

� Saves labels for each image, creating new Label objects when
needed and reusing existing ones when applicable (An Annotation
has many Labels and a Label belongs to many Annotations

The code for this process is slightly too long to include in the thesis but
is easily accessible in the repository listed in the bibliography.

Consuming the Service

The main motivation for creating RallySearch was to o�er a convenient
and easy to use way of browsing Reddit. Keying in on this motivation it was
crucial users were provided with an interface that was easy to adopt and was
non intrusive. More on the details of the interface can be found in the UI
section, here we will go over a typical users use-case of the site.

The service itself only exists on one page: the content page. Users can
browse all labelled posts by scrolling through cards and advancing through
pages. For a more re�ned experience a user can enter a single or multiple
tags in the search bar at the top. The bar allows users to only select from a
prede�ned list (labels which exist in the database). Upon clicking or selecting
a label(s), the site loads up the appropriate content.

Users are free to navigate their desired content, expand the preview for a
larger view of the media and select similar tags by manually selecting those
on a post or by using the "Similar" button.

39

5.3. RallySearch

Deployment

RallySearch is deployed on DigitalOcean, a cloud computing hosting com-
pany. The web app runs on their cheapest tier server (Ubuntu 14.04 with
512MB of memory, 20GB disk space) and performs beyond the needed level.
Due to the e�ciency and optimization in the web app, it is estimated that
this server con�guration could serve more than twice the highest reached
concurrent users (approximately 50) before su�ering any performance costs.

RallySearch has continuous deployment through a third party service
called Codeship. Each time changes are pushed to the master branch of
the repository, Codeship is triggered by a GIT hook which brings in the
changes, updates the dependencies through composer, dumps all autoloaded
and caches and seamlessly brings the server up to date as expected. Code-
ship �rst brings a virtual server to life with the newest code then copies the
changes over to the production code ensuring a near-zero down time. Rall-
ySearch ensures only code passing the speci�ed automated tests is deployed
to production and noti�es immediately if any push does not succeed.

5.3.4 Public Reception

Since RallySearch is a service for the community and arguably built by
the community (all the content is theirs), there was a strong desire to push
the service live and generate feedback.

RallySearch was made publicly available and posted to a few subreddits
intended for developers and enthusiasts to give feedback and test the service.
Subreddits the site was posted to include: /r/Frontend - a subreddit for front
end web developers who want to move the web forward or want to learn how,
/r/UsefulWebsites - a compilation of useful websites and /r/design_critiques
- a subreddit to receive critiques on a design. Over the course of just one
day, submissions on /r/Frontend and /r/UsefulWebsites made it to the top
submission of both subreddits and are amongst some of the top posts there
over the last year. Though these subreddits are not heavily tra�cked, it was
a noteworthy accomplishment due to the highly opinionated, dogmatic and
domineering nature of the respectful subreddits.

Rather than listing all of the comments, below is a list of a few of the top
comments (most upvoted) and most helpful comments that were re�ected

40

5.3. RallySearch

with changes and improvements.

− �To be honest the accuracy of the tags blows my mind� - /u/r_park

− �If I'm scrolled down the page, selecting the "similar" button appears
to do nothing if it doesn't happen to populate more content. It also
seems unintuitive that it adds more tags to my existing tags. This
interaction is overall a good idea but a little unclear in terms of what
it actually does.� - /u/wayspurrchen

− �The content hierarchy for the videos doesn't make a lot of sense/isn't
very useful: http://i.imgur.com/RWdyvDL.png As a casual user, I'm
unlikely to ever care about the permalink, and I'm most likely to care
about the title. The title should also be clickable to take me to Reddit.
I swapped things around a bit: http://i.imgur.com/1y451Q7.png You
could even put something else there like the score for that subreddit,
number of comments, etc.� - /u/wayspurrchen

− �Overall this is a really killer app. I can't wait to see you polish it! :)�
- /u/wayspurrchen

− �You are my new hero.� - /u/ChaosElephant

− �This is great - looks nice as well. Awesome job! My only critique
at the moment would be to have the full title reveal in some sort of
tooltip or something, even just as a title attribute tooltip. At �rst I
didn't notice the expand, or you may just think it expands the photo.
It would be nice to see the full title without clicking.� - /u/hidanielle

It was great to get the service out there for a non-subjective set of eyes
to critique, advise and shape it. Beyond having other Reddit users test the
site, friends and family were also good help in o�ering advice and feedback
from a new user (unfamiliar with Reddit) perspective. Though proper and
documented user testing was not conducted, key takeaways with this group
include:

− Hooking up links that were expected to direct somewhere but did not
initially

− Reorganizing the card structure

− Altering the navigation menu for a more responsive feel

41

5.3. RallySearch

5.3.5 Analytics

Google Analytics were implemented and utilized upon launch. This
allowed for the understanding of consumer behaviour, gathering insights,
tracking usage numbers and analysing performance of the site. Data tidbits
from the analytics are outlined here:

− 736 unique visitors in the �rst 24 hours

− 0:56 seconds average session duration

Browser Operating System Users

Chrome Android 278
Chrome Windows 205
Safari (in-app) iOS 134
Chrome Macintosh 127
Safari iOS 77
Safari Macintosh 35
Chrome Linux 34
Firefox Windows 28
Firefox Linux 19
Firefox Macintosh 13
Chrome iOS 12
Edge Windows 6
Chrome Chrome OS 4

Table 5.1: Operating system and browser of users.

42

5.3. RallySearch

Country Users

United States 472
United Kingdom 97
Canada 82
Germany 36
Australia 28
Sweden 25
Netherlands 23
Denmark 20
France 11
Brazil 10
India 10
New Zealand 10

Table 5.2: Countries of users accessing the site.

5.3.6 Open Source

RallySearch is fully open source. The source code is available publicly
on GitHub. There has already been a bit of interest with members of the
community and the repository has had three stars from developers. The
software is MIT licensed.

5.3.7 Moving Forward

The initial launch of RallySearch has shown the potential to move forward
as an individual project. Though there is no intention to have users strictly
use the service and abandon browsing Reddit directly, the general consensus
has been that it is convenient to relax and browse speci�c content tailored to
a user's interests. Before launching the project and releasing it to the general
public by advertising on a higher tra�c subreddit, a few improvements and
changes need to be made:

− Automated database backups

− Remove the small but noticeable �jankiness� associated with the AJAX
page reloading

43

5.3. RallySearch

− Formal user testing

− Build tests

− Update from MySQL to a higher performing database as cardinality
increases

44

Chapter 6

Conclusions

Reddit is forever evolving. The content that is posted, the way the com-
munity interacts and the technology itself is always subject to change. Most
�elds developing tools fear change, as it requires adapting legacy systems
or techniques. This project was implemented with that in mind, right from
the beginning. All techniques for gathering data, processing and visualizing
were built to scale and adapt to change. Though it is true that down the line
if a big modi�cation were to happen (ie: the API no longer serves integral
data), certain pieces of the software would have to be rewritten. But by and
large, the service is solid and built to last.

Having said that, this thesis and project is just the tip of the iceberg.
The fun part about data analysis is there's no such thing as �done�. As
new techniques and inspirations arise there is always more to add and infer.
Though sometimes an analyst's job is to perform a one-o� implementation to
retrieve a result, the most fun and complex of problems are those that when
solved bring about new questions. This style of analysis is greatly fostered
in the Reddit space.

Rally has served as a great proof of concept. Combining multiple 3rd
party services can be a nightmare and often requires several rewrites. Hav-
ing completed a �rst implementation of the service, it brings great satisfac-
tion claiming that an innovative resource for observing Reddit inferences has
sprung.

There is always room for improvement, both technically and conceptually.
Given the current design of Rally 's big-data, subreddit and user statistics
pages, releasing the site for general public use would require some optimiza-
tion and refactoring (especially for caching pre-fetched results). RallySearch
is a web application recently released into the wild of the internet and will
undoubtedly require bug �xes as they come up and new features as they are

45

Bibliography

requested.

More information and current development on RallySearch can be found
on theGitHub repository (https://github.com/kevineger/rallysearch). Though
there is currently no intention to build out Rally beyond what it has become,
the repository will remain uploaded for anyone who wishes to browse for in-
spiration or potentially build from.

46

Bibliography

[Atl14] Ama: How a weird internet thing became a mainstream delight,
2014 [cited March 3, 2016]. → pages 4

[Don10] Welcome redditors!, 2010 [cited March 3, 2016]. → pages 4

[Gua05] A new website makes it easier to sift the mountains of news content
online - and learns what you like, 2005 [cited March 3, 2016]. →
pages 4

[Lar14] Laravel documentation, 2014 [cited March 13, 2016]. → pages 5

[Red14] Decimating our ads revenue, 2014 [cited March 3, 2016]. → pages
4

[SVI+15] Christian Szegedy, Vincent Vanhoucke, Sergey Io�e, Jonathon
Shlens, and Zbigniew Wojna. Rethinking the inception architec-
ture for computer vision. CoRR, abs/1512.00567, 2015. → pages
21

[Ten] Image recognition [cited April 18, 2016]. → pages 21

47

http://www.theatlantic.com/technology/archive/2014/01/ama-how-a-weird-internet-thing-became-a-mainstream-delight/282860/
http://www.donorschoose.org/donors/viewChallenge.html?id=39361&home=true
http://www.theguardian.com/technology/2005/dec/08/innovations.guardianweeklytechnologysection1
http://www.theguardian.com/technology/2005/dec/08/innovations.guardianweeklytechnologysection1
https://laravel.com/docs/4.2/introduction
http://www.redditblog.com/2014/02/decimating-our-ads-revenue.html
http://arxiv.org/abs/1512.00567
http://arxiv.org/abs/1512.00567
https://www.tensorflow.org/versions/r0.8/tutorials/image_recognition/index.html

	Abstract
	Table of Contents
	List of Tables
	List of Figures
	Acknowledgements
	1 Introduction
	2 Background
	2.1 Key Terms and Definitions
	2.2 Reddit
	2.2.1 History
	2.2.2 Community

	3 Technical Stack
	3.1 Laravel
	3.1.1 MVC

	3.2 Storage
	3.2.1 MySQL
	3.2.2 BigQuery

	3.3 SciPy

	4 Algorithms and Methods
	4.1 Hierarchical Clustering
	4.1.1 The Clustering Process

	4.2 Image Classification

	5 Implementation
	5.1 phpRaw
	5.2 Rally
	5.2.1 User Statistics
	5.2.2 Subreddit Clustering
	5.2.3 Big Data

	5.3 RallySearch
	5.3.1 Overview
	5.3.2 User Interface
	5.3.3 Technical Overview
	5.3.4 Public Reception
	5.3.5 Analytics
	5.3.6 Open Source
	5.3.7 Moving Forward

	6 Conclusions
	Bibliography

