
Data Retrieval and Documentation Using Unity in a UniVerse®

Environment

Jose Jimenez

In partial fulfillment of an Honors degree in the department of
Computer Science

____________________________________
Ramon Lawrence

December 12, 2002

All requirements for graduation with Honors in the department of Computer Science
have been completed.

____________________________________
Douglas Jones



ABSTRACT

Thesis:  Access to UniVerse® databases using ODBC clients and within the UniVerse

environment can be improved using Unity and its methods.

UniVerse is one of many different types of databases.  Poor naming conventions may

make the retrieval of information exceedingly difficult.  Unity solves these types of problems

by using a method of assigning semantic names to each data element in a database.  This

semantic name acts as documentation of the data element and aids in building queries to

retrieve the information stored in the database.  The algorithm that Unity uses to assign

semantic names to data elements relies on the name presented via an ODBC service.  This

name, especially within a UniVerse environment, does not encompass all the information

available about a data element.

Using Unity in conjunction with programs written within the UniVerse environment,

additional documentation can be generated in a semi-automatic way for a UniVerse database.

These tools can compensate for poor naming conventions result from UniVerse’s separation

of the data storage and data access layers.  Systems that run under UNIX and other operating

systems outside of Windows are required by many businesses; therefore tools were

developed to improve access for both ODBC clients and UniVerse programs.

Improvements are made in the amount of information available to Unity using

programs written with UniVerse programming tools.  These programs take advantage of

information stored within UniVerse dictionaries not available to ODBC clients.  Some of the

methods for interfacing Unity and the UniVerse database are also implemented in UniVerse

programs that allow users on the UniVerse host to access information freely.  The resulting

tools and programs improve access to information in the UniVerse database.



TABLE OF CONTENTS

LIST OF TABLES AND FIGURES i

SECTION 1: INTRODUCTION 1
Motivation 1
Thesis 2

SECTION 2:  BACKGROUND 4
Environment 4
Approaches 9

SECTION 3:  IMPLEMENTATION 12
Communication between Unity and UniVerse 12
UniVerse:  Increasing Visibility to the Outside World 14
X-Specs:  Decreasing the Effects of Increased Information Availability 16
Data Retrieval: UniVerse beyond Unity 19

Defining an Extract Job within UniVerse 20
Executing an Extract Job within UniVerse 25

SECTION 4:  RESULTS 29

SECTION 5:  FUTURE DEVELOPMENT 31
Unity 31
BPW.FILE.EXTRACT and BPW.FEXP.UPDT 32
Documentation 33

SECTION 6:  CONCLUSION 34

APPENDIX 1:  UNIVERSE DICTIONARY ENTRY TYPES
AND THEIR STRUCTURES 35

APPENDIX 2:  IMPORTING THE KEY DEFINITION PORTION OF AN X-SPEC 37

REFERENCES 39



i

LIST OF TABLES AND FIGURES

Table 1.      A sample listing of dictionary records from the customer file. 6

Figure 1.     The UniVerse to Unity connection.  Note that Field 1 has two
        dictionary items, Entry 1 and Entry 2, that reference it to
        produce a value. 8

Figure 2.     A partial DTD for an X-Spec. 17

Figure 3.     A partial decision tree for evaluating a column 27



J. Jimenez 1

SECTION 1: INTRODUCTION

Data storage, however well implemented, is worthless without the ability to retrieve

that data.  While the logical and physical connections may be available, if the data layout is

not well documented, it may be near impossible to retrieve the data except through

previously developed interface programs.  These programs may be limited in their

implementation due to static ideas of their use.  In order to implement new interface methods,

it is necessary to have complete documentation.  It may be possible to use an automated

approach to document the tables and fields of a database system.  This project will explore

using Unity [1] and ODBC connectivity to document a large system of tables in a UniVerse

[2] environment.  It will also explore using a set of host-based programs to generate

equivalent documentation.  The remainder of this report will examine motivation for the

project, the project goals, and the project implementation.

Motivation

In an ideal situation, a company that creates a piece of software would document it

and understand it before selling it.  In the same ideal situation, a company that creates and

sells a suite of software with hundreds of tables would understand and document the complex

interactions of these programs and tables.  Each column of every table would be documented

and, hopefully with little effort, that company would be able to tell which programs required

each column.  However, not all programmers are software engineers, and not all companies

that create software do it by using the appropriate methods.  The type of documentation

described takes time, and time is money, especially in environments where hourly rates

charged to customers are in the hundreds of dollars and projects range in the hundreds of

thousands of dollars.  Given a limited budget, a company might choose additional



J. Jimenez 2

functionality over complete documentation and therein lies the root of the problem.  When it

comes to software systems of any magnitude incomplete documentation is equivalent to no

documentation.  Any additional changes to the software or database system must be

researched heavily, and the only testing that will suffice is full integration with the “live”

suite.

Once a company has made a decision for functionality over documentation, it is up to

the company programmers and analysts to take up the challenge of documenting the suite of

tables and programs and to integrate them with other business tools.  Unity is a tool for

documenting ODBC-accessible data with X-Specs in a semi-automated manner.   Some

limitations exist in using an ODBC client to access the data necessary to create X-Specs for

the UniVerse environment.  Thus it would be preferable to use host tools to create the X-

Specs with programs running on the host system, which provide more information about

relationships and data than would be accessible to an ODBC client.  Once these X-Specs are

created, Unity can be used to build data queries to access the data.  By documenting tables

more precisely using X-Specs, the complexities of future modifications to the system are

reduced.  Additionally, the information gleaned from creating X-Specs can be used to

develop additional data retrieval tools within UniVerse.

Thesis

Access to UniVerse databases using ODBC clients and within the UniVerse

environment can be improved using Unity and its methods.  Unity provides methods of

documenting and accessing multiple data source types.  One of the main methods employed

by Unity involves improved naming techniques.  This methods can be extended to a

production system running a UniVerse database.  However, there are some problems inherent



J. Jimenez 3

in the way UniVerse ODBC is implemented that undermine the power of UniVerse

dictionaries.  Improving documentation with Unity via ODBC or host-based programs will

improve access to database information for both programmers and users.

The basic steps required for improving access to the information are:

1) Ensuring the database is accessible to Unity via ODBC.
2) Increasing the number of columns visible to ODBC clients from the UniVerse database.
3) Improving the quality of documentation about the visible columns.
4) Improving data access within UniVerse.



J. Jimenez 4

SECTION 2: BACKGROUND

Environment

This project entails examining the use of Unity and X-Specs in conjunction with a

UniVerse-hosted database system.  Unity is a Windows-based tool for integrating multiple

databases.  In this situation, the database system will be hosted on an RS6000 system with an

AIX operating system (version 4.3).  The client system, running Unity, will be a machine

running a Windows 2000 professional operating system.

The business environment used in this project is a working database system under

UniVerse comprising over 500 data tables with a total size approximating 60 gigabytes.

Each of these data tables has anywhere from 0 to over 200 data columns.  The number of

virtual data columns in each table is not limited in any significant way.  The particular

business environment being used, like most others, evolves on a day-to-day basis as a result

of shifting priorities and business goals.  Much of the development takes place on the

UniVerse system, so any improvements should be available to users and developers using

UniVerse as well as those using Open DataBase Connectivity protocol (ODBC).

Unity is a system developed in part by Dr. Ramon Lawrence currently at the

University of Iowa.  Unity starts with a global dictionary (GD) that holds information about

entities or objects it is likely to encounter within a given database.  The GD relates elements

of the database to English words.  Unity then uses ODBC to access a predefined data source

and retrieve data from it.  Using standard ODBC interface calls, Unity explores the tables of

a database and creates an internal representation of the structure of the database.  This

internal representation is called an X-Spec.  Unity also generates a graphical view of the

database.  The graphical interface allows the user to enter additional information about the



J. Jimenez 5

database tables and columns.  Unity is then used interactively to assign semantic names to a

given database or column in a semi-automated way.  Assigning a semantic name improves

the documentation for a given column and allows for relating columns from multiple tables

and databases using semantic names.  Unity can also produce an XML version of an X-Spec.

Much like a DTD for an XML document, an X-Spec describes a database and its tables and

columns along with all their attributes.

UniVerse is a relational database environment from IBM [3] with built-in ODBC

connectivity and its own programming language called UniBASIC.  Each database under

UniVerse is composed of a number of tables.  UniVerse tables are not defined using

schemas; therefore they are not constrained to holding a given number of fields at the time

they are created.  UniVerse separates the data portion of the table from the access portion of

the table.  In order to link the two aspects of the table, each table has a dedicated table

dictionary that defines the fields available for the access layer.  In comparison to a relational

database system, the dictionary can be seen as a “view” into the table.  This table dictionary

does not always contain an entry for each field in the table.  An entry in the file dictionary

contains the information required to retrieve and display the data from the field it pertains to

in the table.  This information can include formatting instructions, conditional statements,

and a label for the data, among other things.  Each dictionary item describes a column of the

table.  Each column available for reporting is a virtual column because of the separation

between the access layer and the data layer.  These columns can be calculated based on data

internal to the table, calculated independently of the data in the table, or based entirely on

data from another table.  Relational views can only be defined using SQL statements, but

dictionary items provide methods for performing joins and other database algebra without



J. Jimenez 6

using SQL.

There are several different types of dictionary entries.  Table 1 provides a sampling of

dictionary items for the dictionary of the customer table in the sample used.

Dictionary
Record ID

col
1

col 2 col 3 col 4 col
5

col
6

col
7

col 8 col
9

col
10

CM.NAME30 S 3NAME S T 20

CSTM.NAME.ADDR I

TRIM(PNET.INFO&lt;
1,2&gt;:'
':PNET.INFO&lt;1,1&
gt;)

PNET
CONTACT 25L S

CUST.NAME A 0NAME S

A;IF 100 # ""
THEN 100 ELSE
N(NAME) R 20

EU.CUS.NAME S 3CUSTOMER NAME S T 30

FNAME D 8
NAME
XREF 6L M M7

FULLNAME S 2BILLTO NAME S
A;01:"*":02
TCM;C;3;3 L 20

Table 1: A sample listing of dictionary records from the customer file.

The columns labeled “col 1” through “col 10” represent attributes of the UniVerse dictionary

items.  Attributes in UniVerse correspond to columns of a data table.  The type of the

dictionary entry is determined by the first attribute of the entry (col 1).  This type determines

the structure of the rest of the entry.  Appendix 1 gives a series of structures for the most

common dictionary entry types in UniVerse.

The native programming language of UniVerse is UniBASIC, a compiled version of

BASIC with extensions used to work with the databases directly.  Programmers do not need

to know the details of the hashing algorithm used to access the data portion of the table, but

they do need to know in what field number the particular piece of information they are

working with is stored.  Generally, dictionary items are not used within UniBASIC programs.

Along with UniBASIC, UniVerse also utilizes several procedural languages for automating

data flow and user interfaces.  UniVerse also provides a powerful query language for



J. Jimenez 7

generating reports.  This query language is called RETRIEVE [4].  Programmers can design

and execute RETRIEVE reports within UniBASIC by painstakingly concatenating strings

that define a RETRIEVE statement using dictionary items.  There is no built in utility in

UniVerse to assist in this process.  Along with RETRIEVE, an SQL variant is also available

within UniVerse for executing local queries.  This SQL variant is used by the ODBC server

to fulfill client requests.  These tools make the UniVerse environment a powerful tool for

building enterprise software.

In a UniVerse environment, there is a special entry in the dictionary for each table

that determines what entries, and therefore what data, are accessible using ODBC.  This

dictionary item is named “@select.”  UniVerse SQL relies on the @select entry to describe

what columns are accessible, the same way that the ODBC service does.  This entry in the

file dictionary is generally updated manually.  Figure 1 displays the architecture of this

environment.



J. Jimenez 8

 

UniVerse

AIX

Table 1 Table 2 Table 3 Programming
Tools

ODBC Service

Windows OS

ODBC Client

Unity

@select entry contains the names of the
dictionaries available to the ODBC Service

Figure 1:  The UniVerse to Unity connection.  Note that Field 1 has two
dictionary items, Entry 1 and Entry 2, that reference it to produce a value.

Table 1
detail

Network
Transport

Field 1
Field 2
Field 3

.

.

.
Field n

Entry 1
Entry 2
Entry 3

.

.

.
Entry n

@select

Dict
Table 1

Dict
Table 2

Dict
Table 3

Dict
Table 1
detail



J. Jimenez 9

Approaches

The goal of this project can be reduced to four subgoals. The first subgoal of the

project is to ensure the database is accessible via ODBC.  ODBC access is required in order

to use Unity’s documentation power.  The second subgoal of the project is to increase the

number of fields accessible to Unity.  Increasing the number of fields visible will increase the

data fields that Unity can document and access.  The third subgoal is to improve the quality

of documentation about the visible columns.  This improvement will assist in development

and data selection.  The fourth subgoal is to improve access to the data from within the

UniVerse environment.  Improving access from within UniVerse is necessary because many

systems, such as the business environment being used in this project, still support business

goals using the UniVerse environment not only to store the information required, but also as

an interface for its users.

Once access is tested using MSQuery, which is closely tied to the Windows OS

ODBC client, it will be necessary to increase the number of fields available to Unity.  A

simple approach to increasing the number of columns available to an ODBC client from a

UniVerse database is to include every dictionary item for each table in the @select entry for

that table.  This “brute force” method, while simple, is not advisable.  There are many items

that, whether valid for reporting within UniVerse or not, do not work with ODBC and SQL.

One example of an item that is valid within UniVerse but not for ODBC is a right-justified

column that includes non-numeric data.  ODBC tries to define this type of column as numeric

because of the right justification.  When accessing this type of column, an ODBC client

would reject the information because the information passed to it is non-numeric.  This

problem stems from the implementation of the ODBC service for UniVerse, not ODBC



J. Jimenez 10

itself.  Rather than simply add every dictionary item to the @select entry for the table, a

different approach must be found in order to increase the number and quality of columns

available to ODBC clients.

The name of the columns visible to an ODBC client is the name of the record within

the dictionary for the table.  Within UniVerse, this name is generally only visible to

programmers using it within a procedural language to generate reports, and the name is not

used for programming.  The actual label for a column on a report generated with RETRIEVE

or one of the other reporting tools available within UniVerse is the column header stored

within the dictionary record.  Because of this separation between the name of the item and

the displayed column header, names for the dictionary items tend to be arcane abbreviations

at best and numbers at worst.  In order to improve an ODBC client user’s experience, more

information than is present within the name of a column is required.  One approach would be

to create additional dictionary items that would be named with the column header.

This approach would improve the readability of the column names but would be

limited in its use of the available information for documenting the source of the column.  In

particular, this project evaluates the performance of two approaches of documenting data

layouts in the host database. In the first approach to documentation, the capture process of

Unity is used to build X-Specs for the data tables.  The second approach requires new

programs to be written in UniBASIC.    These programs use the information available from

within UniVerse to build the X-Specs and retrieve the additional data from the dictionary

tables themselves.  Improving access from within UniVerse is accomplished by creating

UniVerse programs to implement some of the methods developed in the first three subgoals.

These tools improve access within the UniVerse environment to both users and developers.



J. Jimenez 11

SECTION 3: IMPLEMENTATION

The main goal of this project is to use Unity and some of its methods to improve

access to data stored within a particular UniVerse database.  While improving access for

Unity will improve access for other ODBC clients, some tools should be built to simplify

query generation and execution from within the UniVerse environment as well.

Communication between Unity and UniVerse

The first step toward using Unity to build and execute queries and to extract

information about the UniVerse database is to ensure this data is accessible to Unity via

ODBC.  In this stage of the project, a test environment with a limited number of tables is

used to test communication between Unity and UniVerse.  The tables chosen for the test

environment are product and customer information files.  In order to test accessibility via

ODBC, MSQuery is used in conjunction with Microsoft Excel to access data from the test

database.  This test gives a baseline for whether or not the UniVerse database is visible to a

standard ODBC-based query.  To complete the setup of the test environment, some of the

fields available to the ODBC client were modified manually to alleviate the field data type

problems.

The original version of Unity connects to the data source, but fails to read the table

and field information via the ODBC connection.  One of the causes for this is the close tie

between Unity and Microsoft Access databases.  In development and testing of Unity, Access

databases are used most often and because of this, some of the source code for Unity is

written specifically for Access.  This causes Unity to mistakenly report that it is looking for a

file with “mdb” as its extension, which is the file extension for Microsoft Access databases.

This is a minor issue and is remedied quickly.



J. Jimenez 12

A more pervasive issue is Unity’s use of ODBC level 3 calls to the data source.

ODBC level 3 is the current release level for ODBC drivers.  The ODBC driver in use with

the UniVerse test environment is only level 2 compliant.  This disparity causes some of the

data layout discovery features of Unity to fail.  Unfortunately, this failure means that one of

the basic building blocks of Unity data access, the source definition file, can not be

completed.  In order to correct the problem in the data source discovery, a new version of

Unity uses compatible calls.  The new version of Unity can access the UniVerse information

and create a source definition file.

With the data source file built, ensuring the rest of Unity works with the UniVerse

database is the next priority.  Unity is able to build a specification from the source file and

define a schema from the specification file.  Initially, only one data file is defined with any

amount of detail, in order to continue testing.  The next connectivity test is to execute a query

using Unity against the UniVerse database.  A new version of Unity with further

modifications is generated at this time to replace further ODBC level 3 calls that execute the

generated queries. The modifications are required because the earlier version of Unity does

not use the information discovered during the source discovery when executing the query and

unnecessarily performs field information retrieval before accessing the data from the tables.

In order to get beyond this problem, a further version of Unity replaces ODBC level 3 calls

with similar calls conforming to the ODBC level 2 standard.

With Unity able to execute queries against the UniVerse database, it is possible to see

some of the power of Unity at work.  Unity is able to extract information about the tables and

columns visible via ODBC.  With the source database presented in Unity’s graphical user

interface, it is possible to use Unity’s semi-automated naming system to assist in



J. Jimenez 13

documenting the contents of each table and field in the test set.  Developing a query with

Unity’s interface is much simpler now that the names of the tables and columns presented to

the user are improved.

UniVerse: Increasing Visibility to the Outside World

The test environment selected initially makes very few columns visible to the ODBC

client.  More of the columns existing on the UniVerse tables need to be visible to Unity to

improve access to the information and allow Unity to assist in documentation.  The

information required to increase the number of columns visible is not available via the

ODBC interface and is only available to UniVerse programs via the table dictionaries.  The

task of selecting valid entries from those available in the dictionary file is complicated by the

fact that dictionaries can be any of four different types.  The dictionary records in Table 1

from the customer table in the UniVerse database all relate to the name of the customer but

produce different information in various ways.

ODBC.DICT.CHECK, written in UniBASIC, reads the dictionary of a table and

differentiates between the different dictionary types to parse the dictionary into its

component pieces.  Using the information found, it can then update the @select entry or

generate a report giving details of valid and invalid dictionary entries.

The program can validate the entries in the dictionary file and generate a report or

update the @select entry when it executes.  When the program works on a given file in

update mode, it makes a backup of the previously used data.  It also writes a signature to the

@select entry of the dictionary file, including the name of the program that updated the file,

the date, and the time of update. When adding dictionary items to the @select entry, it copies

the entries to new names that have more information than would otherwise be available.  The



J. Jimenez 14

naming convention it uses is composed of several pieces of information separated by a “@”,

which is converted by some ODBC clients to an underscore.  These pieces of information are

the base field number if available, the original name of the field and the text label used for

reporting purposes.  This compilation results in fairly long names, but it is usually easier to

tell what the field contains using these new names as compared to using the original names.

The names themselves act as documentation of the source of the column.

In order to filter the list of available dictionary entries to valid entries only,

ODBC.DICT.CHECK has several routines for validation.  For example, when parsing

dictionaries, right-justified fields merit further investigation since it is impossible for the

program to tell simply from looking at the dictionary item what kind of information is

actually in the data file.  In order to determine if the field suffers from having mixed alpha

and numeric data, a sampling of the data is taken to determine if there are any non-numeric

values in it.

ODBC.DICT.CHECK improved the number and names of the columns available via

ODBC.  Unity’s naming algorithm should be modified to use the additional information

provided within the name of the column in applying the built in naming algorithm.  This

improves its usefulness in documenting column contents with a semantic name. An ODBC

client would not have been able to do the work completed by ODBC.DICT.CHECK because

of its lack of access to information stored within the table dictionaries.



J. Jimenez 15

X-Specs: Decreasing the Effects of Increased Information Availability

While increasing the amount of information available to ODBC and Unity,

ODBC.DICT.CHECK does change data in the UniVerse environment.  The dictionaries

created are visible to users in the host environment and the names are just as difficult to read

without a mapping of the name.  ODBC.DICT.CHECK increases availability and reliability

of fields via ODBC, as described, but it does little to increase the amount of documentation

available for a given table that has not been set up for ODBC access.  There are situations

when it is not desirable or practical to have columns accessible via ODBC.  In these

situations, to document the tables and columns on the host system, it is necessary to rely on

the host system.

Unity uses X-Specs as a method of storing database layout information in a format

that is easily shared.  The basis for X-Specs is XML, eXtensible Markup Language.  This

allows the database layout information to be stored in what is, essentially, a text document.

However, the meaning of each piece of text and the relationship between pieces of text is

determined within the document.  An XML document layout can be defined by a DTD,

Document Type Definition.  Figure 2 shows a partial DTD for an X-Spec.



J. Jimenez 16

<!ELEMENT XSPEC (System_Name,...,TABLE*)>

<!ELEMENT System_Name (#PCDATA)>
...
<!ELEMENT TABLE
(System_Name,Semantic_Name...,FIELD*,KEY*,JOIN)>
<!ELEMENT System_Name (#PCDATA)>
<!ELEMENT Semantic_Name (#PCDATA)>

...
<!ELEMENT FIELD
(Semantic_Name,System_Name,Field_Type,Field_Size,...,Comm
ent,...,Function_String)>
<!ELEMENT Semantic_Name (#PCDATA)>
<!ELEMENT System_Name (#PCDATA)>
<!ELEMENT Field_Type (#PCDATA)>
<!ELEMENT Field_Size (#PCDATA)>
<!ELEMENT Precision (#PCDATA)>
...
<!ELEMENT Comment (#PCDATA)>
...
<!ELEMENT Function_String (#PCDATA)>
<!ELEMENT KEY
(Key_Name,Key_Type,Key_Scope,Scope_Name,FIELDS)>
<!ELEMENT Key_Name (#PCDATA)>
<!ELEMENT Key_Type (#PCDATA)>
<!ELEMENT Key_Scope (#PCDATA)>
<!ELEMENT Scope_Name (#PCDATA)>
<!ELEMENT FIELDS (FIELD_NAME)>
<!ELEMENT FIELD_NAME (#PCDATA)>
<!ELEMENT JOIN (Join_Name,...)>
<!ELEMENT Join_Name (#PCDATA)>
...

Figure 2: A partial DTD for an X-Spec.

Of critical note is the Comment element of the FIELD element.  Although this element is

not used for program logic within Unity, it can be used to store information that is available

to UniVerse and not accessible via ODBC.  An important item to include in this field is the

information that ODBC.DICT.CHECK was previously providing in its naming convention.

This information includes the dictionaries’ base column number and column header and is

critical in understanding the use and meaning of the contents of a given column.



J. Jimenez 17

Once the X-Spec is generated, knowledge about the database in question can be

disseminated more readily.  Unity does a good job of representing information about

databases, but does not have a methodology for importing X-Specs.  It was only able to

export them.

ODBC.DICT.CHECK had previously been used to filter through the dictionary

entries for a set of files.  This program was modified to create an XML matching the DTD

for X-Specs that contained all of the information necessary and available for documenting

the UniVerse database being checked.  Because XML is at its base a simple ASCII file, this

was a simple matter of matching the output of ODBC.DICT.CHECK with the DTD.

Now that ODBC.DICT.CHECK produces the X-Spec, Unity has been modified to

import an X-Spec that conforms to the DTD.  In order to import X-Specs into Unity, each of

the relevant objects within Unity now has a new method.  CSpec, CSpecTable,

CSpecField, CKey, and CJoin all have XMLExport and Serialize methods; for

each object, an XMLImport method now combines some of the features of both the

XMLExport and Serialize methods.  In order to accomplish this, several string-

handling methods are implemented in the new version of Unity.  Among them are a function

to extract the tag name for a given XML attribute and another to extract the value of the

XML attribute.  CKey::XMLImport in Appendix 2 shows the basis on which the rest of

the modifications were modeled.  The X-Specs created by ODBC.DICT.CHECK allow for

documenting the tables and columns not accessible via ODBC in exactly the same way as

those that are.



J. Jimenez 18

Data Retrieval: UniVerse beyond Unity

Unity can access data available via ODBC, but there are several reasons why

UniVerse data may not be available via ODBC.  One reason is UniVerse ODBC client

licenses are not free.  Thus, it is necessary to be able to extract UniVerse data from within

UniVerse easily.  For a developer working in the UniVerse environment, this extraction is

possible by writing programs. However, each separate data extraction program would have to

be researched and developed independently of each other.

UniVerse has a built-in tool called UV.EXPORT [5].  This tool generates files in

either comma-separated ASCII or Lotus Notes format by using the dictionary entries of a

table to define columns of the exported file.  There are many limitations for UV.EXPORT.

For example, UV.EXPORT does not allow for searching for a dictionary item.  Some

dictionaries within the test environment hold hundreds of column definitions.  With

UV.EXPORT, searching for a particular dictionary is a matter of searching through an

unfiltered list of every record in the dictionary.  Poor naming practices often result in

problems identifying the appropriate column for an extract.  As stated before, a name such as

“4” means very little to a user.  The column header information is not displayed by

UV.EXPORT, so this additional information is not available to a user when defining an

extract.  Additionally, extracting multi-valued data causes the program to generate a file with

variable record layouts that is difficult to read and parse.  A given datum might fall within the

third column on every line unless the second datum was multi-valued.  In that situation, it

might fall in the third column if the second datum had only one value or the fourth column if

the second had two values, and so on.



J. Jimenez 19

A better tool would be able to:

1) Create files in comma- or tab-delimited format.
2) Generate XML documents.
3) Select specific rows from a source table.
4) Allow users to build export definitions easily.
5) Allow advanced users to define virtual columns.
6) Handle multi-valued data.
7) Emulate SQL’s Group-By feature.
8) Leave room for future development.

In designing the described tool, flexibility is important.  Flexibility is achieved by

splitting the tool into two logical parts.  The first part is the user interface,

BPW.FEXP.UPDT.  This interface allows the definition of the relationship between a source

file and an export file.  The second part, instantiated by BPW.FILE.EXTRACT, is the

workhorse of the tool.  It interprets the details of the relationship between a source file and an

export file created by BPW.FEXP.UPDT and generates the appropriate export file.

Defining an Extract Job within UniVerse

BPW.FEXP.UPDT has a built-in storage method that uses standard UniVerse files.

Using these methods, it is possible to create and store individual file extraction definitions

within user defined groups thereby allowing a user to create logical groupings of file

extractions by project, by user, or by any other grouping that is useful.  For example, a user

can create a group called “monthly” that groups file extractions that have to be executed on a

monthly basis.  Another example might be a group called “web.products” that would be all

the extractions that have to be executed for a product information database hosted online.

BPW.FEXP.UPDT has a number of options that apply to the entire extraction routine

for a given source to extract file relationship.  For example, one option allows the data to be

extracted to be passed through a filter that would remove ASCII characters under

hexadecimal value 20.  These control characters are sometimes embedded into data by



J. Jimenez 20

accident and their removal before writing them to an extract file is useful.  Additionally, a

filter can be applied to convert characters such as >, <, or & to their web compliant

counterparts such as &gt;, &lt;, and &amp;..  This filter is especially useful in generating

XML documents that are to be presented on a web page.  The type of file to be created is also

defined before defining any of the columns to be extracted.  The file is always a plain ASCII

file; however, the column delimiter can be defined as either a comma or a tab.  If an XML

file is desired, then the column delimiter is not used, so the same option toggles between the

three types of files to be generated.  The XML file root tag can be specified. The program

also has an option to ftp the file generated to a given machine within a given folder.  While

this functionality relies on a UNIX-specific FTP program, it can be generalized to work with

any ftp program that takes command line parameters.

Another prompt within BPW.FEXP.UPDT is for a select statement to be used in

selecting the records to be extracted.  This statement can be entered manually, but the user

can also use functionality built into BPW.FEXP.UPDT to build a select statement

interactively..  This feature prompts the user for each of the elements of the select statement

and makes it easier for a user with limited or no understanding of the language used by

UniVerse to create a select statement.  BPW.FEXP.UPDT’s interface for interactively

generating select statements leaves little room for user error; it is possible however, for a user

to enter a syntactically correct string that is not semantically what is desired.  For that reason,

once the user enters or defines the string, BPW.FEXP.UPDT executes the string to present

the user with the output.  An invalid string is most easily detected by its output.  The user can

then accept the statement or go back and reenter a new statement.  Advanced users, on the

other hand, can create a program or use other functionality within UniVerse to create a list



J. Jimenez 21

and enter any string that can be executed at a UniVerse prompt in place of this selection

statement.  BPW.FEXP.UPDT relies on the user to validate the output of the statement.  So

long as the string generates a list of records to be used for the export, the string can do any

additional work required by the user, such as prompting for input of variables.

BPW.FEXP.UPDT prompts the user for the name of the dictionary to use for a given

column.  The option to select from a list in BPW.FEXP.UPDT is an improvement over the

selection option in UV.EXPORT..  If the user enters an “H” to indicate a request for help in

selecting the dictionary item to use, then the program prompts the user for a text string that it

will search for in the dictionary.  For example, entering DESC would filter the dictionaries

and only present the user with items that had DESC in the name or the column header.  Using

the column header as a search element is similar to using the comment field for

documentation within Unity because it improves the amount of information available about a

column.  This improvement leads to faster selection of fields to include on the report.  The

user also has the option of creating a virtual column by specifying the details that would

normally be stored within the dictionary of the table.  This virtual column is never written to

the table’s dictionary and can only be changed from within BPW.FEXP.UPDT, which

limits the possibility that a dictionary being changed will affect a stored extract job.

BPW.FEXP.UPDT also allows the definition of the column header to be used for the extract

job.  This feature allows the user to place a more meaningful header on each row, but it is

also used in generating XML file extractions.  For XML, the column header entered becomes

the element name for the value to be extracted.

Additionally, for each column to be extracted, an advanced user, defined within a

record stored in a control file under UniVerse, has the ability to mark each field as a



J. Jimenez 22

summary field or a multi-valued field.  A summary field will be totaled and the detail of each

record will be omitted in the extracted file.  Each column appearing before a summary field

will be treated as a grouping field.  For example, given the four fields of Warehouse, Product

line, Customer type, and Sales Dollars (with Sales Dollars being a summary field) the

extraction program would produce a file with Sales dollars totaled at each change in

Customer type.  The select statement for this type of extract must match the fields that appear

before the summary field or fields.  The statement must select the records to be extracted in

sorted order by, for the given example, Warehouse, Product Line, and finally Customer type.

UniVerse multi-valued data can be contained within the same record as other data is

not associated with it.  For example, in a UniVerse order file, a tax code and tax amount may

be in the same record as a fee code and a fee amount.  If each of these were multi-valued,

then there could be two tax codes and corresponding tax amounts and three fee codes with

corresponding fee amounts.  UniVerse ODBC relies on dictionaries to mark the related

fields.  When these fields are marked correctly, the UniVerse ODBC server will present these

to a client as part of separate tables.  For the given example, since no other multi-valued

fields are in the file, one table presented to an ODBC client would have all the fields that are

not multi-valued within the order file.  Two additional tables would be presented each with

record identifiers matching the first table.  One of these additional tables would have the tax

code and tax amount information split into multiple records; the other would have the fee

code and fee amounts.  BPW.FEXP.UPDT uses a similar model in order to accommodate

multi-valued fields.  In a given extract job, any number of single-valued fields can

accompany a single set of multi-valued fields.  One of these is marked by the user as the root;

in other words, this is the master column used to determine how many fields must be



J. Jimenez 23

extracted.  Continuing with the same example as above, the product number purchased, the

product description, the customer number, and other fields may be extracted along with the

fee codes and fee amounts.  The resulting data will duplicate all the other columns within the

record once for each fee code if the fee code is marked as the multi-valued root.  The fee

code and fee amount columns will have discrete values for each row extracted.

Given the following record, with ellipses marking fields not shown,

Record id Customer Product Description …. Fee
code

Fee
amount

1234567*1 01*000261 17420 Asian Spice Ginger Brew ….. F1 0.50
F2 1.25
F3 0.02

Extracting each of the columns visible yields:

Record id Customer Product Description Fee
code

Fee
amount

1234567*1 01*000261 17420 Asian Spice Ginger Brew F1 0.50
1234567*1 01*000261 17420 Asian Spice Ginger Brew F2 1.25
1234567*1 01*000261 17420 Asian Spice Ginger Brew F3 0.02

It would also be possible to directly emulate the ODBC clients’ output by creating a separate

extract for each multi-valued field, which would result in an extraction such as:

Record id Fee
code

Fee amount

1234567*1 F1 0.50
1234567*1 F2 1.25
1234567*1 F3 0.02

along with another extraction that would have all the single-valued data desired such as:



J. Jimenez 24

Record id Customer Product Description
1234567*1 01*000261 17420 Asian Spice Ginger Brew

Executing an Extract Job within UniVerse

In order to accomplish the extractions, BPW.FEXP.UPDT calls

BPW.FILE.EXTRACT, which is a separate UniVerse program, with command line

parameters describing the work be completed.  Some of the parameters to

BPW.FILE.EXTRACT are

OPTION Description
REPORT Indicates a single extraction is to be completed
PREFIX:groupid*[recordid] Indicates which group or individual job is to be done
LIST:listname Indicates a list of record id’s to use in place of the

select statement entered using BPW.FEXP.UPDT

BPW.FILE.EXTRACT was written as a separate tool to allow a variety of uses.  A call to

BPW.FILE.EXTRACT can be embedded in any UniVerse program, allowing a programmer

to design a standard report using BPW.FEXP.UPDT.  A program can then be written to

retrieve selection options from a user for a specific task — for example, getting the customer

number and start and end dates for a report of ordering activity and generating a list of

matching record identifiers.  This list can then be passed to BPW.FILE.EXTRACT along

with the group and record identifier of the report desired.  This process saves programming

time when the desired output is a file rather than a printed report.  Although the concept of a

“paperless office” has lost ground due to its seeming impossibility, being able to manipulate

data using programs such as COGNOS and other data analysis tools is a definite and

achievable improvement.

BPW.FILE.EXTRACT has additional options that match up with options in



J. Jimenez 25

BPW.FEXP.UPDT.  A protocol for date substitutions has been incorporated that allows a

user or developer to create a report that does not need to be continuously modified in order to

continue to be useful.  Again, using the orders file as an example, a user might want a report

that shows what orders are going to ship today.  Rather than enter a date in the selection

prompt such as “12/10/02”, the user would enter the statement that would select the data as

required but enter “(RW_FDT)” where the date would normally go within

BPW.FEXP.UPDT.  BPW.FEXP.UPDT would accept that as a valid date and

BPW.FILE.EXTRACT would replace the text within the select statement with the given

date, “12/10/02”.  Some of the date replacements available are:

Text Meaning
(RW_FDT) Replace With Formatted DaTe
(RW_YFDT) Replace With Yesterday’s Formatted DaTe
(RW_RDT) Replace With Raw DaTe
(RW_YRDT) Replace With Yesterday’s Raw DaTe

UniVerse uses a base date system, which internally represents any given date as the number

of days from the base date.  Using this type of system, a developer, if not a savvy user, can

select data for any given range of dates by using evaluated virtual fields in the select

statement.  The use of this type of select statement is beyond the scope of this paper, but the

flexibility is apparent.

In order to determine the value for a given column, BPW.FILE.EXTRACT has to

build on some of the strengths of UniVerse.  It uses a straightforward algorithm that

accomplishes much of what UniVerse’s RETRIEVE tool does.  Figure 3 shows a partial

decision tree for the algorithm.  See Table 1 for examples of dictionary records.



J. Jimenez 26

 

The decision tree does not show some of the steps required to evaluate columns that

reference other columns.  In order to evaluate these columns, it is necessary first to de-

reference any named columns into their respective values and then continue to evaluate the

desired column using these values.

Because of this reporting tools flexibility, it is possible to set up a CGI1-based

interface for BPW.FILE.EXTRACT that lists all of the defined groups and the defined

reports within each group.  This list is presented to users via an intra-net web site; clicking on

any of the listed groups will execute that group and present hyperlinks to the data.  One of

the hyperlinks presents the data as an HTML table.  The other is a hyperlink that can be used

to download the data in its chosen format, whether XML, tab-, or comma-delimited.

                                                          
1 Common Gateway Interface – one method of adding a program or script to a web page to interact with
resources not normally accessible to it, but available to the server.

Dictionary type

A
S D I

Execute using I.Type
built in UniBasic
function.

Extract Conversion
information from
attribute 7 of
dictionary, Correlative
information from
attribute 8 of
dictionary.

Setup values by
reading record and
execute using built-in
UniBASIC OCONV
function.

Figure 3: A partial decision tree for evaluating a column.



J. Jimenez 27

The UniVerse programs created for this project directly access UniVerse data that

may not be available via ODBC.  Similar to SQL views, an extract job or group defines a

view into the database that allows the definition of virtual fields, which are not in danger of

being changed outside of the extract interface.  The programs take advantage of information

not accessible to ODBC clients, such as the column header of the dictionary.  Developers or

users can easily change the content of an extract job without having to sift through code or

modify any programs.  The ease with which extract jobs can be changed decreases the

amount of time it takes to get information out of the database.



J. Jimenez 28

SECTION 4: RESULTS

Before executing ODBC.DICT.CHECK to update dictionary items, the file used to

test ODBC connectivity had 57 columns available for queries via ODBC and SQL.  Once

ODBC.DICT.CHECK was executed selecting the update option, 521 columns were available

for queries.  The additional columns represented dictionary items accepted by

ODBC.DICT.CHECK as valid for ODBC and SQL access.  A simple increase in the number

of columns available is not necessarily an improvement if there is no improvement in the

quality of the information available.  The benefit of the additional columns and the improved

naming methodology became apparent when accessing the fields using Unity.  Deciding on

semantic names and whether or not to add these fields to the specification of the data source

was much easier with the new data..  Quantifying this improvement was not attempted;

however, comparing a label such as “4” on a dictionary item to a label of

“O@4@F4@TAXCODE” on the column, suggests dramatic improvement.  The first label

may hint at the column number from which the data comes.  The second label indicates the

data in the column corresponds to a TAXCODE.  Hence the second label is much easier to

work with and assign a semantic name to.  Unity’s semi-automated naming algorithm can be

modified and used to assign a semantic name for a column with this type of name which

would have been impossible using the original name of the column.

The new dictionary entries helped to increase access to the ODBC client but still

suffered from having arcane names, even given the obvious improvement.  A better solution

building on the strengths of Unity and UniVerse came from the creation of X-Specs using

ODBC.DICT.CHECK..  In X-Spec creation mode, ODBC.DICT.CHECK did not need to

create new dictionaries or even increase access to the UniVerse tables.  However, the



J. Jimenez 29

resulting X-Spec gave a map of the database that had not previously been accessible.  The

names for the columns continued to be arcane, but the fact that the originals were preserved

is important.  These names are referenced in the stored reports generated in the RETRIEVE

or UniVerse SQL language.  The information previously provided within the name of the

column created by ODBC.DICT.CHECK is now present in a comment field visible within

Unity.  This added documentation and graphical representation of the information contained

within will prove invaluable in documenting the database.  It will also allow users to share

documentation of their databases without needing to share access to their data.

BPW.FEXP.UPDT and BPW.FILE.EXTRACT have drastically improved the

development time for new data extractions.  In general, the programs allow a developer or a

savvy user to create a data extraction routine that can be stored and repeated as needed.  With

the new tool, simple extractions can be designed and completed by users.  The extraction can

then remain static or be modified quickly and easily by a user or developer without the need

to modify or write a single line of code.  Previously each data extraction was requested

separately from a report request and was completely static when coded by a developer..

Paper reports were the norm for new development.  This meant that useful information was

trapped on paper where it could not be manipulated easily.  With the new tool, using simple

FTP protocols, the generated file can be copied to a client system and then manipulated with

standard tools such as Excel, Lotus Notes, or any other product that can import ASCII or

XML files.



J. Jimenez 30

SECTION 5: FUTURE DEVELOPMENT

Unity

Unity should be expanded to make it compatible with more data sources.  As

discovered when trying to work with the UniVerse database, other types of databases may

not be compatible with ODBC level 3 or level 2.  Unity could be modified by creating

inheritance classes that could be called for different levels of access.  This modification

would entail creating a master class that would have the calls for ODBC level 1 and

subclasses that would override certain functions, such as the data field discovery.  Another

use for these would be the addition of ODBC-driver specific calls where necessary.  For

example, UniVerse ODBC clients have two different methods of accessing tables.  These two

methods cause multi-valued fields to be returned differently.  If one method is preferable to

another, then opening the data source should be done in such a way as to take advantage of

the correct method.  This would require different calls that are not necessary for other

database types and would best be separated from the rest of the code by creating inheritance

classes.

Within Unity, generating an SQL query is done using a graphical interface.  This

process represents the query in an internal format that is then translated into SQL.  Unity

could be expanded to generate query strings using various other syntaxes, including

RETRIEVE statements that are used within the UniVerse environment.  Since the query is

represented graphically to a user, the translation of the query into a particular syntax could be

a simple matter of mapping one well-structured language to another.  The graphical query

system may not be compatible with some syntaxes but could be extended by initially

signifying what query language was to be generated when beginning the process.



J. Jimenez 31

BPW.FILE.EXTRACT and BPW.FEXP.UPDT

 It is possible to create a socket-driven interface for BPW.FILE.EXTRACT.  To

accommodate such future development, BPW.FILE.EXTRACT can take a control file as a

parameter in place of its PREFIX parameter.  Given a file path for a simple ASCII text file

with the appropriate information within it, BPW.FILE.EXTRACT will open and parse the

file for the information it requires to execute an extraction job.

Additional work for this system involves performing joins within BPW.FEXP.UPDT

in order to make additional information available for any given extract.  If access to any field

within a given file is already performed within a dictionary item for a file, then access to any

field can be granted.  BPW.FEXP.UPDT and BPW.FILE.EXTRACT are already examining

dictionary items.  To verify that a given dictionary accesses a file other than the one being

reported from, BPW.FEXP.UPDT must check for the command strings that implement that

access.  Adding access to any other field is then a simple matter of changing the field number

in the dictionary to the requested field and executing the dictionary.

Little attention has been paid to BPW.FILE.EXTRACT’s ability to generate XML

files.  However, it too can offer some improvement.  By incorporating a DTD into the XML

generated, BPW.FILE.EXTRACT would improve verifiability of the data contained within

it and would assist a user in sharing the data with another user by describing the contents of

the file to a greater extent.  This ability to generate XML files could also be useful in

providing data via a simple HTML interface.  It is possible to write a web service that would

execute a file extraction routine and then return an HTML page with the XML embedded

within it.  Within the .NET framework, for example, a call to this web service could be read



J. Jimenez 32

with an XML reader.  Creating such a service would provide a method for displaying

selected pieces of information on a web page from the UniVerse server without having to

write additional code on the UniVerse side to accomplish it.

Documentation

The X-Specs generated by ODBC.DICT.CHECK provide some information about the

database not previously accessible via ODBC or SQL.  However, there is more information

that can be displayed and presented.  For example, displaying whether or not a field is multi-

valued is useful.  Some of this information can be culled from the dictionaries and other

standard documentation.  This information could all be added to the comment field of the X-

Spec, or the X-Spec could be extended to add attributes to hold some of the more universal

data.  In order to make Unity a more useful tool for documentation, a mouse-hover event

should be added.  When the mouse is placed over a column representation in the graphical

view, the comment field information should display until the mouse moves.  Rather than

have a user open the properties window of the column, this method of displaying the

information could prove to be critical, especially when names are of little use in deciphering

the contents of a field.

One of the major benefits to using Unity to document the information available in an

ODBC or otherwise accessible data source is Unity’s use of semantic names.  The semantic

name, once defined, is a user’s first point of contact with a given column.  If enough

information is encoded in the name, the user does not need to look at the comments of a

column to determine what it contains.  To help improve the automated assignment of

semantic names, Unity may be modified to access the information required wherever it is

stored in the data source.



J. Jimenez 33

SECTION 6:  CONCLUSION

The main goal of the project was to increase access and documentation of information

stored within a UniVerse database.  Using Unity and the UniVerse tools developed, it was

possible to increase the accessibility between UniVerse and ODBC clients as well as increase

access to the data from within UniVerse.  These same tools increased the amount of

documentation available for the database.  The majority of the tools used, with the exception

of the web interface developed for the UniVerse data extraction tool, are applicable to other

UniVerse databases.

In pursuing the goal of the project, it became clear that the names of the columns

were a critical part of user documentation.  The name of the column is what is presented, not

only to ODBC clients, but also to a UniVerse user when the contents of a dictionary are

listed.  While a UniVerse user has the ability to see the column header used with a dictionary

item, an ODBC client does not.  X-Specs provide a method for accessing information that is

not within the name of a column.  An X-Spec also provides a comment attribute in which

information relating to the column can be kept.  Using an X-Spec, a user or a developer can

better track information about a column, including a semantic name that gives not only a

better name for the field, but also an indication of the relationship between it and other

columns throughout a database or a group of databases.  The UniVerse tools developed

compensated for the poor naming conventions by presenting the column header along with

the column name.  This feature assisted in development and compensated for the lack of

documentation as well.  This project improved access to information in UniVerse databases

by providing additional tools and documentation using Unity and techniques learned in

implementing Unity in a UniVerse environment.



J. Jimenez 34

APPENDIX 1:
UNIVERSE DICTIONARY ENTRY TYPES

 AND THEIR STRUCTURES [6]

D-Types
Column Column Name Contents Description
0 @ID Name of the

dictionary entry
Identifies the field

1 Type D Type code
2 Loc Field number Location of the

field in the data
table

3 Conv Conversion code Formula to convert
the data into
external format

4 Name Column heading Name used as
column heading

5 Format Width and
justification

6 SM S | M Single-valued or
Multi-valued flag

7 Assoc Phrase name A phrase name that
links multi-valued
fields

8 Data Type Data type SQL data type if
present (Usually
not)

I-Types
Column Column Name Contents Description
0 @ID Name of the

dictionary entry
Identifies the field

1 Type I Type code
2 Exp I-Type expression Expression that

produces values for
the field

3 Conv Conversion code Formula to convert
the data into
external format

4 Name Column heading Name used as
column heading

5 Format Width and
justification

6 SM S | M Single-valued or
Multi-valued flag

7 Assoc Phrase name A phrase name that
links multi-valued
fields

8 Data Type Data type SQL data type if
present (Usually
not)



J. Jimenez 35

A-Types & S-Types
Column Column Name Contents Description
0 @ID Name of the dictionary

entry
Identifies the field

1 Type S | D Type code
2 Loc Field number Location of the

field in the data file
3 Name Column heading Name used as

column heading
4 C;number[;number…]|

D;number
Links multi-valued
fields

5 NONE Not used
6 Data Type Data type SQL data type if

present (Usually
not)

7 Conv Conversion code Formula for
converting stored
data to external
format

8 Corr Correlative code Formula that
produces values for
a field

9 Typ L | R | T |U Justification code
for a field

10 Max Width Column width for a
RETRIEVE report



J. Jimenez 36

APPENDIX 2:
IMPORTING THE KEY DEFINITION

PORTION OF AN X-SPEC

void CKey::importXML(ifstream &os)
// Imports key information of X-Spec from XML format
//    from open ifstream os
{

//Key level information
// basic algorithm:
//    assumption:  have already read <KEY> tag
//    read line that contains name
//    parse value from line
//    read line that contains type
//    parse value from line
//    read line that contains scope
//    parse value from line
//    read line that contains scope name
//    parse value from line
//    while line is not <FIELDS>
//       read next line
//    read next line
//    while line is not </FIELDS>
//       parse field name from line
//       read next line
//    read next line

CString line_data = "";
CString line_tag;
CSpecField *sfld;

line_data = getnextline(os);
name = getvalue(line_data);

line_data = getnextline(os);
type = atoi(getvalue(line_data));

line_data = getnextline(os);
scope = atoi(getvalue(line_data));

line_data = getnextline(os);
scope_name = getvalue(line_data);

line_data = getnextline(os);
line_tag = gettag(line_data);



J. Jimenez 37

while (! (line_tag == "FIELDS"))
{

line_data = getnextline(os);
line_tag = gettag(line_data);

}

line_data = getnextline(os);
line_tag = gettag(line_data);
while (! (line_tag == "/FIELDS"))
{

sfld = new CSpecField;
sfld->sys_name = getvalue(line_data);
AddField(sfld);

line_data = getnextline(os);
line_tag = gettag(line_data);

}

line_data = getnextline(os);

}



J. Jimenez 38

REFERENCES

[1] R. Lawrence and K. Barker: Unity - A Database Integration Tool. TRLabs Emerging
Technology Bulletin December 4, 2000.

[2] IBM: IBM Software: Database and Data Management: U2 product family: UniVerse:
Overview. http://www-3.ibm.com/software/data/u2/universe/

[3] IBM: IBM Software: UniVerse System Description. http://www-
3.ibm.com/software/data/u2/pubs/library/952univ/70-9003-952.pdf

[4] IBM: IBM Software: UniVerse Guide to RETRIEVE.  http://www-
3.ibm.com/software/data/u2/pubs/library/952univ/70-9005-952.pdf

[5] VMARK: VMARK Technical Bulletin:  Part No. 74-0074:  UVEXPORT:  The UniVerse
Export Facility. VMARK Software Inc., 1993.

[6] VMARK:  UniVerse System Description:  Part No. 70-9003-931. VMARK Software Inc.,
1996.

http://www-3.ibm.com/software/data/u2/pubs/library/952univ/70-9003-952.pdf
http://www-3.ibm.com/software/data/u2/pubs/library/952univ/70-9003-952.pdf
http://www-3.ibm.com/software/data/u2/pubs/library/952univ/70-9005-952.pdf
http://www-3.ibm.com/software/data/u2/pubs/library/952univ/70-9005-952.pdf

	Data Retrieval and Documentation Using Unity in a UniVerse® Environment
	____________________________________
	Ramon Lawrence
	____________________________________
	Douglas Jones
	Environment
	Approaches
	The first step toward using Unity to build and execute queries and to extract information about the UniVerse database is to ensure this data is accessible to Unity via ODBC.  In this stage of the project, a test environment with a limited number of table


	SECTION 6:  CONCLUSION
	D-Types

