
Data Documentation and Retrieval Using Unity in a

UniVerse® Environment
Progress report – Summer 2002

July 28, 2002

Jose JIMENEZ

University of Iowa, Iowa City, Iowa

jose_jimenez73@hotmail.com

Goals

The goal of the second phase of this project was to increase the amount of
information available to Unity from the target database.[1] In order to accomplish this, a
program was planned to examine dictionary items and populate the @select item of the
data files’ dictionaries.[2]

Details

Environment

Phase two of the project was implemented on the same system as the host
database. The host database is a UniVerse® version 9.5.1.1.fr1-1 database with multiple
files. It runs on an IBM model P620 RS6000 system. The operating system is AIX
version 4.3. The native programming language of UniVerse® is UniBASIC, a compiled
version of BASIC with extensions used to work with the databases directly. UniVerse®
files use companion files called dictionaries to provide access to a variety of query
methods. These methods include a built in reporting language called Retrieve which is a
variant of SQL, locally executed SQL queries, and ODBC clients. Both SQL and the
ODBC clients rely on an entry in the dictionary of the file to determine which fields,
generally referred to as columns in ODBC and SQL, are available to return. This entry is
always labeled “@select” and is generally updated manually. Entries may be in the
dictionary file for a data file without being in the @select entry of its dictionary file.
When using ODBC or SQL to access a UniVerse® file, each data file is seen as a table
and each entry in the @select dictionary item labels a column of that table.

Specification

The program that would populate the @select dictionary item for the data files
would have to add items to a simple list separated by spaces. The challenge for the
program would be to select only items that would work with ODBC and SQL. Some
items that would not work with ODBC and SQL are items that are right justified and have

both numeric and alphabetic data. Other items that would pose problems are items that
don’t execute correctly to bring back the appropriate information. In UniVerse®, a
dictionary item can implement joins to another data file. Dictionary items may also
implement complicated decision matrices by executing programs to return a value for the
column. If a dictionary item refers to a program that cannot be executed or refers to a file
that is not available, it is invalid. Invalid dictionary items and items that refer to other
items that are invalid should not be added to the @select entry.

Description

The task of selecting valid entries from those available in the dictionary file is
made more complicated by the fact that dictionaries can be any of four different types.
The structure of dictionary items varies by type. The program written,
ODBC.DICT.CHECK, includes code that differentiates between the different possible
types and parses each dictionary into its component pieces. The type is determined by
the first attribute of the file. Attributes in UniVerse® correspond to columns of a table.
Within the UniVerse® host environment, even dictionary items are separated into
separate attributes that can be accessed individually by UniBASIC programs.
Unfortunately, this information is not accessible using ODBC or SQL statements outside
of UniVerse®. Some of the other available dictionary attributes are the base field and the
method used to manipulate the data in order to arrive at a value. Each dictionary item is
in turn checked for consistency, and validity. Right-justified fields merit further
investigation since it is impossible for the program to tell simply from looking at the
dictionary item what kind of information is actually in the data file. In order to determine
whether the field suffers from having mixed alpha and numeric data, a sampling of the
data is taken to determine if there are any non-numeric values in it.

The program can validate the entries in the dictionary file and generate a report or
update the @select entry when it executes. When the program works on a given file in
update mode, it makes a backup of the previously used data. It also writes a signature to
the @select entry of the dictionary file including the name of the program that updated
the file, the date, and the time of update. When adding dictionary items to the @select
entry, it copies the entries to new names that have more information than would be
available otherwise. The naming convention that it uses is made up of several pieces of
information separated by a “@” which is converted by some ODBC clients to an
underscore. These pieces of information are the base field number if available, the
original name of the field and the text label used for reporting purposes. This results in
fairly long names, but it is usually easier to tell what the field contains using these new
names as compared to using the original names.

Implementation

ODBC.DICT.CHECK is available in the appendix.

Results

Before executing ODBC.DICT.CHECK, the sample file used had fifty seven (57)
fields available for queries via ODBC and SQL. Once ODBC.DICT.CHECK was
executed, five hundred and twenty one (521) fields were available for queries. The

additional fields were those accepted by ODBC.DICT.CHECK as valid fields. A simple
increase in the number of fields available is not necessarily an improvement if there is no
improvement in the quality of the information available. The benefit of the additional
columns and the improved naming methodology became apparent when accessing the
fields using Unity. Deciding on semantic names and whether to add these fields to the
specification of the data source was much easier with the new data compared to the old
data. Quantifying this improvement was not attempted at this time, however, going from
a label such as “4” on a dictionary item to a label of “O@4@F4@TAXCODE” on the
column, the improvement is quickly visible. The first may give a hint at what column
number the data comes from. The second gives an indication the data in the column is a
TAXCODE, which is much easier to work with and assign a semantic name to. The
example given is an actual data field from the sample table.

Further work for the project

The next phase of the project is to create a source, specification and schema for
the database once more. This would entail a repeat of some of the work done during
spring 2002, but would not have to overcome the same problems. This would give a
baseline for the amount of documentation possible manually using Unity. This had been
tentatively scheduled for summer of 2002, but was not completed. Once the source,
specification and schema are set up, queries will be executed against the host database
with Unity. The results will be compared to doing similar queries against the host
database on the host system.

The fall of 2002 may also be used to increase the amount of automated
documentation available. Some of this work has already been done in
ODBC.DICT.CHECK. Simply adding the column label to the name of the field increases
the amount of information available to anyone using ODBC or SQL to connect to the
UniVerse® database. Additional work may be done to generate X-Specs for use in Unity
using programs written in the UniVerse® environment.

Summary

Simple programs and programming languages can be used to much advantage
when it comes to automated documentation. This phase of the project involved creating a
program in a language similar to BASIC that increased the number of columns and the
quality of the names of columns available in a target database. Deciphering a name like
“F79” from outside of the host system requires significantly more work than
“O@79@F79@SHIP_DAYS”, so long as the “@” is known to be a separator. The next
phase of the project will focus on modifying ODBC.DICT.CHECK to optionally produce
an X-Spec file describing the table/tables verified or updated with information about the
columns and fields available.

Appendix
*
* V:1.0
* U:???
*** Copyright 2002, etc., Blooming Prairie Cooperative Warehouse (BPW)
*** Confidential and proprietary information of BPW,
*** Iowa City, IA. Use or dissemination allowed only with
*** prior written consent of BPW
*
* PROGRAM NAME : ODBC.DICT.CHECK
* WRITTEN BY : JMJ
* DATE WRITTEN : 6/1/02
* DESCRIPTION : CHECK DICTIONARY ITEMS FOR ODBC COMPATIBILITY
*
* MODIFICATIONS:
* ??? ??? ??-??-?? ?????????????????????????
*

*
*** COMMONS
*

*** EQUATES ***
 EQU TRUE TO 1
 EQU FALSE TO 0

*** DEFINE MISC VARIABLES *
 AM=CHAR(254)
 VM=CHAR(253)
 SM=CHAR(252)
 CLR=@(-1)
 BELL=CHAR(7)
 CLL=@(-4)
 CEOS=@(-3)
 EL=@(0,23):BELL:CLL
 EEL=@(0,23):CLL
 PL=@(0,22):CLL
 ULON=@(-15)
 ULOFF=@(-16)
 LF=CHAR(10)
 FF=CHAR(12)
 CR=CHAR(13)
 TAB=CHAR(9)
 PROMPT ''
 TODAY = DATE()

*
*** OPEN FILES
*

 OPEN 'VOC' TO VOC ELSE
 PRINT 'UNABLE TO OPEN VOC. PRESS RETURN TO CONTINUE'
 END

*
*** MAIN
*

 PGM.NAME = "ODBC.DICT.CHECK"
 PGM.TITLE = "ODBC DICTIONARY CHECK"

 DEFFUN F.TRIMLOW(I.STRING) ; * FUNCTION TO REMOVE CHARACTERS BELOW HEX 20

* THIS PROGRAM ASSUMES IT WILL BE WORKING WITH A LIST OF FILES TO
* VERIFY OR UPDATE. UniVerse SUPPORTS A NAMED LIST OF FILES.

GET.LIST.NAME:
 PRINT 'ENTER LIST NAME TO USE E=EXIT : ':
 INPUT LIST.NAME

 IF LIST.NAME = 'E' THEN GO PRGXIT
 IF LIST.NAME = '' THEN GO GET.LIST.NAME

* VERIFY THE FILE LIST
 GETLIST LIST.NAME ELSE
 PRINT 'UNABLE TO GET LIST. PRESS RETURN TO CONTINUE.':
 INPUT JUNK
 GO GET.LIST.NAME
 END

 READLIST FILES.TO.CHECK ELSE
 PRINT 'UNABLE TO GET LIST. PRESS RETURN TO CONTINUE.':
 INPUT JUNK
 GO GET.LIST.NAME
 END

 FILE.COUNT = DCOUNT(FILES.TO.CHECK,@AM) ; * FIND THE NUMBER OF FILES TO REPORT ON

* USE @SELECT OR FULL DICTIONARY?
GET.DICT.SEL.FLAG:
 PRINT 'PRESS RETURN TO USE @SELECT ENTRIES, ANY OTHER KEY TO USE FULL DICTIONARY : ':

 INPUT DICT.SEL.FLAG

* GET THE RESPONSE TO UPDATE OR SIMPLY VERIFY
 PRINT 'ENTER "Y" TO CREATE NEW DICTIONARY ENTRIES WITH EXPANDED NAMES. ANY OTHER KEY TO SKIP STEP.'
 INPUT DICT.UPDATE

* GET THE RESPONSE TO ADD OLD ENTRIES
 PRINT 'ENTER "Y" TO CREATE KEEP OLD ENTRIES AS WELL AS NEW ONES. ANY OTHER KEY TO SKIP STEP.'
 INPUT KEEP.OLD.FLAG

 FOR FL = 1 TO FILE.COUNT
 FILE.ASSOC = '' ; * USED TO KEEP TRACK OF FILE ASSOCIATIONS
* OPEN THE DICTIONARY OF THE FILE
 THIS.FILE = FILES.TO.CHECK<FL>
 IF DICT.UPDATE = 'Y' THEN
 PRINT @(0,10):CLL:"ON ":FL:"/":FILE.COUNT:" ":THIS.FILE ; * DISPLAY A COUNTER
 END
 CLOSE FILE.DICT
 OPEN 'DICT ':THIS.FILE TO FILE.DICT ELSE
 PRINT @(0,15):CLL:'DICT ':THIS.FILE:' NOT FOUND. UNABLE TO PROCESS.'
 GO SKIP.TO.NEXT.DICT
 END
 IF DICT.SEL.FLAG = '' THEN
 * IF USING THE @SELECT ENTRY AND THERE IS NOT ONE,
 READ SEL.DICT FROM FILE.DICT, '@SELECT' ELSE
 PRINT @(0,15):CLL:'DICT ':THIS.FILE:' @SELECT RECORD NOT FOUND. UNABLE TO PROCESS.'
 GO SKIP.TO.NEXT.DICT
 END
 END ELSE
 DICT.STMT = 'SELECT DICT ':THIS.FILE
 EXECUTE DICT.STMT CAPTURING JUNK
 READLIST SEL.DICT ELSE
 PRINT @(0,15):CLL:'DICT ':THIS.FILE:' NO RECORDS FOUND. UNABLE TO PROCESS.'
 GO SKIP.TO.NEXT.DICT
 END
 SEL.DICT = @AM:CHANGE(SEL.DICT,@AM,' ')
 END
 WORD.COUNT = DCOUNT(SEL.DICT<2>,' ') ; * THE NUMBER OF ITEMS TO VERIFY
 NEW.SEL.DICT = '' ; * USED TO STORE NEW NAMES TO ADD TO @SELECT ENTRY
 OLD.SEL.DICT = '' ; * USED TO STORE OLD NAMES TO ADD TO @SELECT ENTRY
 DEP.LIST = '' ; * USED TO TRACK DEPENDENCIES
 FOR WL = 1 TO WORD.COUNT
 THIS.WORD = SEL.DICT<2>[' ',WL,1]
 PRINT @(0,20):CLL:"ON ":WL:"/":WORD.COUNT:" ":THIS.WORD
 READ THIS.DICT FROM FILE.DICT, THIS.WORD ELSE
 PRINT @(0,21):CLL:'DICT ':THIS.FILE:' ENTRY ':THIS.WORD:' NOT FOUND. UNABLE TO PROCESS.'

 GO SKIP.THIS.DICT
 END
 THIS.TYPE = THIS.DICT<1>[1,1] ; * DICTIONARY TYPE
 THIS.ASSOC = '' ; * USED TO STORE ASSOCIATION WITH OTHER MULTIVALUED FIELDS
 THIS.CORR = '' ; * USED TO STORE INFO ABOUT DATA MANIPULATION FOR CERTAIN TYPES
 THIS.FIELD = 0

 THIS.EVAL = '' ; * USED TO STORE INFOR ABOUT CODE THAT IS EXECUTED
 BEGIN CASE
 CASE THIS.TYPE = 'D' OR THIS.TYPE = 'I'
 THIS.LABEL = THIS.DICT<4>
 THIS.JUST = THIS.DICT<5>
 THIS.JUST = THIS.JUST[1]
 CASE THIS.TYPE = 'A' OR THIS.TYPE = 'S'
 THIS.LABEL = THIS.DICT<3>
 THIS.ASSOC = THIS.DICT<4>
 THIS.JUST = THIS.DICT<9>
 THIS.CORR = THIS.DICT<8>:" ":THIS.DICT<7>
 CASE 1
 PRINT @(0,21):CLL:'DICT ':THIS.FILE:' ENTRY ':THIS.WORD:' HAS TYPE ':THIS.TYPE:'. UNABLE TO PROCESS.'
 GO SKIP.THIS.DICT
 END CASE

* LOOK FOR INVALID SUBROUTINE CALLS IN 'I' TYPE DICTIONARIES
 IF THIS.TYPE = 'I' THEN
 THIS.EVAL = THIS.DICT<2> ; * USUALLY CODE THAT IS EXECUTED
 THIS.OCC = 0
 THIS.SEARCH = 'SUBR(' ; * MARKER FOR CALLED SUBROUTINE
 PASS = 1
 LOOP
I.L.TOP:
 THIS.OCC += 1
 SUB.IND = INDEX(THIS.EVAL,THIS.SEARCH,THIS.OCC)
 IF PASS = 1 AND SUB.IND = 0 THEN
 THIS.SEARCH = 'TRANS(' ; * MARKER FOR JOIN WITH ANOTHER FILE
 THIS.OCC = 0
 PASS = 2
 GO I.L.TOP
 END
 WHILE SUB.IND > 0
 C.IND = SUB.IND + INDEX(THIS.EVAL[SUB.IND,99999],',',1)
 THIS.ROUTINE = THIS.EVAL[SUB.IND+6,C.IND-2]
 * WHETHER IT IS A SUBROUTINE OR A JOIN, THE VALUE OF THIS.ROUTINE
 * MUST APPEAR IN THE VOC (MASTER LISTING OF PROGRAMS/FILES)
 * IN ORDER FOR THE FIELD TO BE VALID
 READ JUNK FROM VOC,THIS.ROUTINE THEN
 NULL
 END ELSE

 PRINT @(0,21):CLL:'DICT ':THIS.FILE:' ENTRY ':THIS.WORD:' HAS INVALID CALL TO ':THIS.ROUTINE:'. UNABLE TO
PROCESS.'

 GO SKIP.THIS.DICT
 END
 REPEAT
 END

* LOOK FOR REFERENCES TO FILES NOT AVAILABLE
* THIS IS ONLY EXECUTED FOR DICTIONARY TYPES OTHER THAN "I" SINCE
* THE ABOVE CODE HANDLES THOSE. THIS IS CONTROLLED BY THE VALUE OF
* THIS.CORR BEING SET TO NULL ABOVE.

 T.OCC = 0
 PASS = 1
 T.SEARCH = '(T' ; * MARKER FOR FILE JOINS
 LOOP
T.L.TOP:
 T.OCC +=1
 TIND = INDEX(THIS.CORR,T.SEARCH,T.OCC)
 IF TIND = 0 AND PASS = 1 THEN
 T.SEARCH = @VM:'T' ; * THE SECOND PASS LOOKS FOR
 * occurrences in multivalued correlatives.
 T.OCC = 0
 PASS = 2
 GO T.L.TOP
 END
 WHILE TIND > 0
 SIND = TIND + INDEX(THIS.CORR[TIND,99999],';',1)
 T.FILE = TRIM(THIS.CORR[TIND+2,SIND-1])
 OPEN T.FILE TO T.JUNK THEN
 CLOSE T.JUNK
 END ELSE
 GO SKIP.THIS.DICT
 END
 REPEAT

 THIS.LOC = THIS.DICT<2>
 IF THIS.TYPE = "I" THEN THIS.LOC = "I" ; * I TYPE FIELDS DO NOT HAVE
 * BASE FIELDS. THEY GENERALLY EXECUTE
 * CODE THAT CAN PULL DATA FROM
 * ANY FIELD/FILE OR DECISION MATRIX
 * THE NEW NAME OF THE FILE WOULD BE MULTIPLE PARTS
 * PART 1: TAG FOR ODBC DICT = "O"
 * PART 2: THE BASE FIELD NUMBER FOR THE DICTIONARY ITEM
 * PART 3: THE ORIGINAL NAME OF THE COLUMN
 * PART 4: THE TEXT LABEL FOR THE COLUMN WHEN PRINTING REPORTS FROM RETREIVE
 * CONVERT TILDA'S, COMMAS, AND PERIODS TO SPACE IN THE ORIGINAL TO AVOID CONFLICTS

 * CONVERT SPACES TO UNDERSCORES IN THE RESULT

 NEW.NAME = "O@":THIS.LOC:"@":CONVERT("@"," ",THIS.WORD):"@":TRIM(CONVERT("."," ",CONVERT(@VM," ",CONVERT("@","
",THIS.LABEL))))

 I.STRING = NEW.NAME
 NEW.NAME = CONVERT(\"' \,"_",F.TRIMLOW(I.STRING))
 IF THIS.JUST = 'R' THEN
 * IF THE FIELD IS RIGHT JUSTIFIED, SAMPLE THE DATA TO VERFIY
 THIS.STMT = 'SELECT ':THIS.FILE:' WITH ':THIS.WORD:' SAVING ':THIS.WORD:' SAMPLE 100'
 EXECUTE THIS.STMT CAPTURING JUNK
 READLIST SAMPLES ELSE
 PRINT @(0,21):CLL:'DICT ':THIS.FILE:' ENTRY ':THIS.WORD:' NO SAMPLES. UNABLE TO PROCESS.'
 GO SKIP.THIS.DICT
 END
 IF NOT(NUMS(SAMPLES)) THEN
 PRINT @(0,21):CLL:'DICT ':THIS.FILE:' ENTRY ':THIS.WORD:' HAS INVALID DATA. RIGHT JUSTIFIED ALPHA DATA.'
 END ELSE
 LOCATE(NEW.NAME,NEW.SEL.DICT;NEW.POS) ELSE
 NEW.SEL.DICT = INSERT(NEW.SEL.DICT,NEW.POS;NEW.NAME) ; * ADD NEW NAME TO LIST
 OLD.SEL.DICT = INSERT(OLD.SEL.DICT,NEW.POS;THIS.WORD) ; * ADD ORIGINAL NAME
 * TO LIST FOR ASSOCIATIONS
 END
 IF DICT.UPDATE = 'Y' THEN
 WRITE THIS.DICT ON FILE.DICT, NEW.NAME ELSE
 PRINT @(0,21):CLL:'UNABLE TO CREATE NEW DICT FOR ':THIS.WORD:' - ':NEW.NAME
 END
 END
 END
 END ELSE
 LOCATE(NEW.NAME,NEW.SEL.DICT;NEW.POS) ELSE
 NEW.SEL.DICT = INSERT(NEW.SEL.DICT,NEW.POS;NEW.NAME) ; * ADD NEW NAME TO LIST
 OLD.SEL.DICT = INSERT(OLD.SEL.DICT,NEW.POS;THIS.WORD) ; * ADD OLD NAME TO LIST
 END
 IF DICT.UPDATE = 'Y' THEN
 WRITE THIS.DICT ON FILE.DICT, NEW.NAME ELSE
 PRINT @(0,21):CLL:'UNABLE TO CREATE NEW DICT FOR ':THIS.WORD:' - ':NEW.NAME
 END
 END
 END
* ADD INFO ABOUT ASSOCIATIONS TO FILE.ASSOC
 IF NUM(THIS.LOC) THEN
 THIS.FIELD = THIS.LOC+0
 IF THIS.ASSOC[1,1]='D' THEN
 THIS.ASSOC.TO = TRIM(THIS.ASSOC[3,99999])
 IF NUM(THIS.ASSOC.TO) THEN
 IF FILE.ASSOC<2,THIS.ASSOC.TO> = '' THEN

 FILE.ASSOC<2,THIS.ASSOC.TO,1> = THIS.FIELD
 FILE.ASSOC<3,THIS.ASSOC.TO,1> = NEW.NAME
 END ELSE
 LOCATE(THIS.FIELD,FILE.ASSOC,2,THIS.ASSOC.TO;F.POS) ELSE
 FILE.ASSOC = INSERT(FILE.ASSOC,2,THIS.ASSOC.TO,F.POS;THIS.FIELD)
 FILE.ASSOC = INSERT(FILE.ASSOC,3,THIS.ASSOC.TO,F.POS;NEW.NAME)
 END
 END
 END
 END ELSE
 THIS.ASSOC = TRIM(THIS.ASSOC[3,9999])
 THIS.ASSOC.LEN = LEN(THIS.ASSOC)
 IF THIS.ASSOC[THIS.ASSOC.LEN,1] = ';' THEN
 THIS.ASSOC = THIS.ASSOC[1,THIS.ASSOC.LEN]
 END
 ASS.CNT = DCOUNT(THIS.ASSOC,';')
 FOR A.L = 1 TO ASS.CNT
 A.L.ASSOC = THIS.ASSOC[';',A.L,1]
 IF NUM(A.L.ASSOC) THEN
 A.L.ASSOC +=0
 IF FILE.ASSOC<1,A.L.ASSOC> = '' THEN
 FILE.ASSOC<1,A.L.ASSOC,1> = THIS.FIELD
 FILE.ASSOC<4,A.L.ASSOC,1> = NEW.NAME
 END ELSE
 LOCATE(A.L.ASSOC,FILE.ASSOC,1,THIS.FIELD;F.POS) ELSE
 FILE.ASSOC = INSERT(FILE.ASSOC,1,A.L.ASSOC,F.POS;THIS.FIELD)
 FILE.ASSOC = INSERT(FILE.ASSOC,4,A.L.ASSOC,F.POS;NEW.NAME)
 END
 END
 END
 NEXT A.L
 END
 END
* TRACK DEPENDENCIES
 IF THIS.EVAL MATCH "...<0N,0N>..." THEN
 W.START = 1
 W.END = W.START
 E.LEN = LEN(THIS.EVAL)
 C.IND = W.START
 LOOP
 IF THIS.EVAL[C.IND,1] = ' ' THEN
 W.START = C.IND +1
 END ELSE
 IF THIS.EVAL[C.IND,1] = '<' THEN
 POSS.WORD = THIS.EVAL[W.START,C.IND-1]
 G.MARK = INDEX(THIS.EVAL[C.IND,9999],'>',1)
 IF G.MARK > 0 THEN

 IND.NUMS = THIS.EVAL[C.IND+1,G.MARK]
 IF DCOUNT(IND.NUMS,',') < 3 AND NUMS(CHANGE(IND.NUMS,',',@AM)) THEN
 IF DEP.LIST<1> = '' THEN
 DEP.LIST<1,1> = NEW.NAME
 DEP.LIST<2,1> = POSS.WORD
 END ELSE
 DEP.LIST<1,-1> = NEW.NAME
 DEP.LIST<2,-1> = POSS.WORD
 END
 END
 END
 END
 END
 C.IND +=1
 WHILE C.IND < E.LEN
 REPEAT
 END
SKIP.THIS.DICT:
 NEXT WL
 IF DICT.UPDATE = 'Y' THEN
* REMOVE DICTIONARIES WITH INVALID ASSOCIATIONS
 ASS.CNT = MAXIMUM(DCOUNT(FILE.ASSOC<2>,@VM):@AM:DCOUNT(FILE.ASSOC<1>,@VM))
 FOR A.L = 1 TO ASS.CNT
 A2.CNT = MAXIMUM(DCOUNT(FILE.ASSOC<2,A.L>,@SM):@AM:DCOUNT(FILE.ASSOC<4,A.L>,@SM))
 FOR A2.L = 1 TO A2.CNT
 A2.L.ASSOC = FILE.ASSOC<2,A.L,A2.L>
 IF A2.L.ASSOC = '' THEN GO SKIP.A2.ASSOC
 LOCATE(A2.L.ASSOC,FILE.ASSOC,1;JUNK) ELSE
 A2.DICT.NAME = FILE.ASSOC<3,A.L,A2.L>

 PRINT @(0,21):CLL:"DELETING DICT ":A2.DICT.NAME:" ASSOCIATION PROBLEM"
 DELETE FILE.DICT, A2.DICT.NAME ELSE
 NULL
 END
 LOCATE(A2.DICT.NAME,NEW.SEL.DICT;A2.L.POS) THEN
 DEL NEW.SEL.DICT<A2.L.POS>
 DEL OLD.SEL.DICT<A2.L.POS>
 END
 END
SKIP.A2.ASSOC:
 A2.L.ASSOC = FILE.ASSOC<1,A.L,A2.L>
 IF A2.L.ASSOC = '' THEN GO SKIP.A2.ASSOC2
 LOCATE(A2.L.ASSOC,FILE.ASSOC,2;JUNK) ELSE
 A2.DICT.NAME = FILE.ASSOC<4,A.L,A2.L>

 PRINT @(0,21):CLL:"DELETING DICT ":A2.DICT.NAME:" ASSOCIATION PROBLEM"
 DELETE FILE.DICT, A2.DICT.NAME ELSE
 NULL
 END

 LOCATE(A2.DICT.NAME,NEW.SEL.DICT;A2.L.POS) THEN
 DEL NEW.SEL.DICT<A2.L.POS>
 DEL OLD.SEL.DICT<A2.L.POS>
 END
 END
SKIP.A2.ASSOC2:
 NEXT A2.L
 NEXT A.L
 D.COUNT = DCOUNT(DEP.LIST<1>,@VM)
 FOR D.L = 1 TO D.COUNT
 THIS.DEP = DEP.LIST<1,D.L>
 LOCATE(THIS.DEP,NEW.SEL.DICT;D.POS) THEN
 LOCATE(DEP.LIST<2,D.L>,OLD.SEL.DICT;D2.POS) ELSE

 PRINT @(0,21):CLL:"DELETING DICT ":THIS.DEP:" DEPENDENCY PROBLEM"
 DELETE FILE.DICT, THIS.DEP ELSE
 NULL
 END
 LOCATE(THIS.DEP,NEW.SEL.DICT;D3.POS) THEN
 DEL NEW.SEL.DICT<D3.POS>
 DEL OLD.SEL.DICT<D3.POS>
 END
 END
 END
 NEXT D.L
* WRITE OUT NEW @SELECT ENTRY
 READU ORIG.SEL.DICT FROM FILE.DICT,"@SELECT" ELSE
 ORIG.SEL.DICT = ''
 END
 READU SAVE.SEL.DICT FROM FILE.DICT,"ODBC.SAVE.SEL.DICT" ELSE
 SAVE.SEL.DICT = ''
 END
 SAVE.SEL.DICT = ORIG.SEL.DICT:@AM:"------SEPARATOR------":@AM:SAVE.SEL.DICT
 WRITE SAVE.SEL.DICT ON FILE.DICT,"ODBC.SAVE.SEL.DICT" ELSE
 PRINT @(0,21):CLL:'UNABLE TO WRITE SAVED SELECT DICT INFO.'
 END

 IF KEEP.OLD.FLAG = 'Y' THEN
 TEMP.SEL.DICT = CHANGE(SAVE.SEL.DICT<2>," ",@AM)
 O.CNT = DCOUNT(TEMP.SEL.DICT,@AM)
 FOR O.L = 1 TO O.CNT
 OLD.NAME = TEMP.SEL.DICT<O.L>

 LOCATE(OLD.NAME,NEW.SEL.DICT;NEW.POS) ELSE
 NEW.SEL.DICT = INSERT(NEW.SEL.DICT,NEW.POS;OLD.NAME) ; * ADD NEW NAME TO LIST
 END

 NEXT
 END

 NEW.SEL.DICT = CHANGE(NEW.SEL.DICT,@AM,' ')
 NEW.SEL.DICT<2> = NEW.SEL.DICT

 NEW.SEL.DICT<1> = 'PH Updated by ODBC.DICT.CHECK ':OCONV(DATE(),'D2/'):" @ ":OCONV(TIME(),'MTH')
 WRITE NEW.SEL.DICT ON FILE.DICT,"@SELECT" ELSE
 PRINT @(0,21):CLL'UNABLE TO WRITE NEW @SELECT DICTIONARY FOR FILE'
 END
 END
 PRINT 'PRESS RETURN TO CONTINUE': ; INPUT JUNK
SKIP.TO.NEXT.DICT:
 NEXT FL
*
*** EXIT PROGRAM
*
PRGXIT:

 END

References

[1] J. Jimenez: Data Documentation and Retrieval Using Unity in a UniVerse®

Environment. February 21, 2002.

[2] J. Jimenez: Data Documentation and Retrieval Using Unity in a UniVerse®

Environment – Progress Report – Spring 2002. May 15, 2002.

	END

