3D VIDEO GAME CREATION IN C#

by

JESSIE SLAMKA

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF

BACHELOR OF SCIENCE HONOURS

The Irving K. Barber School of Arts and Sciences

(Honours Computer Science Major Computer Science)

The University of British Columbia

(Okanagan)

April 2011

© Jessie Slamka, 2011

l1|Page

ABSTRACT

3D game development requires the use of various tools for the different stages, from conception, design,
modelling, animating, coding, and testing. The focus of this project was to learn how to code in C# specifically for
game development with freeware programs and class libraries. The three tools that were explored in the most
detail were Blender, Microsoft’s XNA in conjunction with Visual C# 2008 Express, and Unity, while touching briefly
on Ox and a couple other physics engines that are offered under GNU licences as well as a couple image editors.
Challenges primarily lay in figuring out how to adapt previous knowledge of similar programs to the new software
and in simulating the physics on the player-controlled character, particularly in terms of projecting motion onto
trees.

2|Page

TABLE OF CONTENTS

ABSTRACTcuiiiiteiticteereiteeetarentreerescessrassesssassassssssnssssssassassssssassssssasssssssssassssssasssssssssassesssasssssssssassssssnssnssenssansnnns 2
ILLUSTRATION INDEX ..ccuieuiieniiieniiennernesernnsisnerassssassssnsssssssssssssnsssassssasssssssssssssnssssnsssassssassssnssssssssnssssnsssassssnsessnses 4
1 INTRODUCGTIONieuetenieteneereereecrenscrenseressereseesssessssssnsssssssssssssassssssessssssnssssssssassssnssssnsessssesnssssnsssassssnsessnnes 6
1.1 IVTOTIVATION etueeeitieeeetuee ettt eeresteeessneereanneersseeesssnnsessnnnesssnnseesssnnsessnnsesssnnsesssnnsesssnnsessnnneesssnneesssssnnsesssnneessnnneens 6
1.2 GOALS AND OBJECTIVES c.etvtuuuueeeeeererssunaaseeessssssnnaeseesssssssnsaseessssssssnnaesesessssssnsasesesssssssnnssessssssssssnsesessssssnnnsssnnnnn 7
1.3 CONTRIBUTIONS 1vvtuueeeeeererutuneeeeeersesssssaeeeesssssssseeseessesssssssssessssssssssnesesessssssssnnssessssssssssnesesessssssssnnnessneseeessssssnnnnn 8

2 BACKGROUND.cctuiiteirenetenertenetteereectsnssresssreseseasessssessssssnsssasssssssssssessssessssssnssssnsssasssensessssesassesnsssnsssansenen 9
2.1 TERIMIS . ettt ettt e ettt e et et e e eeat e e e st e estsansesasaneessnnneessnnnessssnsesssnnsesssnnsssestnsesssnnssssnnsesssnseesssnsessssnsnneesnsnneessnnneennnnnens 9
2.2 BLENDER .1t ueeeteeetetttiieieeeeeeetttteaaeeeeereastsaeaseeesssassnnaaaseeesssssannnnsaeessssssnnnnsseeessssssnnnnseeessssssnnnnnsennaeseeesssssnnnneseeerees 10
2.2.1 MOAEIING WAIKEAIOUGAcoeeeeeieeeeee ettt ettt ettt et e nane e 16
2.2.2 ANIMAtING WAIKEAIOUGRoeeeeeeeeeeeeeeee ettt e e e ettt e e e et a e e et e e e s ata s e e etsaaesssssaeessseaaans 19
2.2.3 Applying Materials WaIKERrOUGR.............cocueeeeieiieeiei ettt 20

2.3 XNA IN VISUAL CH 2008 EXPRESS +.vuueeeeerrrvruunareeersrersnnaseeesssssssmniesesessssssssaeeesessssssmmeressessssssmmmneesessssssmsmneeseesseres 23
2.4 L0 LN PP 24
2.5 VISUAL STUDIO 20001 euuuuuieieeeeeeiiiiieeeeeeeetttteaeeeeeesettasaaseeeeesasssnnnsseeessssssnnnnseseessssssnnnsseeessssssnnnnseeeessssssnnnnssnnnneees 25
2.6 [T 1Y = ORI 26

3 CHAMELEON GAIMIEcc.ituueieeerenietenireenctesestaserensersssessssssnsssessssassssssessssessssssnssssnsssassssassssnsessnsesnssssnsssansennnes 27
3.1 (0001 N ol=1 =2 uTo] N O PROPRR 27
3.2 DESIGN 1ettttueeeeeeetetttieeeeeeeeeettt e aeeeeeeeaatanaaseeesssasssnasaseeessssssnnnnseeessssssnnnnsseeessssssnnnnsesessssssnnnnnsnnnnnseeesssssnnnnnneserens 27
3.2.1 (01T [T=3 L=Te ¢ B 27
3.2.2 SIIOKC. ..ottt ettt ettt et e ———— et e et ————tetaaar———————ttaaar——————s———aaeiann————— 29
3.2.3 |10 1o T T2 =1 L SRS 29

3.3 IVLODELLING ... e eeeeertttuieeeeeeererasteeaeeeeeseeassnnnaasesesssssannnassessssssssnnnnseeessssssnnnnsseeessssssnnnnseeessssssnnnnseeeessseessssssnnnneseeerees 29
3.3.1 CRAMEICON MOTEIIING ...ttt ettt ettt et s e st e s e e nateenaeeens 29
3.3.2 R (Lo 1 (=B LY Lo e [=] |1 o TSRS 34
3.3.3 TEEE MOTEIIING ..ottt et et ettt ettt s e et e st e s ane e nateenaee e s saneas 39

3.4 ANIMATING cettttueeeeeeettttuteeeseeretsenunaaeesesssssssunaeseessssssunnssesessssssssnnsesesssssssnsnseeeessssssssnnseseesssssssnnnessanseesesssssnnnnnsees 43
3.4.1 (0 Lo T g 1= =To ¢ B USSPt 43
3.4.2 SIIOKE. ..ot ettt ettt et et e et et ee et ————eteaaa——————attaaar———————ttaaaar——————s b ———aaenaan————. 43

35 SCRIPTING .etvtttueeeeeeetersuteeeeesseesssuaaaeeessssssssnnesessssssssnnssesesssssssssnsesesssssssssnnseeessssssssnnsesessssssssnnssssnneeesssssssnnnnnsens 43
3.5.1 (0 1o T 1= [=o s TP PUPRTRRt 43
3.5.2 SNOKE. oottt ettt ettt —————————————————————atatiattaeeeteeees 45
3.5.3 LYo T2 T=1 ¢ 1 S PSPPSRSOt 45

3.6 TESTING cetvtttuueeeeeereeeruuaeeeeereeassasaaaseeeessssssasnseeesssssssssnnsesessssssssnnssseeessssssnnnnnseesssssssnnnnseessssssssnsesssnnnneesssssssnnnnnnees 45
3.7 SUMMARY OF TASKS eeeeeieieieieieiesesesesesesasasasasassssssssssssssnsssnnnssesssesssnnessenenennns 46

4 GAIEPLAY ... eeiieetneretteereeteeetectesseserassesssassessssssessesssassasssassessssssassesssassesssassssessssassesssnssesssnssnssasesnssassensnns 48
5 CONGCLUSIONSccciteiteeettnerenierencernncesnsctasssrasessssessssessssssnssssssssassssssessssessssssnssssnssssssssassssnsessnsesnssssnsssassssnnes 49
6 FUTURE WORKcuieuiiuireneenerenrenteeceescreceessesssassessssssassssssasssssssssesssssssssssssassssssassassssssassssssassasssassasssnssnssanssnnes 50
7 REFERENCGESccuiieuiineiitnnerenieteniereniernscrasssrasessssessssessssssnssssssssasssssssssnsessssesnssssnsesassesassssnsessnsesnsssansssassssnnes 50

ILLUSTRATION INDEX

FIGURE 1: SCREENSHOT FROM BATTLEZONE FROM ATARI (1980) ...uvveeeeitreeeeereeeeeieee et e eeteeeeetveeeeeaveeeeeareeeeenreeeenneees 6
FIGURE 2: SCREENSHOT FROM |, ROBOT FROM ATARI (1983)viiiuieiiiieieeniiesieesreesreesieeesieesssseessessssessssessnsesssessssessane 6
FIGURE 3: MODEL VIEW (CUSTOMIZED FROM FACTORY DEFAULT). 1euveesuteeereesureessseessaeessseessesassessssesassessssesssseesssessssssssesanssesssesans 11
FIGURE 4: BLENDER SET UP FOR RIGGING (IMIODEL LAYOUT)....uuvteeeiutieeeetreeeeiuseeessreeeasaseseessssssssnsssesansssssasssssessssssssnssesessssssesnnsens 12
FIGURE 5: WEIGHT PAINTING MODE WITH PAINTING IMASK ENABLEDvveeesurreeesurreeesreeeessreessssesessseeesssssessssssessssssessassesssnsnnes 12
FIGURE 6: THE ANIMATION LAYOUT. ...tttteeeeaauereeeeeseaaauusseeeeeesaaaunseseeesssaansseeeeessesansenesesssasansseseeessesannseneeesssasannseneeesssannnsensennn 13
FIGURE 7: IPO CURVE EDITING SCREEN. ..etttteiuuttttteeseasusreteeesssssurereeesssssassseseeessssssssssseesssssassssseeesssssasssseessssssnsseneeessssnonsnseees 13
FIGURE 8: THE ANIMATION LAYOUT. ...ettteeeieiunrteeeeeeaaauuseeeeeeesaaaunreeeeessaaanseeeeeessaaannseneresssasansseeeeessesannseneeesesasannseneeesessnnnnensannn 14
FIGURE 9: THE MATERIAL LAYOUT. ..vttteuuteeestueeeasssesesaseeessnsseesasssesesassesssnssessssssssessssessssssesssnnssesssssssssnssessssssesssnssnsssnssessssesnnnes 15
FIGURE 10: AN EXAMPLE OF A LOGIC BLOCK SETUP ..cetiuiiettteteeeseiitteeeeessesunrteetesesenunnseeeeessaannnraeeeeessannnseeeeeesaannnseeeesesannnneneens 16
FIGURE 11: INITIAL CUBE WITH TOP FACE SELECTED 1vvteeeuvveeseureeeesureeesssseessssnseeesssssesesssessssssesssssessesssesssssssesssssssesssssesssssssesssnnees 16
FIGURE 12: TOP FACE EXTRUDED AND ROTATED ...ceteeeteiuureeeressaaaunnseeeeessaaasnseeeeesssaannseeeeessassnnsenesesssasnsseeesessaanssseesesssannnnseeees 17

FIGURE 13:
FIGURE 14:
FIGURE 15:
FIGURE 16:

FIGURE 17: MESH WITH SUBSURF APPLIED ... uuvveeesutteeeeuresesaueeeesssseessssseeesassesessesessssessssssesssassessssssessssssesssssessssssesssnsssesssnsnnes 18
FIGURE 18: SELECTING POSE MODE IN A 3D VIEWPORT CONTROL PANEL ..ceeeetiuuturereeesenaiirreeeeessaanneneeeeesesannnnneeeesesannnneeesesesannnnnees 19
FIGURE 19: TRANSLATING A BONE POSITION ...vveeeitueeeeureeeseueeeessuseeeesseeessssessssesesssssessssssesssnssessesssessssssssessssssessnsesssssssesssssnnes 19
FIGURE 20: ACTION EDITOR SCREENctteeeteauuerereeeseaaauusseeteeesaaaunsereeesssaansseeeeessasannsenesesssasansseseeessesannseneeesssasansseneeesseannnse sennnn 19
FIGURE 21: THE PREVIEW WINDOWvettetiieiuuereteeessensuureeeeesssssasseeeeesssssassssseeessssssssssssesssssassssseeesssssnssssseesssssanssenseesssssansssessnn 20
FIGURE 22: THE MATERIAL, PREVIEW, SHADER, AND MIRROR TRANSPARENCY BUTTON GROUPS,ueeeeeerrrruneeeeeererennnneeeeesessnnnnnaneeens 20
FIGURE 23: MAP INPUT BUTTONS GROUP .uuueeiiteeessseiittteeeessssuatteeeesssasussseaeeessssssssseasesssassssseeesessssssnssesessesssssssseesesssnnsssseeees 21
FIGURE 24: MAP TO BUTTONS GROUP...cctettteiuuurttteessaaiurteeteessaaaunreretesssaansseeeeessasansenesesssasanssaseeessesannssneeesssesannseneeesssanansene sann 21
FIGURE 25: AN ALTERED MARBLE TEXTURE. +.uuvtteesutueeeesureeesaueeeesssseesessseeesssssesesssssesssssessssssesssssssssesssessssssessssssesessseessnsssesssssnnes 21
FIGURE 26: TEXTURE TYPE OPTIONS 1..uvteeutteeuteesuteesseessseesusesssesesssesssessnseessesssesssseessessssessssessssesssssesssesssssssssesnsessnseessseessssnees

FIGURE 27: TEXTURE APPLIED TO ALPHA (TRANSPARENCY) CHANNEL
FIGURE 29: UNITY WITH VIEWPORT (TOP LEFT), GAMEPLAY SCREEN (BOTTOM LEFT), HIERARCHY VIEWER (MIDDLE TOP), PROJECT VIEWER

(MIDDLE BOTTOM), AND INSPECTOR WINDOW. ...eeuuveeureesreesesessaeesesssesasessssessssessssesssssessssesssssnsesensessnsessnsessssessssessssessns 24
FIGURE 30: VISUAL STUDIO 2010 WITH SIDE-BY-SIDE EDITORS RUNNING. TO THE LEFT IS THE SOLUTION EXPLORER, WHICH DISPLAYS ALL

PROJECT FILES AND FOLDERS. CURRENTLY, A NATIVE JAVASCRIPT FILE IS BEING TRANSLATED INTO CH.vvvvieeneieeriieeiee e 25
FIGURE 31: CREATING AN ALPHA MAP IN GIIMIP ...ttt sttt et sate e st sbt e et e st e sbaesabeesabeesabeesabeesaneenns 26
FIGURE 32: SIDE VIEW OF YOUNG VEILED CHAMELEON USED AS REFERENCE IMAGE DURING MODELLING ..c.uvveevveeveesreesseessveesueesseeas 28
FIGURE 32: BACKGROUND REFERENCE ADDED IN SIDE VIEW. BUILT MESH ACCORDING TO IT. teeuvteeveerureesreesreeseeesseeesseessseesnseessseess 30
FIGURE 33: LEG IN PROGRESS. ARM MOSTLY FINISHEDttttteeseaunteteeesaaaausteeeeessasunseeeeessaaunseeeeeessasannsanesesssaannseeeeessasanseeees 30
FIGURE 34: SUBSURF MODIFIER APPLIED TO SMOOTH THE LOW RESOLUTION MESH. ..eeevteeueerureesreesreeseeesseeeseesssesesseessseessseessseess 31
FIGURE 35: ADDING CUTS TO THE LEG (PINK - IN PROGRESS, YELLOW = JUST ADDED). +veeuvveeveesreesveesereesseessseessueessesesseesssessnseesssenss 31
FIGURE 36: ADJUSTING WHERE THE CUT WILL OCCUR ON THE LEG ALONG THE GREEN EDGE
FIGURE 37: THINNING THE TAIL RELATIVE TO THE WIDTH OF THE BODY. 1.uvveevtesteesreesereessseessseesusessesesssssssesensessssessssessssessssesssseens 32
FIGURE 38: ADJUSTING THE WIDTH OF THE TORSO. 1.uuvteruttesureesureesseeesseeesseessseeesseesssessseesssessssesssssesssesssessssassnsesssseessseesnsessnseesns 32

4|Page

FIGURE 39: CUTTING THE EYE SO IT WILL BE ABLE TO HAVE THE CORRECT "DOME" SHAPE. PURPLE — CUTS IN PROGRESS.uvvvveveeeernnns 33
FIGURE 40: NOTE THE GAPS IN THE COLOURS (PAINTED WEIGHTS). USING THE PAINTING MASK TOOL (RIGHT) HELPS HIGHLIGHT MISSED

VERTICES VERSUS USING THE NORMAL WEIGHT PAINT VIEW (LEFT). vveeeeveeeeeueeeeeteeeeeteeeeeisreeeetreeeessreseeesseeesnsresessnseeesnnnens 33
FIGURE 41: FIXED TAIL. IT CURVES NICELY NOW. 1iitittiiiiiiiiiiiiitititititieietetetetetetesesesesesasesasasasssssssssssssssssnsnsnssnssnsssssnnsnnnsssnsnnnsnnnnn 34
FIGURE 42: FINISHED SNAKE MODEL VIEWED IN POLYGON EDIT MODE....ceiiiiiieieieeeseeeeesesesssesssssnsssnsesenens 34
FIGURE 43: FINISHED SNAKE MODEL WITH SUBSURF MODIFIER APPLIED. 1eetttieieiiiiieieieieieieteieieeieeaeeseeeseeeeesesesseesessesssesssessssssssssssnens 35

FIGURE 44: CREATING ARMATURE BONES. THE BONES THAT WILL BE DEFORMING THE SNAKE ARE THE ONES LYING AT THE BOTTOM OF THE

SNAKE IMIESH. ..tttetetesuutttteeeeeeauttteteeesesauabe e et eeeaaamsba et eeeseaanse e e e eeeseaaan s e e e e eeeaannbe e et eee s e nnbaeeeeeseennsane saanbaeeeeeesennnraneeeeens 35
FIGURE 45: ADDING THE FIRST CONTROL BONE (YELLOW) TO THE SPINE BONE CHAIN.....vveeveesteeeseesereesseesaseessseessseesssesssesensessnsenss 36
FIGURE 46: ALL CONTROL BONES IN PLACE ALONG TOP ROW.. ..eeetieiuuurereresesaiunreeeeesseaaunreeeeesssasansreneeessesannsaeesesssasannseseeessasnnnneeees 36
FIGURE 47: COMPLETED CONSTRAINTS: YELLOW IS IK SOLVER (SPINE BONE POINTING AT ITS CORRESPONDING IK BONE), GREEN IS STRETCH

TO, WHICH POINTS AT THE NEAREST CP BONE IT POINTS AT (HALF ARE CIRCLES HERE). «vveeeeuvveeeeiureeesiureeessseeessssseessssesssssseeeennns 37
FIGURE 48: JUST CONTROL POINT BONES VISIBLE. IMESH IS COMPLETELY RIGGED. ..uvvvveeureeeerureeessneeesessreesessseeesssssessssessensseeesssnees 38
FIGURE 49: RIGGED WITH SPINE HAVING B-BONES WITH THREE SEGMENTS EACHceteeeiiiiureeeeeseaainrreeeeeesannnreeeeesssnnmnneeeeeessannnnneee 39
FIGURE 51: FINISHED TREE WITHOUT SUBSURF MODIFIER. ..eeeuvteeesrreesasuresessnseeessssessesseeesssssesssssesesssssessssssssssssseesssssesssssssesssnees 40
FIGURE 52: FINISHED TREE WITH SUBSURF MODIFIER APPLIED. NOTE THE PLANES ON THE BRANCH (PINK — SELECTED). THESE HAVE A

LEAFY TWIG IMAGE APPLIED TO THEM. t.vvtesuveeteeesseeesesesseesseessseessessssesssseesssesssssessssessessnsessnsessssessnsesssessnsessssessssesssananss 41
FIGURE 53: FINISHED TREE PREVIEWED WITHOUT LIGHTS. ..eeuvteruteesuueesuresnseeesseeesseessseessseessesssseesssessssesssesesssesssesssssesssesssseessseesas 42
FIGURE 54: TEXTURE TO SIMULATE LEAFY TWIGS ...ctteetteuuuteeetessaaauseeteeessaaunseeeeeessaaunsseeeeessaannseteeesssanunssaeeeessaaassseeeesssannnnseeeens 42

5|Page

1 INTRODUCTION

Video games had their start in
two dimensions in the late 1940s with
the creation of missile defense
systems monitored on cathode ray
tube displays. The idea of the
monitoring programs was later
developed into games during the
1950s. The first truly 3D games did
not appear on the scene until 1980
with Atari’s Battlezone. Its method of
display was vector based and included
no filled polygons (surfaces). Surfaced
3D graphics did not appear until 1983,
with Atari’s |, Robot, which is
commonly considered the forefather
of the modern video game.

Since then, the complexity of
graphics, the detail of game logic, and
the effectiveness of player interaction FIGURE 1: SCREENSHOT FROM BATTLEZONE FROM ATARI (1980)
with the game has increased. 3D
games have soared in popularity,
mostly due to the immersive
experience they can provide their
players. Unlike 2D games, terrain is
generally more unrestricted and the
relation of the character’s movements
to movements the player would make
is greater.

vy ||

ay & : [
't e .21 v, 1 om
o) snr i R mlpee e

AT T o) ’ R L1

FIGURE 2: SCREENSHOT FROM |, ROBOT FROM ATARI (1983)

1.1 MOTIVATION

This project was to investigate what amateurs intent on developing a 3D game have available to them in
terms of freeware to perform the game design process. Three primary software requirements exist: a 3D model
development suite capable of creating necessary animations for characters, an image editing program that can
generate the appropriate textures to colour the models, and a coding suite with a library of classes capable of
importing sound, image, and model elements along with their animations. Professionals have many other tools
available besides the ones previously mentioned, customized by their in-house software development teams in

6|Page

some cases. Amateurs are again gaining a foothold in the market, with listings such as Xbox Live Marketplace to
sell their games on, and with more widespread possibilities in terms of platforms to develop for, from the
traditional PC, to consoles like Xbox, to iPhones and other cell phones.

The secondary motivation was to find out how video game 3D animation differed from the animation
done for cinema, advertising, and broadcasting. In film, models are entirely animated in the environment they will
be seen in: the characters are animated in their environment and their environment is animated to react to them.
In video games, all animations are either prefabricated for specific models (character walk cycle, turn, jump, etc.)
or handled by programming or the physics simulator. As the player is controlling the character, animations must
be flexible enough to handle anything the player may make the character do within the permitted actions and
given game environment.

1.2 GOALS AND OBIJECTIVES

As most amateurs have little in the way of funds to spend on their pet projects, the goal was to figure out
what tools were available to develop a game for a PC for the least cost. The software solutions investigated were
therefore primarily under GNU License and available for download on the internet. Optimally, the tools would be
suited to someone with a more visual focus so there was a limited programming requirement.

These pieces of software were evaluated based on their design and how well they assisted in
development of a game that would be playable first and foremost on a PC with a current Windows operating
system. For the code development suite, it had to support programming in C# and provide a baseline library with
vectors and common 3D operations like translation, rotation, and scaling. The code library also had to support
importing sound (.wav files), graphics (bitmaps, gifs, and jpegs), and animated models (.fbx files). For the 3D
modelling suite, it had to support building and editing models, had to allow these models to be rigged with bones
to allow them to be animated more easily, had to support animation, had to export animated models in the .fbx
format, had to support the colouring of models, and had to have a minimal number of modifiers, specifically ones
geared toward smoothing low resolution models and reducing the resolution of high resolution models. This
program in particular had to be highly visual—it had to provide viewports for viewing the model during
development. This was important as developing and animating a model is difficult without visual feedback. The
final baseline program, the image editor, had to also be highly visual, support selection based on colour values, and
be able to output images in a variety of file formats (specifically .jpg, .bmp, and .gif). Support for a tablet was also
a requirement, as generating textures by hand with a mouse is difficult.

The goal for the game produced was that it would be re-playable (would be designed such that the player
would not mind playing it more than once), have a goal for the player to reach during gameplay, and have
obstacles that the player would have to overcome. The goal for the game’s models was that they correctly
resemble what they are to the highest degree possible while maintaining a model resolution low enough to not
impede the computer’s ability to render the graphics. The animation of the models would optimally blend well
from one action to another and reflect the actual motion of the model’s source of inspiration (i.e. a chameleon
model’s walk cycle would reflect the walk cycle of an actual chameleon).

7|Page

1.3 CONTRIBUTIONS

The contributions of this thesis include a survey and experimentation with freeware software used for 3D
game development in order to ascertain its usefulness and competitiveness in the current market, and a 3D game
produced using these software solutions that has a player controlling a chameleon searching for an item in a 3D

environment.

8|Page

2 BACKGROUND

2.1 TERMS

Animating — the process of creating movements for a given mesh, either freehand, manipulating the mesh itself, or
through the use of an underlying “skeleton”.

Armature — Blender’s name for the object type that is used as a “skeleton” system for a mesh. Armatures consist
of a collection of bone objects which generally exist in a hierarchy of the creator’s design.

Boo — a programming language; Unity supports scripts written in this language.

C# — an object-oriented programming language developed by Microsoft; the language primarily used to code game
logic.

Child - in this context, a child is an object that inherits all manipulation made to the parent object; so if the parent
is moved three units to the left, the child will mimic that motion from wherever it is.

Constraint — a rule imposed on an object in the context of development in Blender.
Edge — a line connecting two vertices.

FBX — a format developed by Autodesk that allows 3D meshes and their associated animations to be exported to
other programs; the format Unity uses to bring in Blender elements; a format that XNA supports for
bringing in 3D elements.

Face - a surface bounded by three edges that has a normal indicating the direction from which it can be perceived
unless it is set to be double-sided; the number of faces dictates the resolution of the mesh and the level of
curvature (if there is any) that is depicted.

Forward Kinematics — the usual constraints applied to armature object bones are used to limit the motion; the
parent-child relationships of the bones dictate the way the bones move when the animator manipulates
them.

Frame — a unit of animation; essentially one drawing in the sequence of drawings that becomes the animation clip.
One standard is 30 frames per second (fps).

Inverse Kinematics — a constraint commonly used during the rigging process to describe the limitations of

I»

movement for a chain of bone objects. The “tail” bone of the Inverse Kinematic chain will be the target of
motion for all the bones in the chain if no alternate target is specified. The chain of bones goes from the
tail bone up the parent-child hierarchy to a specified point, reversing the usual order of manipulation so
the child bones influence the motion of their parent bone, thus “inverse motion.” The bones in the chain
will move any way possible within their constraints in order to reach or point to their target bone. IK
chains are primarily used in limbs so that hands and feet stay on target during an animated motion. This

essentially allows an animator to manipulate the bones of the chain backwards.
JavaScript — a programming language; Unity supports scripts written in this language.

Mesh — a collection of vertices, edges connecting them, and faces that exists as a graphical 3D element in a game.

9|Page

Modelling — the process of creating the desired mesh for a game.

Parent — in a parent-child relationship, the parent imposes all manipulations made to it to its children, including
movement, rotation, and changes in scale.

Polygon — similar to a face in a mesh, save that polygons are made up of one or more faces. A square polygon is
composed of two triangular faces.

Python — a programming language; used by Blender.

Resolution — the level of detail of a mesh; the number of polygons a mesh is made of. For example, meshes that
you find in movies (e.g. Gollum from Lord of the Rings) have millions of polygons in order to appear
smooth and to create details like the little wrinkles in the skin. A low resolution mesh is a cube: it only has
six polygons.

Rigging — the process of adding bones to create a “skeleton” that would produce the desired control over a mesh
and “painting” weights on vertices of the mesh that correspond to the desired bone.

Vector — a data construct used by XNA and Unity that contains dimensional information — X, Y, and Z when using a
3D vector.

Vertex — a point in 3D space—has an X, Y, and Z coordinate.

Weight Painting — the process of “painting” influence for a given bone on vertices of a mesh; for example, all the
vertices in the arm of a mesh would be painted with an influence of one for the arm bone and left with an
influence of zero for the head bone, this would force the arm vertices to move as the arm bone does and
not react at all when the head bone moves.

XNA - a library of C# classes released by Microsoft to act as a basis for programming games compatible with
Windows operating systems and Xbox consoles.

2.2 BLENDER

Blender is a 3D studio program that includes a game engine capable of running on most operating systems.
It is currently at a beta release of version 2.5. Version 2.49b was used as the beta was not compatible with Unity.
Tutorials and manuals are available online, and there are a number of forums dedicated to this software solution.
It is one of the leading freeware competitors to market solutions such as Maya (Autodesk), 3D Studio Max
(Autodesk), Softimage (Autodesk), Animation Master (Hosh), Aladdin 4D (DiscreetFX), and many others.

Modelling and animating game elements requires an application capable of generating 3D meshes,
texturing them, and manipulating them at a higher level with a pseudo-skeleton. Autodesk has dominated the
playing field of what is widely available with XSI, Maya, and 3DS Max. Most companies like EA and Ubisoft either
use these products or have their software teams develop their own. These programs are on the range of
thousands of dollars for a professional copy. These prices are justified, given the amount of work that has gone
into all the features in these programs, from their physics engines to their design tools, but they are beyond a
university student’s reach.

10|Page

Notably, it is very difficult to learn to use Blender if the user previously used some other comparable
software. Switching from ingrained 3D Studio Max commands to Blender hotkeys was difficult. However, after
progressing significantly through the learning curve, modelling and animating workflow is faster as the user is not
constantly hunting for buttons to click to switch from rotation to translation or something similar.

It requires little in terms of hardware and disk space. The interface is comprised of a number of screens,
which can be switched from displaying a viewport displaying the current meshes being worked on to a buttons
interface for mesh editing. The layout of the different screens is highly customizable, as screens can be split,
resized, and their contents changed. For game development, most work is in three basic layouts: animation,
material, and model.

92 ves |Faf|Oba-1|La1 | Mem0.35M (0.09M) | Time: | Cube

Select | Deselect
Assign

FIGURE 3: MODEL VIEW (CUSTOMIZED FROM FACTORY DEFAULT).

The model layout default can be customized from having one 3D viewport screen to four: right, top, front,
and perspective views. Right, top, and front views are orthographic, which means they do not display in terms of a
vanishing point, instead drawing everything as an absolute flat projection. Perspective view incorporates the
vanishing point, allowing the user to see how Blender will render their objects in proper perspective as they would
be perceived by the human eye. These four views can be made to display objects as wireframes, textured, shaded,
or bounding boxes. Four is an optimal amount of views for modelling as the mesh is projected in all three
dimensions and then can be seen as is in perspective. The bottom part of the screen is a screen that displays the
buttons screen, which allows the manipulation of object properties.

11| Page

(i)~ Fle Agg Timelne Game Render Help | =|SR2-Model [x] [=[5cescene B Ve6190 | Fa8185 | OB15-2 | La0 | Mem12,58M (0.09M) | Time: | Cube

w Orio gt Orino.

Dalete
Select Desélect

FIGURE 4: BLENDER SET UP FOR RIGGING (MODEL LAYOUT).

Modelling and rigging is best done in this view as these two activities require the most visual involvement with the
mesh and any objects involved in the rig. Weight painting, as seen in fig. 4, should be done in the modelling layout
as the effect of a bone upon a mesh is displayed through colours, as seen above. The amount of influence a bone
has over a mesh’s vertex is indicated with colours, red being 100% influenced (1.0) and dark blue being 0% (0.0)
influenced by the bone. The difference
between the dark blue of 0.0 and 0.05 can be a
little too subtle to perceive. An additional tool,
Painting Mask, is available in weight paint
mode. It removes shadows from the mesh and
causes all colours to become their neon
equivalent, allowing subtle differences to be
more easily distinguished. It also draws the

User Persp

final mesh as a wireframe overlay, to make it
more obvious where the vertices are.

The Painting Mask tool must be disabled in
order for the user to select a different bone to

weight paint.
{1) Cube

[# ¢ v view select Paint [Zweight Paint | [+| [B]

FIGURE 5: WEIGHT PAINTING MODE WITH PAINTING MASK ENABLED

12| Page

[=[sR1-Anination _[X] [=[SCEScene 5

FIGURE 6: THE ANIMATION LAYOUT.

The animation layout out of the 3 o A UEEAIEG D
box has only one 3D viewport; two views is '
generally enough to get a good feel for the
X,Y, and Z changes without making the
view too small, so splitting the viewport
worked best, as seen in fig. 8. Configuring
these two screens as left and top worked
best when working on the chameleon, but
left and front would be a better option for
bipedal characters. To the left of the
viewing area is the hierarchy screen, a list
of all the elements in the scene.

To the right of the viewing area is
the IPO curve editor screen. This shows
the key frames (animation points) the user
has generated for the selected object,
dividing properties such as location and
scale into their X, Y, and Z components,

. . . 50 255 260
allowing each axis to be manipulated N) ‘ ﬂ|'|
independently. Rotation information is a

special case: it is divided into four

FIGURE 7: IPO CURVE EDITING SCREEN.

guaternions instead for some objects. Each

13|Page

property’s animation is manifested as a curve and each key frame appears as a point on this curve. Controlling the
curve between animation points is done with Bezier handles that can be set to a variety of options.

Note in fig. 7 how rotation, scale, and location are all assigned colour blocks (right-hand side). This
indicates that there are key frames for those properties. Note how location blocks have white text, which means
that they have been selected to be displayed in the curve editing screen. Location blocks correspond to the curves
displayed in the matching colour. There are two key frames visible in fig. 7: one at frame 220 (LocX is
approximately -0.45, LocY -0.71, and LocZ -0.58) and the other at 235. The points to either side of each key frame
are the Bezier handles. These are only displayed when the curve is in edit mode. The yellow colour of the point
and the handles indicates that they have been selected.

Also visible in fig. 7 is the Transform Properties window, a floating window that can be called up in any 3D
viewport and the IP curve screen. It allows the specific properties such as location, rotation, and scale to be
viewed and manipulated numerically and locked to further editing if necessary. In the IPO curve editor screen, the
Transform Properties displays a specialized set of data: the max and min points of the visible curves, the speed of
the animation between points, and the median X and Y. In the case of fig. 7, the median X is 227.50 because the
two sets of key frames have been selected—220 and 235—and 227.5 lies at their midpoint. If only one key frame
were selected, the median would reflect that key frame’s location on the timeline. The median Y reflects how all
six point selected center around -0.59.

¥ Flle Add Timelne Game Render Help [2[SR1-Anmaton [x || 2[scEScens [x | 0 Vied | Fat | O14- uunlm-ﬂmmmm m-:lmwumrwu
] 1 bes

(43) Pight Hand Target

1] 80 85 80 WS 1Ne nNs 120

vvhwﬁ-- w_-@EJEIEJEIm EEI i

FIGURE 8: THE ANIMATION LAYOUT.

Below the viewing area and the IPO curve display area is the timeline section of the screen. It displays the
events occurring at specified key frames for the selected object as coloured lines over the time/frame the action
occurs at. This timeline also hosts a variety of animation controls, such as the record button, which automatically
generates key frames at the current frame when the animator manipulates an object. The active time (the section

14 |Page

of the timeline played back when play is activated) can also be specified here, as well as the frame rate (the
number of frames per second) and the current frame.

The bottom section of the screen is devoted to the Action Editor. In this, the user creates actions specific
to an object. This is where separate character actions are created to be used by the animated model in the 3D
game, like walk, turn, strafe, etc. This editor does not allow you to combine the actions of several objects into one
action. Thus, when building a rig, this disallows the use of empty objects as targets for Inverse Kinematic solvers.
Instead, as a bone is part of an armature object, use a disconnected bone.

The editor allows for large scale and small scale manipulation of key frames. Each animation event is
indicated by a yellow or white diamond in the channel corresponding to the object within the action being edited.
White indicates the action is not selected; yellow indicates it is selected. If a key frame is essentially a duplicate of
another directly before or after it (same action is specified in both key frames) then they are connected by a purple
bar as seen in fig. 8.

i = File Add Timelne Game Render Heip | <[sma-mateia [x][:[scEscene [xEW Vedh| Fai| Ob3-1| L1 | Mem118M (051M) | Time: | Cube

Link to Object

sl e |

VCol Light]VCol Paint| TexFace] A | Shadeies
|_Env__|ObColor|Shad A 1.00

) = view Swect Oniect | @ otiectbisss || (0) (B 0o [one =) FHEHHEHTHIE <) (@)

o [0 20 = 40 0] 120

o 80 20 100 no
[> view Frame Piaynack [Fr]< stam1 o]« enmeso o] [« 1 o] [ie][se][n JorJm] [0] [ou)le~] [c]

FIGURE 9: THE MATERIAL LAYOUT.

The material layout consists of three 3D viewport screens: front (orthographic), camera (if available,
otherwise just perspective), and a wide top view (orthographic) below these two. Below these viewports is the
timeline screen, allowing materials to be animated, and to the right is the buttons screen automatically set up to
display the material tab.

Blender boasts its own game engine. It uses the Bullet physics engine to handle rigid body dynamics. For
more straightforward game logic, Blender offers the Logic view of the buttons screen, which has three main data
blocks: actuators, sensors, and controllers. Sensor blocks are capable of specifying that an event happen forever
or at the click of a mouse. Controllers are typical logic operators such as AND and OR. Actuators specify an action

15|Page

to take, from playing an animated action to switching the game to the next level. Sensor blocks are linked to
Controller blocks, which in turn are linked to the desired Actuator blocks. These blocks are specific only to a single
game object, so passing data around requires some creativity on the developer’s part.

For the object Suzanne in fig. 10, we have added an "always" sensor, meaning the connected actuator will
constantly be running. Linked to the sensor is an "AND" logic operation, which is linked to a motion type actuator,
which is set to move 0.2 in the x-direction. So, this set of logic blocks will move Suzanne in the positive x-direction
at a rate of 0.2 units per frame forever.

Suzanne

FIGURE 10: AN EXAMPLE OF A LOGIC BLOCK SETUP

Blender supports Python scripts, both in its game engine and in the program itself, but as this was not the
programming language the project was focusing on, Blender could not be the primary development program.

2.2.1 MODELLING WALKTHROUGH

Most modelling begins with a primitive
shape like a cube, sphere, or cylinder. After turning
on Edit Mesh mode, a user can begin to manipulate
the mesh on three levels: vertex, edge, or face.

Vertices can be manipulated through
translating their position only; rotating and scaling
has no effect on them. This is the level modellers
work on in order to make fine changes.

Edges can be manipulated through
translating, scaling, and rotating. This is the next
level of detail up from vertex, as manipulating an
edge manipulates the two vertices that define the

endpoints of the edge, as well as the edges that
FIGURE 11: INITIAL CUBE WITH TOP FACE SELECTED connect those vertices to other vertices.

Faces are the highest level that can be
manipulated in Blender. These are the visible
sections of the mesh. They can be scaled, rotated,
and translated.

All three components can be extruded

from, though generally extruding on the face level is
the most useful. Extruding a vertex produces no

16|Page

FIGURE 12: TOP FACE EXTRUDED AND ROTATED

FIGURE 13: MANIPULATING A VERTEX

FIGURE 14: APPLYING LOOP SUBDIVIDE TO MESH

mesh, only another vertex. Extruding an edge
creates a single face between the edge being
extruded and the new copy created by the extrusion
operation. Extruding a face creates a new face as
well as faces to connect the new face to the edges
that defined the old face. In this walkthrough, face
extrusion is used extensively as the modelling
strategy in use is extrusion modelling. The top face
of the cube is selected and extruded. It is also
rotated, as a tree’s trunk is being built here, and the
trunk is none too straight.

Extrusion is used to block out the crude
shape of whatever the mesh will be. As in 3D games
it is advantageous to keep the polygon count low in
order to make the game easier to draw in real-time,
extrusion modelling tends to produce acceptable
models with low levels of detail if extrusion is used

sparingly.

Instead, it is better to manipulate the mesh
produced by minimal extrusion in order to best
represent the target shape. Rotating, scaling, and
translating, as seen to the left, are the operations
that allow the modeller to manipulate as necessary.

Adding detail often requires that the
blocked out shape be further refined with
subdivisions. There are many ways to do this, but
the ones that offer the most control are Loop
Subdivide and Knife Subdivide.

Knife Subdivide allows the user to freely
draw cuts across preselected edges of the mesh.

Loop Subdivide is a tool created to
intelligently suggest possible cuts for a mesh
depending on the location of the mouse over the
mesh. It will follow the major line of the
surrounding edges, either vertically or horizontally,
generally, though organic meshes suggest far more
complex lines. The edges suggested will stick with
the established contours.

In the case of the tree, three possible

17| Page

FIGURE 15: MESH AFTER LOOP SUBDIVIDE APPLIED.

FIGURE 16: PULLING OUT VERTEX ON THE EDGE CREATED
BY LOOP SUBDIVIDE.

FIGURE 17: MESH WITH SUBSURF APPLIED

options were suggested when the mouse was placed
over different points of the trunk. Two vertical
options were suggested, one as seen in purple in fig.
14; the other was down the trunk perpendicularly to
the cut suggested in fig. 14. The horizontal cut
suggested was between the two established “rings”
of the tree trunk.

Fig. 15 shows the result of using the vertical
cut displayed in fig. 14.

The newly created edges and vertices from
the subdivision operation can now be manipulated
to better detail the mesh. In this case, the cut
creates a hexagonal shape for the tree trunk, rather
than a square, which did not allow enough leeway
for the circular nature of the trunk that needed to
be established.

The last step is to add a subsurf modifier,
which adds resolution to the mesh while still
allowing the modeller to manipulate it on the low
level it was built on. The resolution can be dialled
up as necessary, added many more faces to give the
mesh curvature, but when working on a mesh for a
3D game, at most the subsurf level should be dialled
up to 2.

The view in fig. 17 displays the tree mesh
created, as well as a glimpse of the effect the
subsurf modifier has upon the finished product,
allowing the modeller to work on the low level while
seeing the changes made on a higher level of detail
that the finished model will be added to the game
at.

18| Page

2.2.2 ANIMATING WALKTHROUGH

Mode:

® Pose Mode
4 Edit Mode
% Object Mode

e | @

FIGURE 18: SELECTING POSE MODE IN A 3D VIEWPORT CONTROL
PANEL

88 |©Puse Mode =| Iﬂ_] | R ‘|.—»|

FIGURE 19: TRANSLATING A BONE POSITION

v View Select Channel Marker Key

FIGURE 20: ACTION EDITOR SCREEN

During the initial stages of animating,
the goal is to block out the major motions by
moving along the timeline and moving the
major bones into position, generally foot and
hand target bones. Because most animations
will be looped within the game and the mesh
is not actually moving on its own, the motions
must be blocked out in a “slide along” fashion
while the mesh stays rooted in space.

The armature object must be in pose
mode for the bones to be animated.

Bones can be manipulated through
translation and rotation, primarily. Scaling
can be used, but it isn’t recommended unless
it is necessary, as it may cause odd changes in
the mesh and bones during other sections of
the animation if not handled carefully.

In fig. 19, a bone is being translated
from its originally recorded position. This
creates a key frame, which will in turn create
IPO curve data and action data for the
armature object for that specific bone. The
IPO data created will be in channels specific to
what was manipulated, in this location change
in the z-axis.

Curves can be edited dragging the
key frame or Bezier handles that control how
the interpolation between two key frames is
handled.

The level of detail offered by the IPO
Curve Editor screen can be daunting and
synching the animations of different objects is
impossible, so the Action Editor screen comes
in, as seen in fig. 20. Key fames can be
moved, duplicated (individually or in groups),
and scaled (in groups, around the green line
marking the time currently being edited).

19| Page

2.2.3 APPLYING MATERIALS WALKTHROUGH

Bravion Of all the tools available in the buttons screen when
working with materials, the preview window is by far the most
intuitive. It can be customized to display the material on a
sphere, as seen in fig. 21, a cube, on Suzanne (the irregular
shape all 3D studio software solutions provide just for testing
out textures and modifiers — a monkey head in this case), on a
particle system that looks rather like grass, or in the material’s
natively flat plane state.

FIGURE 21: THE PREVIEW WINDOW

lVCal Light| VCol Paint|TexF ace[':f| Shadeles
| NoMist | Env |ObColor|Shad A 1.00
G 0408 -

Col
Spe
B 0.689 —

[N Hsv[DyYN|(A 0499w

The most basic materials can be created in the
Material buttons group, seen in at the top of fig. 22. Here,
Shading can be turned off, as well as mist effects and alpha
effects.

R 0.574 I

Col is the main colour the material will be, which can
be specified in one of two colour models: RGB and Hue
Saturation Value. Spec is the specular highlights that a material
will gain when hit by light. Mir, which is Mirror, which
describes how the material will distort images reflected off its
surface colourwise.

' Preview

Alpha can affect the transparency of the material, as
seen in fig. 22. Note how the A button between the TexFace
and Shadeles buttons is activated, how A beneath the RGB
sliders is dialled down to 0.499, and how Ray Transparency is
activated in the Mirror Transparency button group. Note how
this affects the preview: the checkered background is showing
through Suzanne.

€[B[]

o]

|Fresnel =|Ref 0.529messsss| || Tangent
Fresnel:1.5ma
Fac:2.789 i | EECLTY
[Blinn ___2][Spec 1.33 messs)— | [TraShado
Hard:50 0 || Only5ha
Refr:4.000 s/ || Cubic
|GR: | Exclusive

Tralu 0.00 - |SBias 0.00F
Amb 0.500 S8 |Emit0000
LBias 0.00 e —

. Mirror Transp
| Ray Miror | Ray Transp

|Raymir-0.) | [oR:100 |

I

Visible in fig. 22 is the Shaders button group.
Currently, Fresnel and Blinn are being used—Fresnel for
shading and Blinn for specular. There are many different
shaders available that produce varied effects. Phong, for
instance, is particularly good for creating metallic highlights.

FIGURE 22: THE MATERIAL, PREVIEW, SHADER, AND
MIRROR TRANSPARENCY BUTTON GROUPS,

20| Page

Often, more than just the options described above are
Glob | _Object |Ob: required to get just the right look. Textures are thus needed to
uy y add layers of complexity to a material. Most 3D games rely
heavily on drawn textures with limited effects added to them
in order to reduce the burden of drawing the textures in real
time. Thus, most textures are image textures.

Mat Input (fig. 23) specifies how the texture is
mapped to the mesh. Flat, Cube, Tube, and Sphere are some
options that will specify how a texture is mapped onto a mesh
that may not have the right UV coordinates for the texture. For
instance, if a sphere was lacking the proper UV coordinates,
selecting sphere would ensure that an unwrapped/stretched
out picture of the surface of the earth was properly applied to
the sphere.

FIGURE 23: MAP INPUT BUTTONS GROUP

Map To contains buttons that will specify how
textures effect certain channels. For instance, a black and
white image could be used specifically on the Alpha channel to
specify a particular way the object needs to become
transparent.

In the Texture buttons group, the texture can be
named and its type specified. Type options include those
depicted in fig. 26.

Texture i iie

None
Image
Noise Basis EnvMap

5 Clouds
Marble
Stucci
Wood
Magic
Blend
Noise
Plugin
Musgrave
Yoronoi
DistortedNoise
Texture

FIGURE 26: TEXTURE TYPE OPTIONS

FIGURE 25: AN ALTERED MARBLE TEXTURE.

By choosing an option like Marble, two button groups
become available: Marble and Preview. Marble allows the look
of the texture to be altered as necessary.

21| Page

By mapping the texture in fig. 25 to the Alpha channel
of the material, the look of the transparency is changed
drastically.

¥ Preview

FIGURE 27: TEXTURE APPLIED TO ALPHA
(TRANSPARENCY) CHANNEL.

22| Page

2.3 XNAIN ViIsuAL CH#H 2008 EXPRESS

XNA is not a game engine in itself, but rather a free collection of classes that allow for combining any
elements desired (music, sound effects, meshes, cameras) in a format that can be played on a Windows operating
system or on an Xbox gaming console. It has no physics engine, but allows for a coder to have the fine control
desired over every element. It can be augmented with physics engines available online for free.

The project used XNA version 3.1, which is compatible with Microsoft Visual Studio 2008 and Microsoft
Visual C# 2008 Express. The latter is available for free download on Microsoft’s website and through MSDN, while
the former is very expensive. XNA boasts good documentation, both offline and online, as well as a host of pre-
packaged tutorials with precise instructions and explanations.

Its major drawback is its lack of viewport: all elements have to be placed and worked with according to
vectors, which can be very unintuitive for those that are very visually oriented. It was hard to correctly position a
camera without the visual feedback.

23| Page

2.4 UNITY

Unity recently released a free version of its software. It boasts as many viewports as the user wants (so it
is possible to set up the traditional four view (top, right, front, and perspective) and is compatible with whatever
system the user is willing to figure out how to compile for, from PC to iPod. It imports Blender meshes very well
through the FBX exporter (compliments to Autodesk) and works with Visual C# Express Edition should the user not
want to write C# scripts in its native script editor. It is unfortunately a big program in terms of RAM and processor
usage, but with the right system this is not a big drawback.

Where Blender did not offer enough control over the game and XNA left far too much up to the
programmer without enough visual support, Unity in conjunction with Blender for visual elements and Visual C#
Express for code editing seems to offer the right amount of control and visual context at the right price tag.

Visual Studio speeds up working with Unity as Unity’s debugger can jump right to the errors it finds in
scripts via the hooks that Microsoft did away with in Visual C# Express. Also, Unity and Visual Studio can create a
project file together, making it possible for Visual Studio to error check code before debugging. Debugging
manually must be done in the MonoDevelop IDE that is provided with Unity though, in order to step through code
properly.

Unity comes with the advantage of tons of resources, from scripts from example projects to many
tutorials. It is possible to adapt many native scripts, translating from JavaScript to C# when necessary. Scripts in
Unity can have their own user interface, making interacting with scripts a potentially visual process.

File-— Gt Assats ~ GameDbject ~ Component — Terain - Window - Help

FIGURE 28: UNITY WITH VIEWPORT (TOP LEFT), GAMEPLAY SCREEN (BOTTOM LEFT), HIERARCHY VIEWER (MIDDLE TOP), PROJECT
VIEWER (MIDDLE BOTTOM), AND INSPECTOR WINDOW.

24 |Page

2.5 VisuALSTuDIO 2010

Visual Studio 2010 is an integrated development environment for programming in a variety of languages.
It can format and check the syntax of a variety of languages, including C# to JavaScript. It can perform error
checking if a project file is created referencing the packages containing the classes being used. With the project
file, it can also make suggestions based on the contents of the class being referenced.

i Garne.
FIQ[‘V'BH anqnwmrmunrm Ylﬂmﬂ*
FRRERE T P R e a1 | DR G BE -

ik G EEZ2|0PE a0 dalidll:
FollowCharacter.cs X

5 FollowCharacter] @ torget E i +aly &4
- - - This comers smcothes out rotation around the y-axis and height. E
Hation Gaeping on MEIgNT Changes and o rotation changes 7 Chamelcon Game: -
o dseplay & & B "' Horizontal Distance to the target i3 always fixed. ‘ ai AT

public float heightbamping = 2.8f;
public float rotatienDasping = 3.0f;

o [Assets
+ [Character Controller Script
(3 Characters.
(3 Deme Scenes

There are many different ways to smooth the rotation but doing it this way gives you a

For every of these smoothed values we calculate the wanted value and the current value
Then we smooth it using the Lerp function.

1/ Update is called once per frame
. a i hed valu tra a.
15 void Lateupdote () { 1I;e we apply the ssoothed values to the transfors’s positio , [Locometion System
if (ltarget) 4 [Scrpts
return; E 2 [Comena

4/ The target we are following
var target ; Transform;
J/ The distance in the x-z plane to the target

2] FadeoutLineOfSight

// Calculate the current rotation values #) FollowCharacter.cs.

float mantedRotationingle = target.eulerangles.y;
flast wantedHeight = target.position.y + height;

float currentRotationAngle = transform.eulerdngles.y;

var distance = 18.9;
/1 the height we want the camera to be above the target
var height = 5.8;

&) Chameleon.cs
) ChameleanMotor.cs
8] kslandWater.cs

1 How mich we) Wt
float currentHeight = transfors.position.y; ater.cs
ght -4 var heightDasping = 2.9; 1) WaterlightmapFogJs
// Damp the rotatien areund the y-axis var rotaticaaaping = 3.6; 2] Waveanination,s
currentRotationingle = i.Lerpangle(currentRotaticnangle, = 5] WaveMeshAdpustment. B

#f Place the script in the Camera-Control group in the component menu
script AddCompenentienu("Camera-Control/Smooth Follow”) P

wantedRotationdngle, rotationCasping .deltaTime); (2 Standard Assets
| Character Controlless

/1 Osmp the hei bt
currentHelght = Hathf.Lery) 3
. 'A—‘,‘aelnnu); P b function Latetpdate () { 4 B Scripts
/i Escly out if me don't have a tanget &) Characterhid
/1 Convert the angle intc a rotsticn il oY &) FPSinputCon
Quaternion currentRotation = nion.Euler(8, currentRotationtngle, 8); return;] Mouselook.

&) Platformings
) ThirdPersan
&) ThirdPersan

/4 €alculate the current rotation angles
wantedRotationdngle = target.eulerangles.y;
wantedHeight = target.position.y + height;

// Set the positien of the camera on the x-z plane
4/ and then move it the set distance behind the target

transform.position = target.pasition; B Putices
transform.pesition -= currentRotation * Vectord.forward * distance;
currentRotationAngle = transform.eulerAngles.y; o [Scripts
currentreight = transfors, pesition.y; (3 Camera Scripts

/1 Set the height of the camera
transform.position = new
transform. position.z);

4 [y Genersl Scripts
4] ActvateTrigger.

<3(transfore. L 4
trsnasom:post Hon x;founpentiletght // Demp the rotation around the y-sxis

currentRotationAngle = Mathf.Lerpangle i s -

)) 4£] DragRigiduody
/1 Ensure that collisions are taken into account 74 Damp the haight (3 Utility Seripts
L 2 q - - Time ones
17 Kmys ok kb bamget currentHeight = Mathf.Lerp (currentheight, wantedHeight, heightDasping * Time.delt J‘f'wb’ g
| transform. Lookat{ target); = Y R P —— it o 3
Wi - . B 00% =« . » 2 Selution Explorer

FIGURE 29: VISUAL STUDIO 2010 WITH SIDE-BY-SIDE EDITORS RUNNING. TO THE LEFT IS THE SOLUTION EXPLORER, WHICH DISPLAYS
ALL PROJECT FILES AND FOLDERS. CURRENTLY, A NATIVE JAVASCRIPT FILE IS BEING TRANSLATED INTO C#.

25| Page

2.6 GIMP

GIMP is an image editing program comparable to Adobe Photoshop. It supports layers, alpha channels,
and smart selection based on colour. It has the standard tools: sharpen, blur, paintbrush, ink, eyedropper, smooth,
smudge, paint bucket, and various selection and manipulation options. It can support tablet input, altering
brushes based on tablet pen pressure and pen tilt. It can output images in a variety of formats,
including .bmp, .png, .jpeg, and .gif.

8] Bay Branch Alpha Miaps ?
Eile Edit Select View Jmage Layer QColors Jook Filters Windows Help
o, b |59 |44 B 221 L3q

Toolbax [@)

&
®
'Y

aen

Pantirnty
(e rpt— [=]

Oaciy [[xe0e £

Bushc | @ || Cose G

by P [0 E
6 B Dynarics

Face out

Apey e

Incrarmants

e B

Use color Som gradiant

FIGURE 30: CREATING AN ALPHA MAP IN GIMP

26 |Page

3 CHAMELEON GAME

3.1 CONCEPTION

Conception requires little in the way of software, at least initially. First, there must be an idea. This idea
must be tailored to fit the confines of a game in that it must have a goal, it must have some aspect that makes it
worthwhile to replay, and there must be some obstacles present to make gameplay interesting. For this project,
the goal was to have a chameleon survive his journey to obtain the antidote to the strange poisoning that causes
him to change colour rapidly and gradually lose life. The ideas explored to make this game worth playing again
were having the terrain be randomly generated, having the goal and the starting position randomly shift per
session, and have the enemies’ positions not be fixed in any way, making the route’s hazards unpredictable.
Snakes were added as obstacles, which would detect the chameleon’s presence if he did not blend with his
surroundings properly or he moved too quickly through their field of awareness, and the effect of the poison on
the chameleon’s health essentially created a time limit.

3.2 DEsIGN

Design is a more expensive process than conception. Concept art is often done in Photoshop or a similar
program, which are all on the range of thousands of dollars for a professional copy and hundreds for a student
copy, which doesn’t permit any sort of commercial work. The closest freeware available is GIMP, which is more of
a very basic copy of Photoshop, allowing work with layers and textures. Design not only covers the artistic aspects
of the game; code design also begins here. Picking user controls (left, right, up, down) and outlining the specifics
of game play begin to set out the most basic coding aims.

3.2.1 CHAMELEON
The initial outline for the chameleon character was simple: he needed to be fully mobile in a 3D
environment and he had to be able to change colour seemingly randomly.

Over the course of research of various chameleons, his real world reference became a young veiled
chameleon, as they had the simplest shape. Searching through the images on www.deviantArt.com was better as
they usually have the highest quality photographs to act as a reference image.

27 |Page

FIGURE 31: SIDE VIEW OF YOUNG VEILED CHAMELEON USED AS REFERENCE IMAGE DURING MODELLING

28| Page

The standard WASD key configuration was decided upon to be used (W is forward, A is left, S is backward,
D is right), as well as the arrow keys. Left and right would produce a sidestepping, strafing, motion. At this point,
the mouse provided rotation. Later experimentation caused the revision of this strategy to instead have the Q (or
4 on the keypad) and E (or 6 on the keypad) keys be left and right rotation respectively while the mouse was used
to control the angle of the camera, allowing it to orbit the chameleon so the player would have more control over
his view of his surroundings since sight is what winning the game depends on. With the inclusion of a duck action,
another key had to be added, so the shift keys were designated to handle triggering that action.

As the chameleon is supposed to be able to climb, there needed to be some method of detecting his
collision with a tree trunk and then allowing him to interact with the tree’s surface as though it had suddenly
become the ground. The same system would need to be applied to every branch on the tree.

The chameleon’s objective is to come into contact with the mesh that represents the antidote to the
poison he ingested prior to the game’s start. This triggers the end of game sequence.

The effects of the poison acts as a timer; the player has only so much time to track down the antidote or
have the chameleon die in front of him. The random colour changes at random intervals also acts as a force the
player must work against as if the chameleon is standing in front of a brown tree trunk and turns purple, he will be
more easily detected and potentially eaten by snakes.

3.2.2 SNAKE

The snakes would be placed randomly every game to increase the re-playability factor so every game instance is
unpredictable. Every snake has a “dome of awareness” that once the chameleon lies within makes it vulnerable to
attack. Actions such as moving too quickly and moving in front of objects when the chameleon is the wrong colour
alert the snake, making it attack. If the chameleon ducks or moves when attacked, it has a chance of avoiding the
attack, but otherwise it is dead in one strike.

3.2.3 ENVIRONMENT
The environment had to be quite large or the task of finding the antidote would be too easy. Water and
foliage would be included to make interaction with the environment more interesting.

3.3 MODELLING

3.3.1 CHAMELEON MODELLING

The chameleon began with a cube and the reference image seen in fig. 32. The initial hours were spent
extruding faces in order to correctly block out the chameleon’s profile, as arms and legs are complicated and
would come later.

29| Page

| Fields | Ocd |
| Anti | Premul |

ode :l@_ﬂﬁﬂﬂl&!&@u Global :l@j

FIGURE 32: BACKGROUND REFERENCE ADDED IN SIDE VIEW. BUILT MESH ACCORDING TO IT.

Once the profile was
suitably developed, adding
detail to the interior was done
by adding cuts along the side of
the body with Loop Subdivide.
As seen in fig. 33, three loop
cuts have been added. The
vertices were adjusted to better
capture the shape of the
chameleon, and then the faces
where the arm and the leg were
to come out were extruded as
necessary to shape the limbs.
More detail is necessary in joints

in order for the mesh to deform
appropriately when rigged and

FIGURE 33: LEG IN PROGRESS. ARM MOSTLY FINISHED

animated, so more cuts had to
be made around the hip, knee, elbow,
and wrist joints in order to ensure that there was enough detail at these points.

30|Page

A subsurf modifier was applied,
IAdd Modifier] To: Cube as the subdivision modelling strategy was

being followed. The low resolution mesh

v | Subsurf - O @@ X was still being manipulated, but the mesh

Catmull-Clark = Apply was made to render and display as though
4 Levels: 1 > Copy it was one level of detail above that.
‘ RenderLevels:1 »

Optimal Nrawue
Use subsurf to subdivide UVs

FIGURE 34: SUBSURF MODIFIER APPLIED TO SMOOTH THE LOW RESOLUTION MESH.

FIGURE 35: ADDING CUTS TO THE LEG (PINK - IN PROGRESS, YELLOW - JUST ADDED).

(1) Cube

FIGURE 36: ADJUSTING WHERE THE CUT WILL OCCUR ON THE LEG ALONG THE GREEN EDGE.

31|Page

FIGURE 37: THINNING THE TAIL RELATIVE TO THE WIDTH OF THE BODY.

Once the detailing of the hands and feet was done, the tail and the torso had to be adjusted again to
ensure that the proportions were correct for when the half of the mesh was mirrored and fused together to form
the two halves. Building one half of objects with bilateral symmetry is a common tactic to reduce the amount of
modelling necessary.

User Fersp

(1) Cube

FIGURE 38: ADJUSTING THE WIDTH OF THE TORSO.

Fine detailing could now be done, particularly around the face. The eye, formerly just a square face, was
adjusted with cuts and by moving the vertices to create something a little rounder before efforts were made to
make the eye bulbous. The Knife Subdivide tool was necessary here, as seen in fig. 39, in order to correctly give
the eye shape.

32|Page

FIGURE 39: CUTTING THE EYE SO IT WILL BE ABLE TO HAVE THE CORRECT "DOME" SHAPE. PURPLE — CUTS IN PROGRESS.

Models must always be built in the “rest position” — the position that has every joint as relaxed as possible
so the mesh is not influenced oddly when it is animated. Because the initial model was not built this way,
problems came up with the tail curled up (it looked awful when Unity imported it and played the tail uncurling
animation) and the how the hands were built at the wrong angle and closed, making them look odd when spread
during the walk cycle.

So, the tail was remodelled, as seen below. Re-rigging it posed some challenges as getting the bones to
not overlap incorrectly turned out to be quite a process. Thus, building it right the first time is highly advisable; do
not redo any rigging unless it is absolutely necessary.

FIGURE 40: NOTE THE GAPS IN THE COLOURS (PAINTED WEIGHTS). USING THE PAINTING MASK TOOL (RIGHT) HELPS HIGHLIGHT MISSED
VERTICES VERSUS USING THE NORMAL WEIGHT PAINT VIEW (LEFT).

33|Page

Liser Persp

FIGURE 41: FIXED TAIL. IT CURVES NICELY NOW.

3.3.2 SNAKE MODELLING

Starting with a cylinder, one of the premade meshes provided by Blender, the snake model was quite
simple to generate. After laterally subdividing the cylinder and reshaping the rings, the snake shape was produced.
A decimate modifier was applied to reduce the number of polygons and some clean-up work was done after that
modifier was applied permanently, fusing vertices and cutting new edges to ensure the lower resolution mesh
would bend properly. A subsurf modifier was applied to make the mesh appear smoother.

Fight Ortho

FIGURE 42: FINISHED SNAKE MODEL VIEWED IN POLYGON EDIT MODE.

34|Page

Fiar Ortng_

FIGURE 43: FINISHED SNAKE MODEL WITH SUBSURF MODIFIER APPLIED.

Building the rig was a more involved process. Research into creating a flexible spine that would require
minimal manipulation during animation was done after using a spline as the spine proved impossible to import
into Unity. A rig with 74 bones was developed, with 32 serving as the spine, 32 serving as Inverse Kinematic
targets for their corresponding spine bone, and 10 serving as the control bones that would be manipulated during
animation.

The spine bones were built, as seen in fig. 44, inside the snake mesh, flush with the ground. The IK target
bones were built just above the snake.

(1) Armature Bone 0S50

FIGURE 44: CREATING ARMATURE BONES. THE BONES THAT WILL BE DEFORMING THE SNAKE ARE THE ONES LYING AT THE BOTTOM OF
THE SNAKE MESH.

The control bones were carefully added to bone spine and IK target chain. One control bone became the
root bone of the spine, as is depicted in fig. 45. The other nine control bones were worked into the IK target chain
at intervals; they were made parents of the bones following them in the chain and children of the bones directly
preceding them, as is seen in fig. 46.

With this hierarchy established, the IK target chain and its control bones were moved farther up and the
IK constraints were applied to each spine bone. This caused the spine chain to curve up towards the IK target

35|Page

chain as each spine bone tried to point at its target IK bone, as seen in fig. 47. The control bones were also made
to resemble spheres at this point to make them easier to select.

FIGURE 45: ADDING THE FIRST CONTROL BONE (YELLOW) TO THE SPINE BONE CHAIN.

FIGURE 46: ALL CONTROL BONES IN PLACE ALONG TOP ROW.

36|Page

FIGURE 47: COMPLETED CONSTRAINTS: YELLOW IS IK SOLVER (SPINE BONE POINTING AT ITS CORRESPONDING IK BONE), GREEN IS
STRETCH TO, WHICH POINTS AT THE NEAREST CP BONE IT POINTS AT (HALF ARE CIRCLES HERE).

The IK bones just after a control point have a constraint added to them called Stretch To. This permits the
entire chain of four bones from just after a control point bone to the last bone before the next one in the hierarchy
chain to stretch to touch the specified target. This is illustrated in fig. 49.

37|Page

Top Ortho

(1) Armature CP7

FIGURE 48: JUST CONTROL POINT BONES VISIBLE. MESH IS COMPLETELY RIGGED.

38| Page

Top Ortho

{1) Armature CP7

FIGURE 49: RIGGED WITH SPINE HAVING B-BONES WITH THREE SEGMENTS EACH

3.3.3 TREE MODELLING

Starting with the standard cube in Blender, by cutting, subdividing, and extruding, this tree was produced. A
subsurf modifier was applied to give the tree trunk and branches the necessary curvature. Planes with complex
transparency maps were applied to give the tree the twigs and leaves necessary for it to look alive.

39|Page

FIGURE 50: FINISHED TREE WITHOUT SUBSURF MODIFIER.

40| Page

FIGURE 51: FINISHED TREE WITH SUBSURF MODIFIER APPLIED. NOTE THE PLANES ON THE BRANCH (PINK — SELECTED). THESE HAVE A
LEAFY TWIG IMAGE APPLIED TO THEM.

41| Page

FIGURE 52: FINISHED TREE PREVIEWED WITHOUT LIGHTS.

FIGURE 53: TEXTURE TO SIMULATE LEAFY TWIGS

42| Page

3.4 ANIMATING

Animating was done in Blender, though it can also be done in Unity. Trying it in Unity is not
recommended as it much easier to handle rigging and animating within Blender, which boasts more extensive
controls and constraints than Unity.

3.4.1 CHAMELEON

For the chameleon, the greatest number of animation clips was required. Two walk cycles, one
specifically for narrow branches, were developed. Turn animations were developed, but they are currently under
revision as they are much too long to blend correctly back into the walk cycle when the player is executing quick
course corrections. Two tail motions were developed: a tail curl on top and underneath, just so they could be
played at random during walk and idle. A crouch animation was created to be played upon using the Shift key and
when the chameleon is falling. A dying animation was also created to be played when the chameleon dies; it
simply has the chameleon collapsing to one side.

3.4.2 SNAKE

The snake only required three animations: slither, idle, and strike. Of these three, slither was the most
time consuming. It was based on a sinusoidal wave and was carefully tweaked to better mimic the actual motion
of a snake as following the wave at a constant rate caused odd-looking slow down while the snake’s head and
upper body went through the peak and valley of the curve. These sections were compressed to better give the
sense that the snake was gaining speed through these turns.

3.5 SCRIPTING

There are three options with animated meshes: continue in Blender or move into Unity or XNA through
the free Visual Express C#. All have pros and cons. Blender’'s game engine is essentially platform independent: it
will run on any operating system so long as the Blender engine is included with it. However, it is not a very good
game creation route for anyone not familiar with the Python programming language. It allows for fairly complex
GUI-based programming of elements and its physics engine is fairly capable of handling hair, cloth, and gravity, but
there are issues, such as getting stuck on flat surfaces for no apparent reason.

With XNA, the lack of support for blending animation and handling collisions makes it a poor choice for
continuing development in.

3.5.1 CHAMELEON
The major scripts the chameleon needed were ones that would connect his motion to the keyboard input,
that would play the correct animations and blend them when necessary, that would change his skin colour at

43| Page

random to random colours, and that would allow him to move correctly over the terrain, including obstacles such
as rocks and trees.

Through the use of the character controller, a specifically adapted capsule collider with methods
necessary to move a character, and Unity’s input mapping, it was simple to write a script that would apply forward
and lateral velocity as necessary, as well as applying the appropriate rotation. Handling the speed was a little
trickier, but adapting some JavaScript found in a tutorial into C# worked well enough at applying gravity and
handling collisions with the ground. For a time, it also applied acceleration according to the slope the chameleon
was travelling on, but this was found to be unrealistic and more of a hindrance than an interesting game feature.

The negative aspect of using the character controller is that it imposes a limit on the slope it can travel up;
the fixed maximum value is 180 degrees. This put a damper on efforts to have the chameleon correctly imitate its
real-world equivalent as it could not travel up any surface that was the slightest bit steeper than 180 degrees.
Many trees had to have their meshes tweaked in order to better allow the chameleon to climb them. The
character controller is instead a better solution for a more typical game where the ground is the intended surface
for a character to move across.

For more advanced chameleon motion, a specialized character controller will have to be developed from
scratch that will correctly cling to any surface it comes into contact with.

Handling the colour changes was the easiest script to implement: Unity’s random number generator is
good enough to ensure that every run through the game is very different in terms of what colours appear and for
how long.

The problem of how to make the chameleon walk up trees was difficult to solve in that finding a solution
that code could be modelled on proved difficult. This is mostly due to how most games have characters that walk
upright across the ground, no matter how irregular. What the chameleon needed to do was somewhat obscure in
that sense. Inheriting the ground normal was done easily enough, but keeping the forward direction proved
difficult as just adopting the ground normal overrode the forward direction with the implicit forward direction
from the ground normal, despite how there should have been none. The chameleon could correctly adjust itself to
have all four feet on whatever surface it was walking across, but it would flip directions seemingly randomly as it
was moved across the surface.

Overcoming this required using an obscure variation of the LookAt function along with some vector math
that adjusted the forward vector to the ground. The LookAt function takes in the adjusted forward vector and the
ground normal and correctly adjusts the rotation of the chameleon relative to the ground. His collider notably
does not rotate with him.

Playing the correct animations and blending animations in and out is accomplished through a script
written specifically for the chameleon. It checks the speed in order to determine whether to play the walk or idle
animation, checks whether the chameleon’s character controller collider is grounded (touching some surface) and
if not plays the ground animation, and randomly plays a tail animation. If a rotation is applied, the correct turn
animation is blended into the idle or walk cycle, as dictated by the speed the chameleon is moving at.

A particularly important part of the chameleon is the attached camera. The game relies heavily on visual
elements, so the camera had to be flexible. A traditional over the shoulder camera would be limiting when the
chameleon is in the trees, as would a first person camera, which would have the player looking out of the
chameleon’s eyes. Instead, an orbit camera scheme was implemented that allowed the camera to orbit around a

44 | Page

point a little ways over the chameleon, which allowed for the best view. Mouse motion controls the position of
the camera.

3.5.2 SNAKE

The snake currently has its animation projected into the ground through a series of ray casting operations:
every bone in the snake’s spine projects a ray downwards to check how far away the ground is. If it finds no
ground within a certain limit, it projects a ray upwards, just in case it is under the ground and needs to move up.
This method mostly does not interfere with the animations, though it ruins the strike animation for the head and
neck and does the same for idle. Further refinements will focus on ensuring that bones will point towards their
parents so the spine will remain smooth.

3.5.3 ENVIRONMENT

A game object without an attached visual element currently coordinates the creation of the antidote in a
random location. Several empty game objects, which only specify a location, rotation, and scale in world space,
were placed around the environment. The script attached to these locations’ parent object selects one of the
locations at random and creates the antidote there, along with all the scripts necessary for detecting the
chameleon’s touch.

3.6 TESTING

This is done by having test players go through the game and report on any game elements they found
annoying, any glitches they uncovered, and any other features that could use expansion. Final setting tweaking is
done in this stage after figuring out how playable and beatable the game is.

45| Page

3.7 SUMMARY OF TASKS

Task

Finding
reference
photos for
chameleon

Building Blender Oct 22,2010- Had to redo some sections, the tail and the
chameleon March 7,2011 hands and feet, in order to get them into the
mesh proper rest position.

Rigging the
chameleon
mesh

Animating the Blender Nov 20, 2010 - Took forever to develop a good walk cycle, with
chameleon April 6, 2011 all the changes to the skeleton causing the loss
of perfectly good key frames. Also, there was a
steep learning curve when it came to figuring
out how to make the Action Editor work.

Writing scripts
for the
chameleon

Texturing the Oct 22,2010- Was pretty simple. Creating a separate vertex
chameleon Feb 26, 2011 group for the eye kept getting put off in the
face of bigger challenges.

Modelling the
snake

Rigging the Blender Jan 17,2011 - This required a lot of research to get right as it
snake Feb 27, 2011 proved that the initial plan to have a spline act
as the bone would not work when imported
into Unity. The rig was very detailed and
complex and had more bones and constraints
than the chameleon. It was worth it because
manipulating the snake took way less effort
during the animation phase.

Animating the
snake

Writing scripts Unity/Visual 12 March This is still a work in progress. Many avenues
for the snake Studio 2010 18,2011 - April were investigated in an attempt to find the best
6,2011 way to project the snake’s motion onto the

46 |Page

irregular terrain, but in the end a crush
projection method was used. It is still being
defined. The Al has yet to be built.

Finding

reference

photos for the

environment

Finding Google Oct 15,2010- A good texture needs to be able to be tiled
MU R (M Chrome/MS Jan 31, 2011 without looking weird. Finding natural textures
environment Paint/GIMP like that is hard, so the best bet is to find many
okay textures and mix them when they are
applied.

Building the
environment

Writing scripts Unity/Visual 16 Feb 17,2011 - Not many scripts were actually written for the
for the Studio 2010 March 25, environment, save for those that were applied
environment 2011 to building the antidote. Mostly, the time
spent here was on experimenting with getting
the chameleon to walk on the trees.

47 |Page

4 GAMEPLAY

Currently, the chameleon is capable of climbing almost all elements in the game environment at the
player’s direction and the game ends at the end of the countdown with a loss for the player. The snake is no
threat yet, nor does hitting the antidote, which is very hard to find, end the game in the player’s favour.

Preliminary testing has suggested that “hints” might be necessary for the player in order to make the
game feasible when it is possible to win upon touching the antidote. Possible solutions include having other fruits
scattered around to be picked up that will, for a short time, give the player the chance to see the scent trail of the
antidote in the form of a particle emission moving with a random wind.

48 | Page

5 CONCLUSIONS

Blender appears to be well on its way to becoming a 3D studio solution capable of competing with
commercial solutions. While the user interface is dull and at times confusing, it seems that version 2.5 is making
inroads on those two deficiencies. Blender, while lacking a lot of the custom solutions for specific tasks like
handling atmospherics, has all the basic tools necessary to do it the hard way. A determined amateur would
definitely be able to utilize Blender to create 3D elements for his game to his satisfaction with the help of the
tutorials and manuals available online.

Unity is a very useful tool. The documentation is at times unclear though, making it difficult to
understand what a lot of the built in functions do. There are many active forums devoted to Unity, along with
plenty of resources, from tutorials to free script packages for specific tasks. Its resource requirements in terms of
hardware are quite strenuous though: a higher end processor and video card are a must, or Unity will freeze or
jump frames when running through gameplay.

Unity does have stability issues, as well, at least when run on a Windows 7 machine with 64 bit
architecture while running ESET or Kapersky antivirus. It will refuse to start up at times. However, the Unity team
is looking into the issue and issues regular updates, so the problem may be resolved soon.

49| Page

6 FUTURE WORK

Work yet to be done includes creating an artificial intelligence for the snake such that it can detect a
moving chameleon of the wrong colour within a sphere defining its area of awareness and attack it successfully.
The major challenges are in detecting when a colour is wrong—does not match its surroundings—and navigating
to the chameleon over the bumpy terrain without going through the ground or some obstacle such as a tree or
rock. The chameleon crouching must also be made to cause the snake’s attack to fail. Snakes will be placed
randomly eventually, some even in trees, once the Al is capable of navigating in three dimensions.

Also, screens for winning and losing must be created. Game logic enforcing the time limit currently calls
the losing screen, but touching the antidote must be made to call the win screen.

Detecting terminal velocity on the chameleon has yet to be done. This will probably involve a velocity
check alongside a “grounded” check. Failing both the conditions will cause the death animation to play upon
touching the ground and the loss screen to be loaded soon after.

Deep water has yet to be defined for the chameleon. An invisible trigger will have to be defined for the
irregular area that is “too deep” for the chameleon.

Also, the snake and the environment must be textured completely. The snake is currently lacking textures
of any sort, while the environment is missing some rocks and trees.

50| Page

7 REFERENCES

Blender download site: http://www.blender.org/download/get-blender/

Unity download site: http://unity3d.com/unity/download/

XNA download site: http://create.msdn.com/en-us/home/getting _started

XNA review: http://www.fairyengine.com/articles/xnalstlook.htm

Blender Hotkey Guide: http://en.wikibooks.org/wiki/Blender 3D: HotKeys/All

Blender IK Tutorial:
http://en.wikibooks.org/wiki/Blender 3D: Noob to Pro/Advanced Tutorials/Advanced Animation/Guided tour/
Const/ik

Getting Started with XNA and Blender: http://www.virtualrealm.com.au/Blog/tabid/62/Entryld/440/Getting-
Started-with-Blender-3D-and-XNA.aspx

Blender Texture Guide: http://en.wikibooks.org/wiki/Blender 3D: Noob to Pro/Using Textures

Blender Game Engine Tutorial: http://www.youtube.com/watch?v=SZNstSGcDVA

Blender Weight Painting Tutorial: http://www.youtube.com/watch?v=DWVzqorScTM&feature=related

Getting Python Installed for Blender: http://www.blender.org/forum/viewtopic.php?t=11938

Blender Leg Rig Reference: http://wiki.blender.org/index.php/Doc:Tutorials/Animation/Armatures/BSoD/Leg Rigs

Blender Constraint Guide: http://wiki.blender.org/index.php/Doc:Manual/Constraints/Common _Interface

Blender IK Solver Guide: http://wiki.blender.org/index.php/Doc:Manual/Constraints/Tracking/IK _Solver

Blender Stretch To Constraint Guide:
http://wiki.blender.org/index.php/Doc:Manual/Constraints/Tracking/Stretch To

Blender Floor Constraint Guide: http://wiki.blender.org/index.php/Doc:Manual/Constraints/Relationship/Floor

Blender Spine Rig Guide: http://wiki.blender.org/index.php/Doc:Tutorials/Animation/Armatures/BSoD/Spine Rigs

Blender Linear Curve Tracking Rig Guide (this was used for the snake):
http://wiki.blender.org/index.php/Doc:Tutorials/Animation/Armatures/BSoD/The Linear Curve Tracking Spine

Foliage reference: http://woophy.com/images/photos/859/3/1/101501.jpg

Blender Material Guide: http://wiki.blender.org/index.php/Doc:Tutorials/Materials/BSoD/exercise 2

Blender Tutorial List: http://en.wikibooks.org/wiki/Blender 3D: Noob to Pro/Tutorial Links List

Blender IPO Editing Guide: http://wiki.blender.org/index.php/Doc:Manual/Animation/Editors/Ipo/Editing

Blender Action Editor Guide: http://wiki.blender.org/index.php/Doc:Reference/Windows/Action

51|Page

Blender Array Modifier Guide: http://wiki.blender.org/index.php/Doc:Manual/Modifiers/Objects/Array

Unity Introductory Tutorial Set: http://www.3dbuzz.com/vbforum/sv_showvideo.php?v=3611

Chameleon Walk Cycle Reference Video (link to be terminated as of April 29th):
http://video.google.com/videoplay?docid=-6943357287200570280#docid=3552395660062478973

Unity Debugger Guide: http://unity3d.com/support/documentation/Manual/Debugger.html

Unity iTween Plugin Reference: http://itween.pixelplacement.com/documentation.php

Unity Fading Objects Between Camera and Target Post: http://forum.unity3d.com/threads/69955-How-to-fade-

objects-between-camera-and-character?highlight=sight

Blender Modeling a Simple Person

Blender Quickie Material and Multiple Materials Per Object

Blender Bones

Blender Creation and Controls

Blender An aMAZEing game engine tutorial

Blender Platformer: Physics Fixes

Blender Platformer: Physics Fixes

Blender Build a skybox

Blender Basic mouse pointer

Blender Text in BGE

Blender Python Platformer: Creation

Blender Armatures

XNA Tutorial 1: Displaying a 3D Model on the Screen

XNA Tutorial 2: Making Your Model Move Using Input

XNA Optional Step: Controlling the Ship with Keyboard Input
XNA Tutorial 3: Making Sounds with XNA Game Studio

XNA Tutorial 4: Make a Game in 60 Minutes

XNA FuelCell: "Ships" Passing in the Night (series of 6 tutorials)
XNA How To: Render a Model

Unity LookAt: http://unity3d.com/support/documentation/ScriptReference/Transform.LookAt.html

52| Page

Unity General Script Reference: http://unity3d.com/support/documentation/ScriptReference/

53| Page

