
1

Redesign of the British Columbia Amateur Softball
Association Player and Team Management Website

by Joseph L. Pruner

B.Sc. COMPUTER SCIENCE HONOURS

in

Irving K. Barber School of Arts and Sciences

(Computer Science)

THE UNIVERSITY OF BRITISH COLUMBIA

(Okanagan)

April 2019

2

I would like to give a special thank you to my advisor, Dr. Ramon Lawrence, whose

guidance and expertise were invaluable throughout this process.

Abstract

This work built a website intended for use by the British Columbia Amateur

Softball Association as a player registration and management system. Representatives of
the association have user accounts that grant them access to their respective softball clubs,
where they can register, edit and manage teams and players. Higher-level representatives
have access to register, edit and manage specific organizations, districts, and clubs within
the association, as well as users. Each user has a certain admin-level, which dictates
exactly what they have access to. All data is stored in a relational database, allowing users
to easily find players and teams based on specific search criteria, as well as add existing
players and teams from previous seasons and tournaments to current ones. The website was
created using the Laravel PHP framework. The presentation will demonstrate the website
and discuss the process of its construction.

3

1 - Introduction

 The British Columbia Amateur Softball Association (BCASA) player and team
management system website is used to store thousands of player, team, season, club and
tournament records. The users of the website are BCASA officials or appointed
representatives. These users each have specific affiliations with specific softball clubs,
geographic districts and larger organizations. When they login, they may only access and
manage records from their respective affiliations.
 Unfortunately, the website has not had any significant updates in many years. Its
client-side design still reflects that of the early 2000’s, even though there has been
significant research and progress made in the fields of human computer interaction (HCI)
and user interface (UI) design. The website often presents information in a cluttered or
confusing way, with menus and interactions that allow the user to display too much
information at once. There are also various user interactions that require several steps to
complete, but could be significantly reduced with proper page restructuring.
 The same is true for the underlying server-side technologies driving the system’s
core functionalities. There are instances where interactions result in a full webpage reload,
redirection to a new page, or require the user to perform that same action multiple times.
All of these could be eliminated with proper coding changes.
 The combination of these external and internal hindrances can be the difference
between a user having a frustrating, time-consuming experience, or a pleasant, streamlined
one. The purpose of this thesis is to redesign and improve the BCASA website and
management system by applying modern HCI and UI design concepts, as well as industry
standard technologies to create fast and efficient core functionality.

Figure 1.1 - The current Softball BC website style.

4

2 - Key Terms and Definitions [1]

Attribute/Field

 The columns in a database table that describe specific characteristics of that entity
type. (e.g. last name, address, cost, date etc.)

Active Person/Player

 A person who has been added to a team and has a role.

The British Columbia Amateur Softball Association (BCASA)

This is the association that oversees the user, player and team registrations, across
many BC districts and organizations.

Client

 The web browser that a user is using to access the website.

Client-side

 This refers to events or processes that happen within the client. (e.g. JavaScript is a
client-side scripting language because it executes within the client.)

Content

The text, files, images, videos and anything else that is displayed or accessible to
the user on a website.

Content: Dynamic

A website with content is created at run time by a program or script running on
either the client or web server. (e.g. A user submits data in a form to the web server, and
the server returns specific information from a database.)

Content: Static

A website that consists of only HTML pages that look identical to all users at all
times.

Cascading Style Sheets (CSS)

CSS is a style language used to create the visual presentation of a web page through
hundreds of attributes describing color, font, size, position etc.

5

Database

 A structured collection of data stored in a computer with an interface allowing
other programs to retrieve and store information from it.

Entity

 A person, place or thing which is modelled and stored as records in a database
table (e.g. Team, Player, Club).

Graphical User Interface (GUI)

 A visual representation of an operating system or program where the user does not
have to type commands to interact with it. It allows the user to interact with it through
clicking on buttons, menus, images, windows etc. (e.g. Windows, Mac OS, Ubuntu)

Hypertext Markup Language (HTML)

HTML is a web development language that is semantically used to create the
structure and content of a web page. It consists of elements that dictate where content will
be placed.

Inactive Person

A person who is not on a team.

Operating System (OS)

The foundational computer environment that the user interacts with, where
programs exist and are executed, and files are organized and accessed.

Person

An active or inactive person.

PHP: Hypertext Preprocessor (PHP)

PHP is a programming language primarily used for web development. It runs on a
web server and is used for creating the logic of how the server should handle incoming and
outgoing data.

Query

A structured language request for specific information that the database can
interpret and respond to. SQL is used in this project.

6

Record

A single row in a database table.

Secure Shell (SSH)

Secure shell is a cryptographic network protocol that allows the user to securely
connect to network services on another computer. It is typically used to remotely access
the command line of another computer, and execute commands.

Structured Query Language (SQL)

A computer language used to query a database with human readable syntax.

Schema

A database schema is a defined structure and set of rules that the data in the
database is constrained to. It dictates which data types are expected for each column, the
relationships between tables, and the overall organization of the data.

Table

 A data structure consisting of rows and columns representing a single entity type.
Each row is an individual instance of that entity, and each column describes a certain
characteristic of the entities.

Team

 A collection of active people.

3 - Preliminary Design and Planning

3.1 - Database Overview

 Almost all websites rely on a dedicated database to store and manage their content.
It is the foundation of any website that expects to offer robust content to many users in a
fast and efficient way. The optimal database for the BCASA management system is a
relational database, because all the tables within the system rely, or relate to another table
in some way. For example, a team consists of active people, so the active people will
“belong” to a team. Within the database, the teams table is said to have a “relationship”
with the active people table. This means that each active person has a unique piece of
identifying information (an id number) which can be used by other tables to specifically
refer to that exact person. Each team will also have a unique id, so all the people that have

7

been added to a certain team, will have that team's id in their record. If using a non-
relational database, there would be more redundancy that slows down search time. Using a
relational database, the team id links directly to the players that belong to that team,
significantly increasing search time, and allowing more complex queries. [1]

3.2 - Database Design

Designing the database is an important first step, as it is the foundation of the

management system's core functionality. This started by creating mock-up designs in a
modeling software called Astah. It shows the initial tables, attributes and relationships, as
well as notes about the design. The tables are represented by the yellow rectangles, and the
lines represent the relationships between them.

Figure 3.2a - The four iterations of database design

8

 The database design was an iterative process and seen in Figure 3.2. After the first
design, which was based on the trivial assumptions of what this kind of database would
need (players, teams etc.), the model was reviewed and then adjusted accordingly. These
adjustments are usually creating new tables for previously undiscovered entities, splitting a
table into multiple tables to reduce redundancy, or removing and adding relationships.

Figure 3.2b - A section of the first iteration. Both active, and inactive people exist in the person
table

For example, in Figure 3.2b, the only table that stores non-user people information
is the person table, regardless of whether that person is currently an active player on a team
or not. This causes a problem for a couple of reasons:

1. Cannot maintain a history of active people's attributes across seasons.

When a person who has previously been on a team begins a new season on
a new team, with a new role (i.e. player to coach), the person table will be
updated with this new information. Their previous seasons team and role
attributes will be overwritten, and there will be no way to search for which

9

team a person has played on, or which roles they've had in the past. This
also applies to any other updated information in the person table. Since
searching for people's previous attributes is useful functionality, users
should be able to do this.

2. Illogical relationships will be created.
If both active and inactive people exist in the same table, the person table
will have relationships to other tables that don't make logical sense for
inactive players to have, and vice versa. An inactive person, by definition,
will never be a coach, a manager, or on a team, so they should not have any
relationships with those tables. This will lead to visual confusion, and the
potential for database query mistakes via convoluted SQL statements.

10

Figure 3.2c - A section of the second iteration. Note that there is now a Player (active person) table.

 These problems are resolved in Figure 3.2c, which is the second iteration of the
database model. For problem 1, having a dedicated active person/player table allows the
database to add a new player record whenever the season changes, instead of overwriting
that person's prior attributes. Now the database can simply search by a specific season, and
see the exact, entire roster of players for that season.
 For problem 2, the Person table no longer has relationships with the Team, or
Coaches/Manages table (off screen relationships irrelevant). It only consists of logical

11

relationships. An inactive person becoming a player directly reflects a real life scenario.
With each iteration, similar problems were discovered and resolved.
 The final design of the database was created using PGmodeler. This tool enforces
the real rules and structure of an SQL database, and can generate the SQL code to create
the designed database. This was very useful, because when converting the basic Astah
diagrams into PGmodeler models, it would present errors, indicating that there were Astah
tables that had invalid attributes, or relationships that violated certain constraints. This
added another layer of refinement and correction to the database model.

Figure 3.2d - A section of the final database model complete with all attributes and relationships.

3.3 - Web Page Wireframe Mock-ups

After the database modeling was complete, the next step was to begin wireframing
the structure, layout, and basic visual appearance of the web pages. A wireframe is a
barebones outline with minimal detail, and it is very useful for efficiently testing different

12

visual structures. The tool used is a program named Balsamiq. It comes preloaded with
many common web page items such as text boxes, buttons, menus and image placeholders
etc., and it allows an easy drag and drop workflow onto a blank canvas to create a web
page mock up.

Figure 3.3a - The wireframe mock-up of the login page. Note that there is no color, or any visual
flourishes, just the minimal functional structure.

Experimentation resulted in a structure and arrangement of user interactions items
that balanced simplicity and functionality. Without using a wireframe program, it would be
necessary to draw these by hand, in a drawing program, or code them, which would have
taken much longer. This allowed for easy generation of many different pages, representing
all the core functionality of the website. While the final version did not strictly adhere to
these mock-ups, they were extremely useful in creating consistency in the structure and
layout across web pages.

13

Figure 3.3b - Final wireframe mock-up of the register new person page.

14

4 - Development

4.1 - Tools

The main tool used to develop this website is the Laravel PHP Framework. PHP is
a programming language that is used to create code that the web server will execute. It will
handle operations such as retrieving data from the database and displaying it to the user,
and storing user input into the database. A framework is a piece of software containing
premade functions and shortcuts for a programming language. Frameworks condense long
complicated code down into shorter, easier to remember code, and also assist in generating
common website functionality such as a login system. Frameworks also enforce a specific
design pattern to follow, and a structure to the project folders and files. Laravel easily
integrates with CSS, HTML, and JavaScript, and with them all combined it is a powerful
web development environment. [6]
 The interactive development environment (IDE) used was Microsoft Visual Studio
Code. This IDE is lightweight and fast, as well as having a large and active extension
community. These extensions added additional functionality that such as code completion
for all four languages used, automatic code restructuring, debugging, and additional
support for Laravel Projects.
 The virtual machine environment, Homestead, was used as the local web server
containing the Laravel project, and is designed specifically for this purpose. When
Homestead is launched, an Ubuntu 64 bit Linux operating system is created, fully
preloaded and configured with all the software and dependencies a Laravel project needs.
This Linux system operates as a local server to host the project. The project folder is linked
and mirrored between the host OS and Homestead, so when one changes, the other
changes. Development happens on the host OS like normal, by using an IDE to create and
code the project files, but whenever the project is executed, it executes on the Homestead
server. The purpose of Homestead is to ensure that regardless the host OS or host computer
specifications that a developer is using, the Laravel project will execute on the exact same
OS environment. Another benefit is that developers do not have to alter their host OS
through many dependency installations. [7]

4.2 - Design Pattern

 The design pattern that Laravel uses is called the Model-View-Controller (MVC)
pattern. The purpose of MVC is to separate the application into three fundamental parts,
the model, the view and the controller, which each representing a section that data can
"flow" into. The structure of the project folders and files reflect this, which leads to a more
intuitive, and easier to understand design process.

15

 Figure 4.2a - A diagram of the MVC design pattern. [4]

● Model: This code contains the information that will be displayed or represented to
the user in some way, and typically describes real-life things. In this case, it is the
database containing all the softball information.

● View: This code dictates everything the user sees, and every interaction they have
with the webpage. All the colors, positioning and style, as well as the logic behind
every button click, form fill and dropdown menu is contained in the view code.

● Controller: The controller is like a bridge connecting the model and the view with
each other. The user input from the view flows into the controller, and controller
retrieves the appropriate functions to use to interact with the model and vice versa.
For example, if a user types a team name into the search bar and clicks search, a
request containing the team name gets sent from the user's browser (view) to the
web server containing PHP code (controller). The web server will find the code that
generates the SQL command for retrieving a team name, and it will send that SQL
to the database (model). The database will return the raw team information back to
the web server, which will generate web page containing that information, and send
a response back to the web browser (view) where is displayed to the user. [1]

Using this model was very helpful in terms of compartmentalizing the structure of

the project both physically and mentally. Whenever a new component needs to get
developed, one only has to decide whether it was part of the model, view or controller.
This somewhat narrows down the filetype, language and structure to use for the
component.

16

4.3 - Applied Design Principles

While developing this website, Dr. Jakob Nielson's Useability Heuristics for User
interface Design were applied to the creation of the user experience. Dr. Nielson is a
Human Computer Interaction and User Interface researcher, whose contributions to the
fields have become standard guidelines for the development of a user experience. These
heuristics are a list of ten principles that are widely accepted as creating an optimal user
experience for an application. They are called heuristics because they are not detailed rules
that must be followed exactly, but general concepts that focus on avoiding situations where
the user may become impatient, confused or frustrated. [2]

4.3.1 - Visibility of System Status

This heuristic is concerned with ensuring that the user is aware of the application's

current state. State refers to the current action the application is performing, or if not
performing an action, the input that the application is expecting. The user should never
have to wonder what state the application is in. If data is being loaded, there should be a
message displayed telling the user this, or if the application is expecting input, the possible
interactions should be clearly labeled, or a message such as "Please enter a team name..."
should be displayed. These displayed messages are considered application feedback. [1][2]

Figure 4.31a- Application search feedback in the form of a "Loading..." bar.

According to the findings in a 2004 study, after an interaction delay of more than
two seconds, a user's attention begins to wander, and they may become impatient [3]. Since
the database for this management system may potentially store tens of thousands of
records, and involve complex queries combining many different tables, search times may
take a few seconds or more. This makes it critical to include feedback to the user in some

17

form of a "Searching..." or "Loading..." bar. If this feedback was not provided, a user may
think that their search query was not registered by the system, or there is an unseen error,
and they might try typing their query again, further delaying their results. The display of
feedback is essentially telling the user "I acknowledge your interaction, and am now
retrieving data." [2]

4.3.2 - Flexibility and Efficiency of Use

This heuristic focuses on providing optional interactions for both novice and
advanced users. There will be many different users of various computer skill levels using
this website, and the goal is to make sure they can all interact with it in a way that is
comfortable for them. The novice user should not be overwhelmed with too many options
or settings to choose from, because they may prefer the simplest way to accomplish a task
even if it takes them longer. The advanced user will be more comfortable, and prefer
interacting with lots of options and complex settings, as it will save them time in their
current task. [2]

Figure 4.32a - Both basic, and advanced search options are available to the user

 In the above figure, both basic and advanced search options are available to the
user in an unobtrusive way.

Figure 4.32b - After the advanced search button has been pressed.

18

The advanced search feature has many different options to interact with. If the
novice user was immediately presented with these advanced options, or if it was the only
search option, they may become confused and frustrated. The novice user may feel more
comfortable scrolling through basic search results to find what they're looking for, even
though it takes longer. The opposite is true for the advanced user. Only having the basic
search option available may frustrate them because they want to perform a more complex
search, which will be time consuming to perform through a basic search. [2]

4.3.3 - Aesthetic and Minimalist Design

The goal of this heuristic is to prevent displaying unnecessary, or excess
information to the user. At any given moment throughout the user's experience interacting
with the website, only the immediately important, relevant information should be the focus
of their attention. For example, the system should prevent the user from opening too many
menus or windows at once, and having all of them compete for space on the screen,
leading to confusion or frustration. The user does not always know what they're doing
when interacting with a website, so there should be some gentle boundaries set in place to
prevent them from creating these messy situations, while not making them feel
constrained. [2]

Figure - 4.33a - The team page.

 When a user navigates to the teams page, this is the default page that loads. It is not
yet known what action the user is going to perform, but it will involve a team in some way,
so the list of teams is the main focus of the page.

19

Figure 4.33b - The "Show inactive people" button has been clicked.

 After clicking the "Show inactive person" button, the inactive person information
appears on the right side, compacting the team information so they both share the space
equally. It is appropriate for them to share the focus because the functionality of this page
is to add and remove people from teams.

20

 Figure 4.33c - After clicking the "Show active people" button, it replaces the inactive people.

If the inactive people information is being displayed, and the "Show active people"

button is clicked, the active people information will replace the inactive people information
on the right. This is because there is no added benefit or functionality to displaying all
three windows at once (team, active and inactive people). It would result in irrelevant
information on the screen, since the user can only interact with a single person type at once
in any meaningful way. It may also create clutter and confusion for the user. Note that once
the people buttons are deselected, the team information returns to filling the full width,
since it is now the only focus.

21

Figure 4.33d - After clicking the "Create new team" button.

 Lastly, when the user clicks the "Create new team" button, a window is displayed
in front of all other information. Once displayed, the functionality of this form no longer
relies on the user clicking any other previous content, so it is grayed out. After "Create" is
clicked, the window disappears, and the grayed out information is returned to its normal
color as the focus of the user.

4.4 - Underlying Technologies

4.4.1 - AJAX

The most frequently used functionality of this website is the ability to efficiently

search for data stored in the database, and display it in an easy to understand fashion. One
of the main concerns regarding the current Softball BC website is that the retrieval and
display of information is done in a synchronous manner. This means that when the user
retrieves information from database via the web server (i.e. a team name search), response
containing the information will be returned and displayed as an entirely new webpage.

22

Figure 4.41a - A diagram of a synchronous HTTP request. [5]

 It is called synchronous because the action of data retrieval (web server), and data

display (client browser) are synchronized to the same internal clock, or computer
processing time. This means that one must happen before the other. They cannot
simultaneously execute. Therefore the team search page cannot be continuously displayed
at the same time the information is being retrieved, so the search page must be reloaded
before it can display the results. [1]

While this may seem like a small issue, given the number of requests needed to
search, filter, and navigate through thousands of rows of data, it quickly adds up to wasted
time and bandwidth. This is because when the page reloads to display the retrieved data,
instead of only updating the results section of the page, it updates the entire page, even
content that has not changed. This results in completely unnecessary requests that consume
time and bandwidth. [1]

 Figure 4.41b - Asynchronous HTTP request. [5]

23

The solution to this situation is to use a development approach called AJAX. This
stands for Asynchronous JavaScript and XML, and refers a set of programming languages
and techniques that enable the client to send and receive requests and responses
asynchronously. This means that the client's browser is no longer synchronized with the
web server, so it may perform simultaneous actions that are hidden from the user.
JavaScript is used to interact with the data from a request, and then manipulate HTML
elements and CSS to display the information. [1]

4.4.2 - PostgreSQL

 PostgreSQL is a relational database management system. It is program that defines,
creates, and manages a relational database, as well as providing a way to create, retrieve,
update and delete data. I chose to use PostgreSQL for a few reasons:

1. PostgreSQL is free and open-source: Free is great, I prefer open source software
because I believe it is generally more secure and stable. Open source means that
anyone can view and change the source code for the software without permission
from the original authors. Because of this, the possibility of bugs and errors being
discovered and fixed is more likely compared to a piece of proprietary software. A
proprietary software company may have upwards of one hundred developers
working on a large project, while a piece of open source software could potentially
be used and inspected by thousands of developers of varying skill level, increasing
the odds of bugs and vulnerabilities being found.

2. Laravel supports PostgreSQL: Laravel comes with PostgreSQL drivers and
configuration files, so it was very easy to get Laravel interacting with the database.

3. PostgreSQL supports procedural languages: This allows the use of an adapter
provide database interaction from other programming languages such as Java,
Python or R. I was hoping to have a chance to explore this when working on
advanced functionality (such as data season data analysis using Python Pandas), but
unfortunately the time constraints did not allow me to.

4. PostgreSQL is fully ACID compliant: See section 4.4.3 below.

4.4.3 - ACID

An event that causes a database to internally change in any way is called a
"Transaction". This could mean that a piece of data has moved in, or out of a database, or it
could also refer to any internal event such as the database restructuring or optimizing itself.
Everything is a transaction essentially. Transactions are the most basic unit of a database
operation, so it is critical that they perform in such a way that all database functionality is
fully supported. [8]
 ACID stands for Atomicity, Consistency, Isolation, and Durability, and are
properties that all transactions should have. [8]

● Atomicity: If you are sending an active person record to the database for storage,
and the connection gets interrupted before the transaction is completed, it would
not be very useful to store a partial record. Even worse, that player record may
become corrupted and permanently lost. Making transactions "Atomic" means that
they can either successfully complete, or not complete at all. There are no partial

24

transactions. This ensures that if a transaction is interrupted, no data will be lost or
corrupted.

● Consistency: A "Database state" is like a snapshot of the entire database and all its
stored information in any given moment. A database is said to be in a "Consistent
state" when there are no violations of the enforced database schema. A database
that enforces consistency ensures that a consistent state is maintained at all times
before and after any transactions.

● Isolation: A database can perform many different transactions at the same time. It
is important that these concurrently executing transactions do not alter the database
in such a way that other transactions are affected. This could lead to unpredictable
results and possible data corruption. A database that enforces isolation ensures that
transactions are managed in this.

● Durability: If a database suddenly loses power, or suffers a non-data related
internal component failure, the stored data should still exists after the database is
restored. A durable database is one that permanently stores the effects of any
completed transaction regardless of any failure.

 These four properties ensure robust core database performance, allowing it to
operate in a predictable and stable manner when handling queries and executing internal
functions. Most importantly, the database can be recovered in emergency situations where
power is lost, or non-data components of the database become unstable or corrupt. [8]

25

5 - Walkthrough and Core Functionality

5.1 - Login and Create New Team

 The first page the user sees is the login page. Since the new registration process
will be handled personally by a Softball BC representative, we will assume the user
already has an account.

Figure 5.1a - The user logs in.
After they have logged in, the database will retrieve that user's record and populate

a personalized welcome page displaying their club, district and organization affiliations.
The user navigation menu, as well as the user drop down menu are now available at the
top. First, the user wants to create a new team and add players to it. They click on the
"Teams" button in the user navigation bar and then click the "Create new team" button.
After they fill in the team information, they click the "Create" button, and a new team
record is stored in the database in the "teams" table. A message will display telling the user
the team was successfully created.

26

Figure 5.1b - User welcome page.

27

Figure 5.1c - Team creation.

Now to access their new team, the user searches for it in the search bar and it
appears in the results.

Figure 5.1d - The newly created team has been successfully stored in the database.

28

5.2 - Add Player to Team and Remove Player from Team

The user now wants to add people to the new team, so they click on the "Show
inactive people" button. Now they click "The UBCO Super Scholars" team to select it,
select an inactive person from the list, and then click the "Add person to team" button. That
person will then be removed from the "Inactive People" list. The user then repeats this until
they have added all the players they need to.

Figure 5.2a- Adding an inactive player to a team.

Now, with the team still selected, the user clicks on the "Show active people"
button to view the roster. Notice that the team name is at the top of the active player list.
This means we are viewing the roster for that team. The user realizes that Buck had been
permanently banned last season for spitting on the umpire, so the user removes Buck from
the team by selecting him, and clicking the "Remove person from team" button. Buck will
be removed from the active player list, and added back to the inactive player list.

29

Figure 5.2b - Buck is being removed from the team.

5.3 - Create New Person

The user then wants to create a new person to add to their newly created team. The

user clicks the "People" button at the top navigation bar, then clicks the "Create new
person" button. The user fills in that person's information into the form that pops up, then
they click the "Create" button.

30

Figure 5.3a - Creating a new person.

The user then returns to the team page, searches for and selects "The UBCO Super
Scholars" team, clicks the "Inactive person" button, searches for and selects "Joseph
Pruner", then adds him to the team.

31

Figure 5.3b - The newly created person can be added to the newly created team.

Figure 5.3c - After adding the new person to the team, they are no longer active.

5.4 - Advanced Search and Edit Person

The user now needs to take care of some administrative tasks. They have a list of
people who have not been receiving the Softball BC newsletter emails. The people have
provided their current, correct email addresses, and the user must verify them. The user
clicks on the "People" button in the user navigation bar, and since the list contains all
active people, clicks on the "Show active people" button. The user knows they will need an
advanced search for this, so they click the "Advanced search" button.

32

Figure 5.4a - Navigating to the people advanced search options.

 The user will search for people using their membership id, since it is a unique
identifier for each person. Once the search results are returned, the user filters out all of
unnecessary columns.

33

Figure 5.4b - Advanced search and filtering.

The email is someone else's name, so it must be the mistake that was preventing
Kevin from receiving newsletters. The user clicks the "Edit" button to edit Kevin's
information, enters the correct email address and clicks "Update".

34

Figure 5.4c - Updating a person's email address.

Figure 5.4d - The address has been successfully updated.

The user repeats this process for all the people who need updates.

5.5 - Edit User Account

Now the user wants to edit their own account information. In the top right it
displays the current user's email address. It is a drop down menu, so the user clicks it, then
clicks "Account". They then click the "Update account information" button.

35

Figure 5.5a - Accessing the user account page to update user information.

The user recently got a new phone number, so they type it into the "phone" field
and click update. Their account is now updated.

Figure 5.5b - Updating the users phone number.

36

The user has completed everything they wanted to do, so they logout by clicking
"Logout" from the top right drop down menu. They are logged out and taken back to the
login page.

Figure 5.5c - The user successfully logs out.

37

6 - Challenges Encountered

6.1 - Technological Challenges

Computers. Can't live with 'em, can't live without 'em.

Challenge 1:

● Understanding Local Virtual Servers: I've only briefly worked with virtual
machines before, so the concept is still new to me. Homestead is a virtual machine
operating as a server on the host machine. When the Homestead server launches,
there is no GUI for the OS, just a command line that I can optionally SSH into. The
server runs very quietly in the background otherwise. The concept of SSHing "into
my own computer" really threw me off at first, and sometimes I'd completely forget
that I had to interact with the server though an SSH'd terminal. When I wanted to
install additional functionality packages to the virtual server, I would accidentally
use a regular terminal and install it on my host. Things wouldn't work, and I'd think
it was caused by something else, which wasted time. The same thing would happen
when trying to run a file or command meant for the server. Those same files and
commands existed on my host also, so the errors I'd get would sometimes send me
on a wild goose chase. I have learned my lesson since then.

Challenge 2:

● Debugging: The default debug settings for PHP, Apache2 (host HTTP server) and
Nginx (Homestead HTTP server) were surprisingly set to minimal output. This
made it difficult to understand what was causing errors, or making things break. I
didn't realize how much information I was missing until I got fed up with an
unsolvable error, and learned how to configure everything to output detailed bug
and error reports. I also learned where all the log files are. This saved me so much
time moving forward. Easily the number one thing I wish I had known starting this
project.

Challenge 3:

● Learning Laravel: Laravel had a steep learning curve for me, since I have never
worked with a full-fledged language framework before. Even though it uses the
Model-View-Controller design pattern, which seems straight forward, the pattern is
represented by many different folders, and file types. I was not uncommon for a
user interaction with the database to require six or seven different files to operate
correctly. Understanding how all these files were sending data to each other, or
calling functions took many hours of reading and watching tutorials. I now feel that
I have somewhat of a grasp on Laravel, and am excited to continue learning and
become more comfortable with it.

38

6.2 - Personal Challenges

Through the experience of developing this website, I became acutely aware of
certain behaviours I possessed that hindered me through this process.

Challenge 1:

● Over eagerness: In the beginning, I was very excited and enthusiastic (and still
am) about this project, and I was especially looking forward to the coding process.
So much so that I began coding before fully exploring the development tools that
were available to me. I had this big idea that I was going to free code everything
from scratch, instead of using a supportive framework to help build and organize
the core functionality, because it would be a more complete learning experience.

● Result: After spending weeks free coding components from scratch, making little
progress, and struggling to get them to work properly, the reality of my current
situation slowly dawned on me. This honours project is constrained to a specific
time frame, and I am expected to produce tangible results at regular intervals. If I
continued at my free coding pace, it would then be more accurate to call this project
my retirement thesis. I wasted a lot of time working in a very inefficient way.

● Lesson: I will now take more time in the beginning assessing the limitations and
constraints of the current project, as well as performing more in-depth research of
the potential development tools. Most importantly, I will assume that everything
will take longer, and be more difficult than I initially anticipate.

Challenge 2:

● Poor Prioritization: I would often get distracted, and caught up adjusting the
minor aesthetics of a page, or unimportant details of a component, even when it did
not affect the core functionality or user experience in any major way.

● Result: I spent hours tweaking insignificant code, when that time could have been
spent improving core functionality.

● Lesson: I need to frequently check in with myself and ask "Is what I'm working on
right now critical to the user experience or core functionality of the project?" If the
answer is no, then I must move on to something more important.

Challenge 3:

● Scattered Focus: If I was developing a certain component, and suddenly got an
idea for a different component, I would immediately switch over and work on the
different component.

● Result: By frequently switching focus to different components, I would lose the
momentum and train of thought I had built up, when lead to lost time trying to
remember what I was working on before, and finding where I left off.

● Lesson: I now keep an organized document on hand where I can quickly type up
the ideas I have for other components, without derailing my current focus.

39

Challenge 4:

● Single-minded: It was very difficult for me to ignore non-critical errors or bugs,
even when it did not affect the core functionality or user experience in any major
way. I became overly focused and would relentlessly pursue a solution to the bug
or error.

● Result: I wasted hours trying to fix bugs and errors that the user would never
notice. This time could have been spent of enhancing the user experience or core
functionality.

● Lesson: Again, I need to frequently check in with myself and ask "Is this bug/error
critically affecting the user experience or core functionality of the project?" If the
answer is no, then I must move on to something more important.

7 - Conclusion

The process of developing a functional website that incorporates modern

technologies and design principles was an immense learning experience, both on an
academic and personal level. I have improved my knowledge and proficiency in SQL,
PHP, HTML, CSS, and JavaScript, as well as learned a new framework, Laravel. This,
combined with further experience performing database design, web page design, and
project planning have given me more confidence and marketable skills as I approach the
job market. The experience of using all these technologies together has given me a much
deeper understanding of how the client, web server and database are truly interacting with
each other, and solidified the information I learned in lectures.

My ability to manage, and be realistic about project expectations has been greatly
refined through this process. I will approach the next project I work on more
conservatively, planning with the expectations that things will go wrong and take longer
than initially anticipated in mind. This played hand in hand with reinforcing how helpful
maintaining a well organized and consistent project structure and workspace can be, as this
streamlines the development process, and allows for better estimates of how long things
take, or how complicated they might be.

Keeping within the time and production constraints of this project pushed me to my
limit at times, but it was through these moments that I learned the most about myself, and I
am very grateful that those experiences. I have learned so much about my own behaviour
and tendencies which impact the development process at all stages, as well as other aspects
of my life. Now that I am more aware of them, I can take further steps to mitigate their
effects and become a more comfortable and confident developer moving into the future.

40

References

[1] R. Connolly and R. Hoar, Fundamentals of web development, 2nd ed.

Boston: Pearson, 2015.

[2] J. Preece, Y. Rogers, and H. Sharp, Interaction design: beyond

human-computer interaction, 4th ed. Chichester: John Wiley & Sons, Inc,
2015.

[3] F. F.-H. Nah, “A study on tolerable waiting time: how long are Web users

willing to wait?” Behaviour & Information Technology,
 vol. 23, no. 3, 2004.

[4] Stojanovic, Vladeta. (2016). Streaming of High Resolution Aerial

Photography Textures Using a Web-Based Client/Server Model on Mobile
Devices. 10.13140/RG.2.2.36150.29767.

[5] “Synchronous vs asynchronous - javatpoint,” www.javatpoint.com. [Online].

Available: https://www.javatpoint.com/ understanding-synchronous-vs-
asynchronous. [Accessed: 16-Apr-2019].

[6] T. Otwell, “Laravel Homestead,” Laravel. [Online]. Available:
https://laravel.com/docs/5.8/homestead. [Accessed: 22-Apr-2019].

[7] Tutorialspoint.com, “Laravel Overview,” www.tutorialspoint.com. [Online].
Available: https://www.tutorialspoint.com/laravel/laravel_overview.htm.
[Accessed: 21-Apr-2019].

[8] R. Elmasri and S. B. Navathe, Fundamentals of database systems, 7th ed. Harlow:

Pearson Education, 2017.

