
Project Documentation

A JDBC Driver Supporting Data Integration and Evolution

Jian Jia

University of Iowa, Iowa City, IA
jjia@cs.uiowa.edu

Goals

This project will produce a Unity JDBC Driver that is compliant with the JDBC
3.0 API and offers the ability to translate application requests into several database
system specific SQL query requests. The driver will access each of the distributed
database sources concurrently through the database specific JDBC Driver provided by the
vendor. Query results from each database will be integrated and then sent back to the
application.

Project Details
 The project is proposed to be finished in four phases.

Phase I
 This phase involves building a pass-through JDBC driver that can be used to
connect to a data source hosted by MySQL, through its JDBC driver, an open source type
4 driver.

Both MySQL and its JDBC driver were downloaded from internet and installed
under WindowsXP. Environment for java program development were also set up under
same operating system. The environment includes a compiler j2sdk1.4.0-01 and a
package, Jbuilder for code editing.

 Three basic JDBC classes must be created to reach goal of phase I:
1. UnityDriver, which implemented the standard java interface

java.sql.Driver is used to create a driver object. The UnityDriver is
able to scan all available JDBC drivers in the driver list text file, and
creates connections to databases through those drivers. The URL
accepted by UnityDriver is set to any URL by default, since it is used
in the local machine.

2. UnityConnection, which implemented the standard java interface
java.sql.Connection is used to create connection object to other
databases.

3. UnityStatement, which implemented the standard java interface
java.sql.Statement is used to create statement to execute query.

Another auxiliary object, called DataSources is created to store information of
each database, including its JDBC driver, URL, connection and statement. That
information is needed to distinguish different requests for different databases.

A simple program, named mytest.java was developed to test function of those
JDBC API.

Phase II
It was originally proposed to embed a Database Engine into the pass-through

driver, so result sets can be stored appropriately in the Database Engine instead of in
memory structures. However, query result is stored in the ResultSet object, and there is
not directly public access to all data fields. To copy the whole result into a Database
Engine table, the method getXXXX (Column index), where XXXX represents data type,
must be called every time to acquire a value. This scan through all fields without doing
any integration pulls the performance down significantly. Therefore, a new decision is
made to integrate results using JDBC ResultSets received without assistance of Database
Engine.

Phase III
 The Query Translator is ported in phase III.

User queries sent to the Unity driver are now expressed in a semantic query
language instead of standard SQL (here version SQL-92 is applied, for it is the basic SQL
form that all database packages must support). Features of semantic query are:
 i. Semantic query refers a field by its semantic name.
 ii. Usually explicit relation specifications such as from table, join and union are
not included in the query. Instead they are identified by database information stored in X-
Spec while the query is parsed. The only exemption is when such identification is
impossible, that is when a join is on a relation itself. Then from table must be given.
 iii. Nested sub-query is not allowed in semantic query. This is one approach to the
goal of semantic query to make it simpler than SQL, and thus even a dummy user can
easily understand and apply it.
 iv. Updates are not supported since they are left as future work beyond this
project.
 v. Semantic query grammar is thus slightly different from that of SQL-92 due to
above features. Following two figures illustrates grammar of selection and search
condition: (Expression grammar is not present here since it is the same as that of SQL-
92)
Selection

SELECT
ALL
DISTINCT [Column] ,

FROM Tables

WHERE Search Condition

GROUP BY

ORDER BY [Column]
,DES

C
/AS
C

Search Condition

 As for the semantic name of a field, it must satisfy the rule that all Fields/Tables
that have the same semantic meaning should have same semantic name.

The Query Translator translates the semantic query into SQL, which is executed
using the MySQL JDBC driver. Below is the structure of the translator:

For simplification and extendibility of query parsing, the semantic query is broken
into small pieces as S_list, F_list, C_list, GroupBy_list and Orderby_list corresponding to

Expression [NOT] LIKE “[%] String”

Column

IS [NOT] NULL
(Expression)

Expression =
<
≤
≥
>

Expression

OR
AND

NOT

Query Translator

Semantic query

S_list C_listF_list GroupBy_list OrderBy_list

PASS ONE PASS TWO

Selected Fields
ys Name)

Used for
integration

Selected X-Spec
Fields

Mapping semantic Name to
System Name; Build sub-query

Sub Query 1 Sub Query 2 Sub Query
n……..

statements after keywords: SELECTION, FROM, WHERE, GROUP BY and ORDER
BY respectively.

S_list is sent to PassOne, a class to parse selected fields. Legal semantic name
must be mapped into its system name, once it is found exist in the database structure.
Mapped system names for S_list are stored in matrix (two dimensional array with row
corresponding to data source and column corresponding to the semantic name), which is
used for results integration.

All lists are sent to PassTwo to identify from-tables, joins and where condition
besides system name mapping. Sub-query for each database is generated based on the
information from above. The translation follows two rules:
 i. Only those semantic fields that are in the data source can be substituted by
their system names, and added to corresponding sub-query selection list
 ii. An expression can only be added to sub-query condition list only when all
semantic arguments are in the data source.

The class UnityTokenizer is used to create token for parsing a string. Mapping
from semantic name to system name requires information of database structure. Such
information is received by parsing X-Spec Document using X-Spec class and X-Spec
Parser.

Phase IV

The Integration Module is ported in phase IV. This final phase involves handling
multiple diverse databases and registering their drivers. The Query Translator converts
semantic queries from the user to SQL queries for each database (as required). Results
from each JDBC driver associated with each database are returned back as ResultSet
objects. Final result is integrated on those objects.

Join and Union are two basic methods for integration embedded in
UnityStatement. Join applies the algorithm of Sort-Join, i.e. always output the record with
smallest key. And thus only when global primary key presented, can results be joined
together. Multi-value Field is created during Join when data are inconsistent on data
type, size or value across databases. Union is to append all results together when global
key couldn’t be found in those results. Algorithm of Union is thus very simple and not
present here.

 Final result is represented by UnityResultSet class, which implemented
java.sql.ResultSet interface. To get information about the types and properties of the
columns in a UnityResultSet object, the UnityResultSetMetaData class should be
implemented. Data in UnityResultSet are stored as a variable array of Field objects.

 The following two figures illustrate Join algorithm and the whole new picture of
unity JDBC API.

 // Find all matched Columns from all Resultsets
 byte[][] keyvalues = new byte[result_num][];
 boolean match =true;

 for (int i=0; i<result_num; i++)// # of resultsets
 {
 if(res[i].next())
 keyvalues[i] = res[i].getBytes(key[i]);
 else keyvalues[i] = null;

 }

 while(!is_Empty(keyvalues))
 {

 // find the smallest key values and compare if other fields are also consistent
 int smallest = smallest_key_pos(keyvalues);
 // every field is of type vector since there could be multiple values.
 Vector [] f_values = new Vector[result_num];
 for (int k=0; k < rsf_length; k++)
 {

 if (selectfds[smallest][k] != null)
 {

 f_values[k].addElement(res[smallest].getBytes(selectfds[smallest][k]));
 }
 }

 for (int i=smallest+1; i < result_num; i++)
 {

 if (keyvalues[i] == keyvalues[smallest]) // Key matches
 {

 // check if other fields also matches
 for (int k=0; k < rsf_length; k++)
 { byte [] value_s = null;
 byte [] value_i = null;
 if (selectfds[smallest][k] != null)

 value_s = res[smallest].getBytes(selectfds[smallest][k]);
 if (selectfds[i][k] != null) value_i = res[i].getBytes(selectfds[i][k]);
 if (value_s != value_i && selectfds[i][k] != null) f_values[k].addElement(value_i);

 if (f_values[k].size() > 1) RSFields[k].set_Multivalue();
 }

 if (res[i].next()) keyvalues[i] = res[i].getBytes(key[i]);
 else keyvalues[i] = null;
 }

 }
 rows.addElement(f_values); // get f_values for all fields of one row
 if (res[smallest].next()) keyvalues[smallest] = res[smallest].getBytes(key[smallest]);
 else keyvalues[smallest] = null;

 } // end of while iterator

 // all rows are created;
 //return (ResultSet) new UnityResultSet(RSFields, rows);
 } catch (SQLException sqlEx){}
 return (ResultSet) new UnityResultSet(RSFields, rows);

 Sort-Join Algorithm

Inside JDBC Driver

Further Work on Unity JDBC Driver

The integration algorithms should be extended to allow compuations across databases
and GROUP BY operation. PassTwo needs be modified as the consequence of
integration extension. A full testing should be the next step to verify functions of Unity
JDBC driver, after several more sample databases are created and their X-Spec
documentations generated.

Summary

In order to use the integration capabilities of Unity in a Java development
environment, a Unity JDBC driver prototype is developed in this project. This JDBC
driver prototype offers the ability to access multiple database systems, and is capable of
translating semantic user queries into SQL queries for each database system. Thus the
complexities of accessing and integrating information from multiple databases are hidden
from client applications. The project uses MySQL for testing. The flexibility of JDBC
will allow the Unity JDBC driver to access other databases such as Sybase, Microsoft
SQL server, Oracle and Informix on different platforms.

Semantic query

Selected
Fields

Sub
Query

1

Sub
Query 2

Sub
Query n…

Query Translator

DB1 DB2 DBn

JDBC 1 JDBC 2 JDBC n

ResultSet 1

ResultSet 2

ResultSet n

ResultSet-
MetaData

ResultSet-
MetaData

ResultSet-
MetaData

Join
Union

ResultSet

ResultSet
MetaData

Integration

	Phase I
	Phase II
	Phase III
	Phase IV
	
	
	
	Sort-Join Algorithm

	Further Work on Unity JDBC Driver

