

IMPROVING SUSTAINABILITY IN AGRICULTURE USING WIRELESS SENSOR NETWORKS

By

Jonathan Gresl

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF

THE REQUIREMENTS FOR THE DEGREE OF

BACHELOR OF ARTS

in

Irving K. Barber School of Arts and Sciences

(Computer Science)

Supervisor: Dr. Ramon Lawrence

THE UNIVERSITY OF BRITISH COLUMBIA

(Okanagan)

September 2020

© Jonathan Gresl, 2020

ii

The following individuals certify that they have read, and recommend to the Irving K.

Barber School of Arts and Science for acceptance, a thesis entitled:

Improving Sustainability in Agriculture Using Wireless Sensor Networks

submitted by Jonathan Gresl in partial fulfillment of the requirements for

the degree of Bachelor of Arts

in Computer Science

Examining Committee:

Ramon Lawrence, Computer Science

Supervisor

Scott Fazackerley, Computer Science

Additional Examiner

iii

Abstract

Precision agriculture is an approach to farming that uses real-time data to manage

environmental variations, measure performance to improve upon passed seasons, and

perform predictive analysis to make better farming decisions, which result in higher

production yields with lower production costs. Although beneficial, collecting and

analyzing the environmental data is an expensive and complicated endeavor. Wireless

sensor networks can be setup in fields to sample and collect data, but many parts are

needed. This leads to high overall equipment costs, complex implementations, and

wireless network congestion. To further disadvantage the use of wireless sensor networks

in agriculture, modern network protocols such as WiFi or Bluetooth provide limited

transmission ranges with high power consumption. As wireless sensor networks require

batteries to power the sensor nodes, high power consumption results in the frequent

need to replace the batteries. These limitations discourage farmers from adopting sensor

network technologies for their farms because the resources required to implement and

maintain them can be too high to justify the investment. This research project aims to

develop a wireless sensor network that uses inexpensive and effective hardware, that is

easily setup and maintained. Costs to implement the network are reduced through the

use of inexpensive open-source hardware. Transmission ranges are increased by using

long range (LoRa) radio transceivers that operate on license-free radio frequency bands.

Power consumption is also reduced by using the LoRa radio transceivers and is further

reduced through strategic data and power management. By addressing these limitations,

farmers will be more likely to adopt the technology on their farms, which ultimately

improves sustainability in agriculture.

iv

Lay Summary

The main goal of this research project is to develop a wireless sensor network that is

optimized for sensor data collection in large open areas – particularly agricultural fields.

To be practical for farmers, the network must be easy and inexpensive to implement. The

network should require little user intervention from the farmers. My contributions to this

project include programming the network devices, optimizing them for continual usage,

and developing a website that enables users to configure the network components and

analyze the collected data.

v

Preface

This thesis is based on research conducted at UBC Okanagan’s database laboratory

supervised by Dr. Ramon Lawrence and Dr. Scott Fazackerley.

I was responsible for writing code for the sensor nodes, central gateway, and website. I

also was involved in testing the device functionality and collection of sample sensor data.

The queue used in this project to store sample data on the sensor nodes was created by

Ethan Godden, who has also contributed a thesis related to this research project.

vi

Table of Contents

Abstract .. iii
Lay Summary .. iv

Preface .. v

Table of Contents ... vi
List of Figures .. viii
Acknowledgements .. ix

Chapter 1: Introduction ... 1

1.1 Precision Agriculture .. 1

1.2 Sensor Networks in Agriculture .. 1

1.3 Wireless Sensor Networks in Agriculture ... 2

1.4 Limitations .. 3

1.5 Motivation .. 3

Chapter 2: Background .. 5

2.1 Microcontrollers ... 5

2.2 Single-board Computers ... 5

2.3 Spread Spectrum Modulation .. 6

2.4 LoRa Radio .. 6

2.4 License-free Radio Spectrum ... 8

Chapter 3: Implementation .. 10

3.1 Network Architecture ... 10

3.1.1 Sensor Node Parts ... 10

3.1.2 Central Gateway Parts ... 13

3.2 Data Flow .. 15

3.3 Database ... 16

Chapter 4: Deployment .. 19

4.1 Code Location ... 19

4.2 Deploy the Central Gateway .. 19

4.2.1 Server Dependencies ... 19

4.2.2 Server Code Execution ... 20

4.3 Deploy the User Interface .. 21

4.3.1 Website Dependencies .. 22

4.3.2 Website Code Execution.. 22

4.4 Deploy the Sensor Nodes ... 25

4.4.1 Client Dependencies .. 25

4.4.2 Client Code Execution .. 26

vii

Chapter 5: Walkthrough... 27

5.1 Access the User Interface Internally ... 27

5.2 Access the User Interface Externally .. 27

5.3 Manage the Network Setup ... 28

5.4 View Sample List ... 31

5.5 View Line Charts ... 32

5.6 Network Reset .. 34

Chapter 6: Future Work ... 35

6.1 Decreasing Power Consumption .. 35

6.2 Data Persistence ... 35

6.3 Payload Optimization ... 37

6.4 Agricultural Implementation .. 37

6.5 Equipment Protection .. 38

Chapter 7: Conclusion .. 39

Bibliography .. 40

viii

List of Figures

Figure 1: Wireless sensor network deployed on an agricultural field [2] 2

Figure 2: Example layout of a central gateway and sensor nodes in a vineyard 4

Figure 3: Frequency domains of a narrowband signal and a spread-spectrum signal 6

Figure 4: Chart comparing bandwidth and range of LoRa, Wi-Fi, and cellular [5] 7

Figure 5: Illustration of radio waves in the electromagnetic spectrum [7] 8

Figure 6: Table containing regional frequency plans and specifications [9] 9

Figure 7: Sensor node microcontroller – Adafruit Feather M0 [10] 10

Figure 8: Sensor node radio transceiver – RF95 LoRa Radio [11] 11

Figure 9: Sensor node using a micro USB, wire antenna, and 3.7V LiPo battery [11] 12

Figure 10: Algorithm to determine battery voltage [14] .. 12

Figure 11: Discharge profile of a 3.7V LiPo battery [13] ... 13

Figure 12: Raspberry Pi 3 Model B+ [15] ... 14

Figure 13: Dragino LoRa hat for the Raspberry Pi [16] .. 14

Figure 14: Data flow diagram of the sensor nodes, central gateway, and server 15

Figure 15: Entity-Relationship diagram ... 17

Figure 16: Database data definition language (DDL) .. 18

Figure 17: Example of port forwarding to enable external access to the gateway 24

Figure 18: Installing the Visual Studio Code extension for C/C++ 25

Figure 19: Installing the Visual Studio Code extension for PlatformIO 25

Figure 20: Network map using the Google maps API.. 28

Figure 21: Gateway and node configuration tables .. 29

Figure 22: List of samples with filter options .. 31

Figure 23: Time series line chart with outside node temperature data 32

Figure 24: Time series line chart with outside node battery data 33

Figure 25: Database restore page to remove all samples and synced nodes 34

Figure 26: Adafruit Feather M0 add-on with RTC clock and SD card slot [20] 36

ix

Acknowledgements

I wish to express my sincere appreciation to my supervisor, Dr. Ramon Lawrence, who

guided and supported me every step of the way through both the research project and

my courses at UBC. By accepting me as an honours student and a contributor to his

research, my educational experience has been immensely enriched. I also wish to express

gratitude to Dr. Scott Fazackerley for reviewing my contributions to the research and

making suggestions for improvement. Scott has been an excellent source of knowledge

on hardware selection, programming concepts, and network protocols. Finally, I want to

thank my fiancé Kim and my newborn son Jaxon for their continual support and patience

during my studies at university and dedication to this project.

1

Chapter 1: Introduction

1.1 Precision Agriculture

Precision agriculture is an approach to farming that uses information to ensure crops can

grow in optimal conditions. Environmental variations can result from climatic conditions,

soil composition, cropping practices, weeds, or diseases. Monitoring key point indicators

allow farmers to track their crop’s status which can help them determine if crops are

suffering from water stress, nitrogen stress, or if diseases are developing [1].

Environmental variations result in loss of crops and inconsistent growth. When conditions

vary, adjustments can be made to regular farming activities to control or stimulate growth

in plants. The collected data is also useful for measuring performance and improving upon

passed seasons. Using precision agriculture reduces production costs by mitigating waste.

Ultimately, precise farmers can grow more food with fewer resources.

1.2 Sensor Networks in Agriculture

Sensor networks are used in agriculture today. They are setup in fields to collect real-time

environmental data. Originally, they were connected using wires, which would power the

components and facilitate data transfer. While wired connections provide stability, they

are also extremely inconvenient because large amounts of wire are needed to connect

the sensor nodes. The wire must also be concealed in a manner that doesn’t limit

accessibility and is protected from machinery. Damaged wire will disable some or all of

the sensor network and will require user intervention to troubleshoot and restore

functionality.

2

1.3 Wireless Sensor Networks in Agriculture

Wireless sensor networks were introduced to improve practicality. The wireless

components are powered by batteries and connected through a wireless medium –

typically radio waves. Figure 1 depicts a typical wireless network deployed on an

agricultural field. The sensor nodes are deployed strategically across a field within range

of the central gateway. They communicate over ISM radio frequency bands with each

other or directly with the central gateway. The gateway is connected to the Internet to

allow remote users to monitor the field’s state and control the sensor nodes. A database

stores the sensor data and is accessible through the network for configuration and sensor

data analysis [2].

Figure 1: Wireless sensor network deployed on an agricultural field [2]

3

1.4 Limitations

Although wireless sensor networks are more practical than wired networks, they also

come with their own set of challenges and limitations. The hardware required to setup a

network large enough to cover large rural areas is expensive. There is also a large amount

of effort required to setup or modify the network. WiFi or Bluetooth protocols can be

used for the data transfer, but these are complicated technologies that provide limited

transmission range with high power consumption. Although data can be chained through

sensors to increase the transmission range, this solution requires more transmissions,

which translates to more power consumption and higher amounts of radio traffic.

Further, there is a lot of overhead involved in WiFi and Bluetooth protocols that are

unnecessary for applications in agriculture. In summary, the major limitations are high

costs, complexity, and power consumption. High costs will discourage farmers from

wanting to invest in the product, especially those with larger farms. High complexity will

make it difficult to implement initially or to expand the network later. Finally, and most

importantly, radios with high power requirements will require farmers to replace sensor

node batteries too often for the farmer to want the system.

1.5 Motivation

Agricultural industries will benefit from using wireless sensor networks, but farmers will

be hesitant to invest in the technology if it is not practical for their application. An ideal

agricultural product is one similar to smart home technologies with light bulbs. Farmers

should be able to purchase a central gateway that sensor nodes can communicate with.

New sensor nodes should easily synchronize with the central gateway and be configurable

through it. The gateway should also be connected to the Internet to provide remote

configuration and data analysis. Above all, farmers should rarely need to replace sensor

nodes – or their batteries.

4

For wireless sensor networks to be sustainable in agriculture, they must be affordable,

require little user intervention, stay powered for long periods of time, stay protected from

the elements of nature, be easy to implement and modify, and transmit at long ranges

while handling radio interference. This is a long list of requirements, but they can all be

achieved inexpensively with the emergence of open-source hardware, open-source

software, and 3D printing technology.

In general, improving transmission distances and reducing power requirements will make

wireless sensor networks more practical and affordable for the farmer. Another

consideration is that agricultural industries yielding high-value crops will benefit more

from implementing the system than agricultural industries yielding low-value crops. Fruit

products, for example, are more valuable than many other agricultural products and are

often grown in smaller rural areas. The main motivation of this research is to develop a

wireless sensor network that can be implemented in a local vineyard.

Figure 2: Example layout of a central gateway and sensor nodes in a vineyard

5

Chapter 2: Background

2.1 Microcontrollers

A microcontroller is a small computer that is designed to execute a single program. They

use the same elements as traditional computers but host them on a single integrated

circuit board. Typically, they are fitted with a micro USB port used for transferring data or

powering the device and some have a separate port for batteries. Because of the

condensed architecture, they are more portable, cost less, consume less power, and can

be optimized for a given application [3]. Microcontrollers also typically have general input

output pins (GPIO), which can be configured to read sensor data or drive external devices

such as LED’s or radio transceivers. These advantages make microcontrollers a suitable

computer for the network’s sensor node components.

2.2 Single-board Computers

Single-board computers are similar to microcontrollers in that they are small computers

built on a single circuit board. While they share many of the same advantages, single-

board computers are more powerful and can often run operating systems. Many of them

come with HDMI ports, USB ports, and LAN ports, WiFi modules, Bluetooth modules, and

microSD card support. As a result, single-board computers have higher power

requirements than microcontrollers, but still much less than servers or personal

computers. As low costs are important for this project, the reasonable purchase price and

power requirements of single-board computers make them suitable computers for the

network’s central gateway component. As the gateway must always be running – and may

be setup indoors without too much obstruction – the fact that the devices create little

heat and noise is another advantage of using them for wireless sensor networks where

the central gateway is setup inside a farmhouse or structure.

6

2.3 Spread Spectrum Modulation

Spread spectrum modulation deliberately spreads radio frequency (RF) signals within the

frequency domain to create a signal with a wider bandwidth. This technique increases

resistance to other transmitters operating at the same frequencies, allowing for more

robust RF communications over long ranges using a much lower average amplitude [4].

Figure 3 shows an original narrowband signal that covers a narrow range of frequencies

and a modified signal which has been spread to make the bandwidth much wider.

Figure 3: Frequency domains of a narrowband signal and a spread-spectrum signal [4]

2.4 LoRa Radio

LoRa, short for long range, is a radio wave modulation technology developed by Cycleo in

2009, which was later acquired by Semtech in 2012. The technology uses a proprietary

spread spectrum modulation technique which enables data communication over long

ranges while using little power, making it a flexible solution for rural use cases in smart

7

agriculture [5]. Figure 4 illustrates how WiFi and Bluetooth Low Energy (BLE)

communicate on higher frequencies with a shorter range. With cellular, high frequencies

are still used but longer ranges are achieved through expensive towers and increased

power output. Because LoRa uses lower frequencies, the wavelengths are longer, which

result in longer ranges but with lower data rates. This makes LoRa most suitable for

implementations that do not require large amounts of data transferred over short periods

of time. Basically, LoRa would not be a good choice for streaming video but an excellent

choice for periodically transmitting packets of sensor data.

Figure 4: Chart comparing bandwidth and range of LoRa, Wi-Fi, and cellular [5]

An important thing to note is that LoRa is different from LoRaWAN. The patented LoRa

wireless radio frequency technology stands for the physical layer protocol while

LoRaWAN, which is officially developed by the LoRa Alliance, stands for the media access

control (MAC) layer protocol, leveraging and including the physical LoRa modulation of

Semtech [6]. In short, LoRa itself is the technology used for sending and receiving signals

and LoRaWAN is the software put on the chip to enable networking.

8

2.4 License-free Radio Spectrum

Radio waves are a type of electromagnetic energy that make up a small part of the

electromagnetic spectrum. They are used in communication technologies to transmit

data from one place to another. Most modern data communication occurs between the

300 megahertz (MHz) and 6 gigahertz (GHz) frequencies.

Figure 5: Illustration of radio waves in the electromagnetic spectrum [7]

As the electromagnetic spectrum is a limited resource, many countries allocate specific

frequency ranges for different uses. Much of the spectrum is licensed to organizations

who pay a licensing fee that gives them exclusive rights to transmit on assigned

frequencies and assurance that nobody else will use them [7]. There are often small parts

of the spectrum which are not licensed and are available for anyone to transmit on. The

advantage of using license-free radio frequency bands is that permission is not needed –

they are free to use; the disadvantage is that there is high potential for interference from

other devices transmitting on the same or similar frequencies.

9

Although there are often multiple license-free bands, most long range protocols operate

in the sub-gigahertz license-free bands, the most prominent of which are a large

contiguous band from 902-928 MHz and narrower bands at 868 MHz, 470 MHz, 433 MHz,

and 315 MHz [8]. This is because in open rural areas, these bands have lower path loss

than higher frequency bands. LoRa uses the unlicensed radio spectrum in the Industrial,

Scientific and Medical (ISM) bands [6]. LoRa radios should be configured to comply with

regional frequency plans and specifications.

Figure 6: Table containing regional frequency plans and specifications [9]

10

Chapter 3: Implementation

3.1 Network Architecture

The wireless sensor network consists of several parts, but they can be categorized into

two main components: the sensor nodes and the central gateway. The sensor nodes are

portable devices that can be distributed across the agricultural field to collect and

transmit sensor data. The central gateway is a stationary device that is positioned in a

central location to receive and relay the sensor data. For this project, the central gateway

also hosts a web-based user interface allowing the user to manage the sensor network

and analyze the collected sensor data.

3.1.1 Sensor Node Parts

The sensor node consists of four parts: the microcontroller, the radio transceiver, the

battery, and sensors. For this project, the microcontroller is an Adafruit Feather M0.

Figure 7: Sensor node microcontroller – Adafruit Feather M0 [10]

11

This microcontroller was selected because it is small, has a connector for 3.7V lithium

polymer batteries, and has some extra room left over where the radio transceiver can be

attached – in place of the prototype area.

Figure 8: Sensor node radio transceiver – RF95 LoRa Radio [11]

The RF95 LoRa radio transceiver fits nicely on the microcontroller and has a spot where a

simple wire antenna can be attached. The radio has an SPI interface and can be easily

programmed using existing programming libraries. Packets are transmitted over license-

free ISM radio frequency bands. For this project, the radios are configured to transmit

over the 915MHz frequency band to comply with regional ITU radio regulations [12]. The

power output for radio transmissions is configurable through software and can be set

between +5dBm and +20dBm. The transceiver uses ~300uA during full sleep, ~120mA

peak during +20dBm transmissions, and ~40mA during active radio listening [11]. While

low power consumption is important for the sustainability of the sensor nodes, the real

value of these radio transceivers come from the long distances they are able to

communicate – particularly in rural areas.

12

Figure 9: Sensor node using a micro USB, wire antenna, and 3.7V LiPo battery [11]

The built-in micro USB connector is used to upload the programming code, power the

device, and automatically charge a connected battery. The lithium polymer batteries

come in different capacities, generally ranging from 500mAh to 1200mAh. The batteries

used in this project have 800mAh capacities. Although the batteries are labeled with 3.7V,

they do not always operate at this voltage. Figure 11 depicts how the voltage starts at

~4.2V and drops to ~3.7V for the majority of the battery life, until it hits ~3.4V and quickly

dies [13]. This is important because the sensor node’s battery life can be estimated using

its current operating voltage. Adafruit has made this easy by putting a double-100K

resistor divider on the BAT pin and connected it to the A7 pin so that you can read the

pin’s voltage, and double it to get the battery voltage [14].

Figure 10: Algorithm to determine battery voltage [14]

13

Figure 11: Discharge profile of a 3.7V LiPo battery [13]

3.1.2 Central Gateway Parts

The central gateway consists of three parts: the computer, the storage device, and the

radio transceiver. For the computer, this project uses a Raspberry Pi 3 B+, which is one

model in a collection of Raspberry Pi single-board computers developed with low cost in

mind. With a small price tag, this version boasts a 1.4 GHz processor, 1 GB of SDRAM

memory, and a WiFi module. It also has a slot for a microSD memory card which is used

as the storage device holding the operating system. The central gateway uses that same

LoRa radio transceiver as the sensor nodes, except it is not directly attached to the main

circuit board. Instead, an expansion module – the Dragino LoRa hat – is attached to the

Raspberry Pi’s general input-output pins. Although not implemented in this project, the

hat also comes with a GPS module which could be helpful for future improvements.

14

Figure 12: Raspberry Pi 3 Model B+ [15]

Figure 13: Dragino LoRa hat for the Raspberry Pi [16]

15

3.2 Data Flow

The data begins with the sensors that are connected to the sensor nodes, which are

configured to periodically take sensor samples and store them in memory using a queue.

Using this data structure removes the need to transmit them to the central gateway as

they are taken. This is important because if the gateway is not available to receive them,

the samples will be lost if they are not stored. The queue also makes way for a battery

preservation technique where the devices briefly wake up, take sensor samples, store

them, and fall back asleep. The sensor nodes are configured to periodically transmit all

samples in the queue and only remove them upon acknowledgment from the gateway.

Figure 14: Data flow diagram of the sensor nodes, central gateway, and server

16

Once sensor samples are received by the gateway, they can either be stored locally on

the gateway or forwarded to a MySQL database on an external server. Figure 14 illustrates

a system where the samples are forwarded to the external server using a lightweight

messaging protocol called Message Queueing Telemetry Transport (MQTT), which is a

standard messaging protocol for the Internet of Things (IoT) because it is efficient,

reliable, and scalable. It uses a publish/subscribe transport method that is ideal for

connecting many devices using little code and network bandwidth [17]. This research

project uses a simplified version of this system, where the sensor samples are

immediately stored in a MySQL database on the central gateway and the MQTT

publish/subscribe method is considered for future implementation.

3.3 Database

The wireless sensor network uses a MySQL database to store information about the

central gateway, sensor nodes, and sensor samples. The Gateway entity has attributes for

a description and GPS coordinates so that gateways can be named and pinned on a

satellite network map within the user interface. Likewise, the Node entity also has

attributes for a description and GPS coordinates so that sensor nodes can be named and

located on the network map. The Node entity also stores information which is used by

the gateway while it synchronizes with sensor nodes. A serial number – unique to each

sensor node processor – is used to identify sensor nodes before synchronization.

Timestamp attributes are included to track a sensor node’s most recent transmission and

synchronization with the gateway. Lastly, the Node entity has attributes for storing the

number of minutes a sensor node should wait before sampling and transmitting samples.

The Sample entity stores each sample with a single character representing the type of

sensor used, a timestamp indicating when a sample was taken, and a decimal number for

the measured value. The sample attribute is a counter used for determining how many

17

samples a node has taken since being powered on. The consecutive sample count can also

help verify samples are not missing. Figure 15 is an entity-relationship (ER) diagram which

shows the database entities and the relationships between them. A gateway can have

zero to many nodes, but a node can only belong to a single gateway. Similarly, a node can

take zero to many samples, but a sample can only be taken by a single node.

Figure 15: Entity-Relationship diagram

The ER diagram lists each attribute with their respective data types and can be used to

write the SQL CREATE TABLE statements needed to setup the database. The relationships

indicate foreign key constraints should be added the Sample and Node tables referencing

their parent tables. A web user is created and granted the privileges needed for the

website to connect to the database. Finally, a gateway is inserted during setup so that it

can be named, and GPS coordinates can be assigned to it within the user interface.

18

Figure 16: Database data definition language (DDL)

19

Chapter 4: Deployment

4.1 Code Location

The code for this project is stored in a GitHub repository. The repository contains a folder

for each of the three code sets: the central gateway, the sensor nodes, and the web-based

user interface. Although the code for the entire project is stored in one repository, each

code set is deployed separately on their respective devices. The project code is accessible

on GitHub at https://github.com/jgresl/cosc449.

4.2 Deploy the Central Gateway

With the Raspberry Pi being used for the central gateway, the device can be accessed

directly using peripheral devices or through the network using a Secure Shell (SSH)

connection. After accessing the Raspberry Pi’s command line interface, install the

dependencies required to create the database and compile the server program.

4.2.1 Server Dependencies

The server program uses a C library specifically for the Raspberry Pi that provides access

to the GPIO pins needed to communicate with the Dragino LoRa hat. To install the

BCM2835 library, run the following commands in the CLI:

1. Download the library.

tar zxvf bcm2835-1.68.tar.gz

2. Navigate into library folder.

cd bcm2835-1.68

https://github.com/jgresl/cosc449

20

3. Configure and install the library.

./configure
make
sudo make check
sudo make install

The server program also uses a MySQL-C connector to communicate with the database

during node synchronization. To install the MySQL-C connector, run the following

commands in the CLI:

1. Update the package manager.

sudo apt-get update && sudo apt-get upgrade -y

2. Update the package manager.

sudo apt-get install libmysqlclient-dev libmysqlcppconn-dev

4.2.2 Server Code Execution

To execute the server program run the following commands in the CLI after installing

the server dependencies:

1. Clone the project repository.

git clone https://github.com/jgresl/cosc449.git

2. Navigate to the server source code.

cd lorax_server/RadioHead/examples/raspi/rf95_lorax_server

3. Build and run the server program.

make && sudo ./rf95_lorax_server

21

Once the server code executes, the central gateway initializes the LoRa radio driver using

the defined configurations found in the top of the server code. The radio frequency,

transmission power, spreading factor, bandwidth, preamble length, sync word, and

coding rate are all configurable to optimize the wireless communications. After the

gateway initializes, it will listen for sensor node messages addressed to it. If a message is

received, the gateway evaluates the content to determine what to with it. If the message

payload is a serial number, the gateway will synchronize with the sending sensor node by

providing it with their node ID, the current date and time, and how frequently it should

sample and transmit sensor data. If the message payload is a JSON string containing

sensor sample data, the gateway will parse the message and insert the sample into the

server database. The gateway will continue to listen for messages from sensor nodes in

an infinite loop.

It is worth noting that processes executed through an SSH connection could be

terminated when the connection is closed. One way to avoid this is by using the Linux

screen tool to start a screen session, run the program, and then detach from the screen

session before closing the SSH connection [18]. Although there are other ways to ensure

a process stays running, this is a good solution because you can re-attach to the screen

and view the program’s latest output in its console. This is beneficial if the server program

crashes because the console output can help identify what crashed it. Another way to

prevent processes from terminating is to execute them using a process manager program.

4.3 Deploy the User Interface

With the Raspberry Pi being used for the webserver, the device can be accessed directly

using peripheral devices or through the network using an SSH connection. After accessing

the Raspberry Pi’s command line interface (CLI), install the dependencies required to host

the web-based user interface.

22

4.3.1 Website Dependencies

The gateway uses the LAMP stack to host the user interface through the web browser.

The stack consists of Linux, Apache, MySQL, and PHP. To install the LAMP stack, run the

following commands in the CLI:

1. Update the package manager.

sudo apt-get update && sudo apt-get upgrade -y

2. Install the Apache, MySQL, PHP, and the PHP-MySQL connector.

sudo apt-get install apache2 mysql-server php php-mysql - y

3. Update Apache root folder permissions.

sudo chmod -R 777 /var/www/html

4. Restart Apache.

sudo service apache2 restart

4.3.2 Website Code Execution

Run the following commands after accessing the CLI:

1. Clone the project repository (already completed in server code execution).

git clone https://github.com/jgresl/cosc449.git

2. Move the lorax_website folder to the Apache webserver root directory.

mv cosc449/lorax_website /var/www/html/lorax_website

23

The Apache webserver hosts the files in its root directory. That is, it accepts requests from

clients and sends responses back. The URL entered into the web browser will point to a

PHP file, which will connect to the database using the PDO_MYSQL driver and query the

database using Structured Query Language (SQL) prepared statements to dynamically

return Hypertext Markup Language (HTML). Cascading Style Sheets (CSS) are used to

describe the presentation of the HTML. JavaScript is used to connect with the Google

Maps API, generate D3 time series charts and submit forms on table input changes.

If the gateway is accessed directly with peripheral devices and the operating system GUI,

the web-based user interface can be accessed by opening the locally installed web

browser and entering the IP address 127.0.0.1 or http://localhost/ on port 80 by default.

If the gateway is connected to the local network through a direct LAN or wireless WiFi

connection, then the web-based user interface can be accessed by opening a web

browser on another device within the network and entering the internal IP address

assigned to the gateway by the network router. The internal IP can be determined by

accessing the gateway’s terminal and checking the network configurations, or by

accessing the network router’s user interface and looking through a list of devices

connected to the network. There are also third-party mobile applications that can connect

to the network and display a list of other connected devices. A static IP address can be

assigned to the gateway to prevent the internal IP address changing when power is lost.

If the gateway is connected to the local network through a direct LAN or wireless WiFi

connection that is also connected to the Internet, the web-based user-interface can be

accessed by opening a web browser on another Internet enabled device and entering the

external IP address for the local area network. To enable this, port forwarding rules will

need to be configured on the router to allow incoming traffic and direct it the internal IP

address of the central gateway and through the webservers hosting port.

24

Figure 17: Example of port forwarding to enable external access to the gateway

Figure 17 shows an example of a port forwarding rule that accepts external Internet traffic

on the external port 80 and directs the traffic to the internal port 80 on the gateway at

the internal IP address 192.168.1.65. Any external port could be entered but the internal

port must match the port configured with the Apache webserver, which is port 80 by

default. Assigning both the external and internal port to 80 will eliminate the need to

specify the port number in the web browser URL when accessing the gateway.

At this point, another port forwarding rule can be setup to allow external access into the

gateway using SSH through port 22. This can be beneficial if a remote connection is

needed to update the code, restart the program, reboot the device, or perform

maintenance. If security is a concern, choosing a different external port other than 22 is

one way to reduce unwanted network traffic. With port 22 exposed, it is a good idea to

ensure the Raspberry Pi’s username and password have been changed from the default.

25

4.4 Deploy the Sensor Nodes

With the Adafruit Feather M0 as the sensor node’s microcontroller, the sensor node code

must be uploaded to it through the on-board microUSB port. This project uses Visual

Studio code with the C/C++ extension to compile the code and the PlatformIO extension

to upload the code and monitor the serial connection.

4.4.1 Client Dependencies

First, download and install the latest release of Visual Studio Code for Windows, Linux, or

Mac by visiting https://code.visualstudio.com/Download and clicking the appropriate link

for your operating system. Open Visual Studio Code and click on the extension

marketplace button on the left side menu. Then, search for the C/C++ extension and

install it. Finally, search for the Platform IO extension and install it. Figures 18 and 19 show

the extensions found in the extension marketplace.

Figure 18: Installing the Visual Studio Code extension for C/C++

Figure 19: Installing the Visual Studio Code extension for PlatformIO

https://code.visualstudio.com/Download

26

The client code uses some additional libraries to drive the digital BME280 temperature

sensor, use the RF95 LoRa radio, parse JSON and run the RTC clock. To install them, click

on the Libraries button within the PlatformIO extension and enter the library names in

the search bar. The required libraries are listed below:

• Adafruit BME280 Library – by Adafruit

• Adafruit Unified Sensor – by Adafruit

• RadioHead – by Mike McCauley

• jsmn – by Serge Zaitsev

4.4.2 Client Code Execution

After the dependencies are installed, download the project repository from GitHub or

clone it using Git. Ensure the sensor node is connected to your computer. Then, open the

lorax_client project in Visual Studio Code and click on the PlatformIO logo in the left side

menu. Using the status bar on the bottom, click on the checkmark to build the program,

the cloud to upload the program to the node, or the plug to open the serial monitor. Once

the client code is uploaded to the microcontroller, the sensor node initializes the LoRa

radio driver using the defined configurations in the top of the server code. The sensor

node LoRa radio should have the same configurations defined as the gateway LoRa radio.

After the sensor node initializes, it will retrieve a serial number unique to its processor

and send it to the central gateway to initialize synchronization. The gateway will return a

JSON string containing the node ID, the current date and time, the sample frequency and

the transmission frequency. The sensor node parses the JSON string and updates the RTC

with the current date and time and updates the sample and transmission frequency global

variables. The sample frequency is used to set interrupt alarms for taking samples. The

transmission frequency is compared with a counter. Samples are stored in a queue until

the transmission counter time matches the configured transmission frequency.

27

Chapter 5: Walkthrough

5.1 Access the User Interface Internally

With the central gateway connected to the local area network – and the web-based user

interface deployed – the website can be accessed internally by opening a web browser

on another device within the network and entering the website’s URL which is comprised

of the internal IP address assigned to the gateway by the network router and the end

point to the main webpage stored in the Apache root directory. In the case of this

deployment, the internal URL is http://192.168.1.65/lorax_website/main.php.

5.2 Access the User Interface Externally

The web-based user interface can also be accessed from a computer outside of the

network if the router is configured to allow external access to the gateway. To access the

website externally, open a browser from a computer outside of the network and enter

the external IP address of the network along with the external WAN port. A Port

forwarding rule should be setup to forward network traffic on this port to the internal IP

address assigned to the gateway by the network router using the internal LAN port where

Apache web server is accessible, which is port 80 by default. One easy way the external

IP address of the network can be determined is by opening the web browser of any

computer connected to the network and accessing a web service that will return your

external IP address back to you. A simple example which only returns your external IP

address is https://ipof.in/txt. In the case of this deployment and port forwarding rule, the

external URL is http://50.98.99.115:80/lorax_website/main.php. If the external WAN port

in the port forwarding rule is set to 80, it can be omitted from the external URL and

simplified to http://50.98.99.115/lorax_website/main.php.

http://192.168.1.65/lorax_website/main.php
https://ipof.in/txt
http://50.98.99.115/lorax_website/main.php
http://50.98.99.115/lorax_website/main.php

28

5.3 Manage the Network Setup

After accessing the site, click on the Manage Network link in the left side menu to view

the network map and configure the connected components. The network map uses the

Google Maps API to display the map and it queries the database to get the GPS

coordinates for the gateway and nodes. Figure 20 shows an example network where the

central gateway (G) is setup indoors along with sensor nodes setup indoors (1 and 2) and

more sensor nodes setup outdoors on a covered patio (3 and 4). The gateway and nodes

will not be visible on the network map until the components are connected and GPS

coordinates are assigned to them.

Figure 20: Network map using the Google maps API

29

Beneath the network map are the gateway and node configuration tables. A gateway will

already exist in the gateway configuration table because it was already created using an

SQL INSERT STATEMENT during the database setup. The gateway description and GPS

coordinates will be blank by default. The gateway can be named in the description field

and the GPS coordinate can be entered to make it visible on the network map. Click on

anywhere on the network map to get the latitude and longitude of the clicked location.

Copy and paste the coordinates one at a time into their respective fields within the

gateway configuration table. Changes to the configuration table fields will automatically

update in the database, except for the gps_latitude field; it waits for the longitude to be

entered as well before updating. This is so the page does not refresh before you are ready

to copy the longitude coordinate from the set returned by clicking the network map.

Figure 21: Gateway and node configuration tables

30

There will not be any nodes displayed on the node configuration table until the sensor

nodes are powered on and synchronized with the gateway. To begin adding sensor nodes

to the network, connect a battery to a sensor node. The sensor node will send its unique

serial number to the gateway until it receives a response. When the gateway receives the

serial number from the sensor node, it will query the database to determine if the node

has already been synchronized. If the serial number does not exist in the Node table, it is

inserted, and the sensor node is assigned a unique ID. Finally, the gateway returns a JSON

string to the sensor node containing the node ID, the current date and time, the sample

frequency and the transmission frequency. Once synchronized, the same steps that were

used to configure the gateway can be followed to name and assign coordinates to the

sensor nodes. The sample and transmission frequencies can be modified in the node

configuration table. Changing either of them will update the sync status to “Required”,

which will flag the gateway to initiate a re-synchronization with the sensor node the next

time it receives a message from it.

By default, the sample frequency is set to 10 and the transmission frequency is set to 30.

With this configuration, the sensor node will sample sensor data and store them in the

queue every 10 minutes. 3 sample sets will be added to the queue before transmitting

them to the gateway every 30 minutes. If the gateway acknowledges receipt of a sample,

it is removed from the queue. The sensor node will transmit the sample in the front of

the queue until it receives acknowledgment or until it has attempted an amount of

transmissions equal to the size of the queue. If the gateway is not available, the samples

will remain in the queue and are transmitted during the next scheduled transmission. If

the gateway is not available for a long period of time, the queue will become full and the

sensor node will be unable to store any more samples. Although the gateway should

always be available, configuring the sample and transmission frequencies can help ensure

the queue does not fill up quickly. Increasing the sample and transmission frequencies

will also increase the longevity of the battery by reducing the total number of operations.

31

5.4 View Sample List

After powering the components, the sensor nodes will synchronize with the gateway and

start sampling immediately. Click on the Manage Network link in the left side menu to

view all the samples received by the gateway and inserted into the Sample table.

Figure 22: List of samples with filter options

The samples list can be filtered to only display sensor data for a specific node and sensor

type making the desired selections in the drop down lists and clicking on the refresh

button. Figure 22 shows an unfiltered list with samples from nodes 1 and 2. There are

samples for the temperature in degrees Celsius and battery voltage in volts. The samples

are timestamped and segregated by 10 minutes.

32

5.5 View Line Charts

Click on either of the Line Chart links in the left side menu to view the samples in a time

series line chart. By default, the charts will display the entire temperature data set for the

first node. There are buttons above the chart and a sliding timeline bar beneath the chart

which can be used to zoom in and zoom out to specific timeframes. The chart can display

data sets for multiple nodes. To do this, hold the CTRL button on the keyboard while

clicking on the nodes that should be displayed, then select the sensor type and click the

refresh button. Figure 23 shows a chart containing the temperature data sets for nodes 3

and 4 over approximately 24 hours. The temperatures increase and decrease at the same

rate, but they are consistently ~4 degrees apart. This could be because the sensor nodes

are using different sensors. As described in the node names, node 3 uses an analog

thermistor sensor while node 4 uses a digital BME280 sensor. This chart supports the

research by measuring and displaying environment differences.

Figure 23: Time series line chart with outside node temperature data

33

As the sensor nodes collect both temperature and battery samples, the chart can also

show the battery voltages by selecting Battery as the sensor type and then clicking the

refresh button. Figure 24 shows the battery voltages for the nodes that were deployed

outside, which used different sensors to take temperature samples. In this experiment,

the sensor nodes were connected to batteries and also to a switch powering them with

microUSB cables. When the switch is turned on, the battery voltage increases as the

battery charges. When the switch is turned off, the battery voltage decreases as the

battery drains. This report is interesting because it shows the battery voltage for node 4

drops quicker than the battery voltage for node 3. The difference in battery drain is a

result of the nodes using different sensors with different code to sample data. With the

code used for the analog sensor, power is only sent to the sensor while it is sampling. This

chart shows how battery life can be preserved through optimization, and it allows users

to monitor the sensor node battery states.

Figure 24: Time series line chart with outside node battery data

34

5.6 Network Reset

In some cases, a user might want to reset the network and start fresh. For example, if the

equipment is moved to another farm, the samples are no longer relevant to the sensor

nodes. To reset the network, click on the Database Restore link in the left side menu. Click

the Restore button and then click the Yes button once prompted for confirmation. The

database restore function will delete all records In the Node and Sample table. Sensor

nodes will need to be reset in order for them to re-synchronize with the gateway.

Figure 25: Database restore page to remove all samples and synced nodes

35

Chapter 6: Future Work

6.1 Decreasing Power Consumption

Devices that run continuously for long periods of time will drain their batteries quickly.

The sensor nodes can be configured to consume less power by putting the radio or the

entire device to sleep when it is not in use. The RadioHead software library used to control

the RF95 LoRa radio includes a sleep() function that will put the radio into a low-power

sleep mode until idle, transmit, or receive functions are called afterwards [19]. While

putting the radio to sleep would definitely help preserve power, the microcontroller will

still be providing power to the CPU, RAM, and peripherals. One software library that

supports powering down the Adafruit Feather M0 (ATSAMD21) is Adafruit_SleepyDog,

which can be found on GitHub at https://github.com/adafruit/Adafruit_SleepyDog.

Powering down the microcontroller requires a scheduled wake-up. Some possible

challenges with this method of decreasing power consumption will be to ensure the clock

continues to run during sleep mode and the stored samples are not lost.

6.2 Data Persistence

The sensor nodes, in their current state, are not able to keep track of time or remember

which samples are in the queue when the battery dies. This is because the time library

counter and the queue data are stored using volatile memory. Ultimately, this limits the

overall data collection because samples cannot be taken until the time is known and

samples not yet sent to the gateway are lost. If the sensor node knows the exact date and

time when it wakes up, then it can begin sampling before having synchronized with the

gateway. If the sensor node can wake up and still access the sample data, it will not have

to stay awake in order to keep them in memory.

https://github.com/adafruit/Adafruit_SleepyDog

36

One solution that could help with data persistence is to include the Adalogger

FeatherWing as another part within the sensor node component. Figure 26 shows the

add-on part, which includes an I2C real-time clock (32KHz crystal) with a battery backup

and a microSD socket. The part can be easily attached to the Adafruit Feather M0

microcontroller using Feather Stacking Headers or Feather Female Headers [20].

Figure 26: Adafruit Feather M0 add-on with RTC clock and SD card slot [20]

While using the Adalogger Featherwing does provide a way to ensure time and sample

data are not lost, it also comes with increased cost, maintenance, and power

consumption. An implementation with 80 sensor nodes would require an additional 80

Adalogger FeatherWings, CR1220 coin cells, and microSD cards. Maintenance is increased

as the coin cells will require some replacing. The samples currently stored in memory

using a queue, could be stored on the microSD instead, but reading from and writing to

the microSD card will also consume additional power and drain the main battery faster.

37

6.3 Payload Optimization

The message payloads for the sample data currently uses a JSON string, which contains

the node ID, sensor type, sample timestamp, and sample value. The JSON string is then

parsed by the gateway upon receipt. This is useful because the important values do not

always use the same number of characters and are not always located in the same

element of the character array. While this message payload works and is flexible to

extract data from, it also uses up to 150 bytes per message. The length of the message

payload is important to consider because longer messages use more memory and

transmission time than shorter messages. The queue in the sensor node code currently

stores 100 messages at 150 bytes each. Although the Adafruit Feather M0 microcontroller

has 32KB of RAM, only 15KB is currently reserved for the queue. Shortening the messages

would allow the queue to be setup to hold more of them. More importantly, shortening

the messages would also shorten the payloads sent during transmission. Shorter payloads

can be communicated over the sensor network using less time and power. In summary,

the wireless sensor network would benefit from optimized payloads because the sensor

nodes could store more samples in memory, produce less radio interference, and

consume less power.

6.4 Agricultural Implementation

With the wireless sensor network being functional, the next step will be to deploy the

components into an agricultural field and start collecting data. There are many local

orchards and vineyards that could benefit from having the system, but they will be

skeptical to invest until they are able to realize the benefits. As there are costs associated

with the implementation, the system must provide immediate or promised value in

return.

38

Grapes yield a high return on investment; it would be most ideal to find a viticulturist who

is willing to collaborate and provide guidance on how the sensor data can provide value

to them. Upon recommendation, further advancements can be made to the user

interface or the data can be sent to an external platform already capable of providing the

desired data representations. Looking even further ahead, the sensor data could also be

used to automate certain agricultural tasks, such as controlled watering or automatic

dispatching of drones to apply fertilization and pesticides.

For the best radio performance, the gateway and sensor nodes should be installed above

vegetation with unobstructed space between them. Vineyards typically have posts

already installed to help growing operations, which are good places to fix the sensor

nodes on top of. If soil moisture data is needed, sensors would be wired from the ground

up to the sensor node. The sensor nodes can be spaced apart depending on the resolution

of data needed. As high maintenance is expected in the early stages of implementation,

it would be a good strategy to deploy a small number of sensor nodes in easily accessible

locations and expand the network once stability is achieved and more coverage is needed.

6.5 Equipment Protection

Once the wireless sensor network components are deployed outside, they will be

vulnerable to climatic conditions. The microcontroller and radio should be protected from

direct exposure to heat and moisture. Temperature sensors should also be protected

from solar radiation and other sources of heat that would interfere with accurate

temperature readings. Cases and radiation shields will further increase the cost of

implementation but can be made economically using 3D printing technology. Resistive

soil moisture sensors are susceptible to corrosion because they cause electrolysis by

nature. Corrosion can be mitigated by only powering the sensors when needed; corrosion

can be avoided altogether by using capacitive soil moisture sensors instead.

39

Chapter 7: Conclusion

Sustainability in agriculture is becoming more important every day. As Earth’s population

increases, more resources are needed. And while food is in high demand, a significant

amount of food is being wasted because of poor – but manageable – crop conditions.

Wireless sensor networks can help increase sustainability in agriculture by providing

farmers with usable data, but there are many challenges to overcome before the

investment is justifiable. Agricultural fields are typically large, and they require many

components to install a wireless sensor network with dense sampling coverage. As

hardware is generally expensive, the cost to implement such a network is high. To make

matters worse, wireless components require batteries which need periodic replacements.

This research project focused on two main areas for improvement: decreasing

implementation costs and decreasing power consumption. Recent advances in hardware

technologies have introduced opportunities to achieve both these goals. The Raspberry

Pi single board computers are inexpensive yet still powerful enough to serve as the central

gateway and webserver. The emergence of open-source hardware and software have

made microcontrollers and sensors easier to purchase and program. 3D printing

technologies remove the need to outsource for manufactured cases and shields. With

power consumption in mind, LoRa radios – which operate on unlicensed low frequency

radio bands – provide an inexpensive and power-efficient data transfer solution which

does not require chaining to achieve long transmission distances. The wireless sensor

network developed in this project exploits these opportunities and ultimately

demonstrates that farmers can participate in precision agriculture without spending too

much time or money. This project works towards improved sustainability in agriculture

by making wireless sensor networks easier to acquire, setup, and maintain. I implore

researchers to further improve this research, and I encourage farmers to participate by

demonstrating the system provides value.

40

Bibliography

[1] Wikipedia, "Percision Agriculture," 17 August 2020. [Online]. Available:
https://en.wikipedia.org/wiki/Precision_agriculture.

[2] T. Ojha, S. Misra and N. S. Raghuwanshi, "Wireless sensor networks for agriculture:
The state-of-the-art in practice," Computers and Electronics in Agriculture, vol. 118,
pp. 66-84, 2015.

[3] Electronics Notes, "What is a Microcontroller MCU: embedded systems," [Online].
Available: https://www.electronics-notes.com/articles/digital-embedded-
processing/embedded-systems/what-is-embedded-microcontroller-mcu.php.
[Accessed 1 September 2020].

[4] R. Keim, "Understanding Spread Spectrum Modulation in RF Systems," 3 February
2017. [Online]. Available: https://www.allaboutcircuits.com/technical-
articles/understanding-spread-spectrum-modulation-rf-systems/.

[5] Semtech, "Why LoRa?," [Online]. Available: https://www.semtech.com/lora/why-
lora. [Accessed 1 September 2020].

[6] i-SCOOP, "LoRa and LoRaWAN: the technologies, ecosystems, use cases and market,"
[Online]. Available: https://www.i-scoop.eu/internet-of-things-guide/lpwan/iot-
network-lora-lorawan/. [Accessed 1 September 2020].

[7] B. Ray, "Licensed Vs. Unlicensed Spectrum: What’s The Difference?," 13 January
2020. [Online]. Available: https://www.iotacommunications.com/blog/licensed-vs-
unlicensed-spectrum/.

[8] L. Burgess, "Inexpensive Low Data Rate Links for the Internet of Things," 2020.
[Online]. Available: https://www.volersystems.com/wearable-devices/inexpensive-
low-data-rate-links-for-the-internet-of-things/. [Accessed 1 September 2020].

[9] 3GLTEinfo, "LoRa Tutorial – What is LoRa Wireless for IoT? LoRaWAN Frequency
Bands," [Online]. Available: http://www.3glteinfo.com/lora/lorawan-frequency-
bands/. [Accessed 1 September 2020].

[10] Adafruit, "Adafruit Feather M0 Basic Proto - ATSAMD21 Cortex M0," 2020. [Online].
Available: https://www.adafruit.com/product/2772.

41

[11] lady ada, "Adafruit Feather M0 Radio with LoRa Radio Module," 8 June 2016.
[Online]. Available: https://learn.adafruit.com/adafruit-feather-m0-radio-with-lora-
radio-module.

[12] Government of Canada, "Canadian Table of Frequency Allocations," 2018. [Online].
Available: https://www.ic.gc.ca/eic/site/smt-gst.nsf/eng/sf10759.html.

[13] lady ada, "Li-Ion & LiPoly Batteries," 29 July 2012. [Online]. Available:
https://learn.adafruit.com/li-ion-and-lipoly-batteries/voltages.

[14] lady ada, "Adafruit Feather M0 Radio with LoRa Radio Module - Power
Management," 8 June 2016. [Online]. Available: https://learn.adafruit.com/adafruit-
feather-m0-radio-with-lora-radio-module/power-management.

[15] Raspberry Pi, "Raspberry Pi 3 Model B+," [Online]. Available:
https://www.raspberrypi.org/products/raspberry-pi-3-model-b-plus/.

[16] RobotShop, "LoRa/GPS Long Range Transceiver HAT 915 MHz (North America),"
2020. [Online]. Available: https://www.robotshop.com/en/lora-gps-long-range-
transceiver-hat-915-mhz-north-america.html.

[17] MQTT, "MQTT: The Standard for IoT Messaging," [Online]. Available:
https://mqtt.org/. [Accessed 1 September 2020].

[18] S. Henry-Stocker, "How the Linux screen tool can save your tasks – and your sanity –
if SSH is interrupted," 30 September 2019. [Online]. Available:
https://www.networkworld.com/article/3441777/how-the-linux-screen-tool-can-
save-your-tasks-and-your-sanity-if-ssh-is-interrupted.html.

[19] M. McCauley, "RadioHead - RH_RF95.h," 2014. [Online]. Available:
https://www.airspayce.com/mikem/arduino/RadioHead/RH__RF95_8h_source.html.

[20] Adafruit, "Adalogger FeatherWing - RTC + SD Add-on For All Feather Boards," 2020.
[Online]. Available: https://www.adafruit.com/product/2922.

