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CHAPTER I

INTRODUCTION

With the progress of human genome project, huge amount of biological data has

been provided in recent years. Data processing and mining become challenging and

unavoidable(need to be solved?) tasks for most of biological scientists.  The analysis of

human genome sequence data is attracting more and more computational scientists into

biological field.  This thesis descripts the identifications of important features in human

genome, and the applications of findings in biological studies.

Genome,  Gene Structure and Gene Expression

Human Genome Composition

In a short description, genome is the nucleotide complements for hereditary

information of an organism. For human beings, human genome contains 22 pairs of

autosomes, one pair of sex chromosomes: X and Y, and a small mitochondria genome.

Each chromosome is a long deoxyribonucleic acid (DNA) molecule with lots of

associated proteins. DNA molecule is a continuous string made up of four kinds of

nucleotide bases: adenine (A), cytosine (C), guanine (G), and thymine (T). In DNA

molecule, four kinds of nucleotide bases form two kinds of pairs: A-T, C-G. The human

haploid genome is estimated to contain 3 billions of such nucleotide base pairs.

Eukaryotic Gene Structure and Gene Expression

Functional units controlling hereditary traits in human genome are called genes,

which are templates for the production of ribonucleic acids (RNAs). The process to
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produce RNA based on its template DNA is called gene transcription. In term of function,

regulatory regions for gene transcription control, introns and exons can be viewed as

main components of a gene.  Exons are coding sequences, which are represented by

mature messenger RNA (mRNA). Introns are non-coding sequences, which are first

transcripted, but removed from messenger RNA in a later RNA splicing event.

Regulatory regions for transcription may overlap with or exist in introns and exons

region. A DNA with sequence complementary to its corresponding mRNA is named as

complementary DNA (cDNA). Proteins are produced in a translation process with

mRNAs as instructions. The gene expression flow has been summarized in Figure 1.

Figure 1: Diagram of gene structure and gene expression
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Computational View of  Biological Terms

From computer scientist viewpoint, gene structure and gene expression can be

represented as Figure 2. Three distinct alphabet sets can be used to represent nucleotide

bases for DNA, ribonucleotide bases for RNA and amino acids for protein. DNA, RNA

and protein are strings composed of elements from their corresponding sets. Preprocessed

mRNA is an exon followed by zero or more intron and exon alternates. mRNA  is a

concatenate of one or more exons. Three functions involved in gene expression process

are: transcription, splicing and translation. Transcription takes DNA as an input, and

produces preprocessed mRNA. Splicing converts a preprocessed mRNA to a mature

mRNA by removing introns. Hereditary information is finally transmitted and

represented on protein level by translation process based on mRNA template.

Figure 2:  Definitions of DNA, RNA and Protein in term of computer science

Term s and  S ets:Term s and  Se ts:
D N A  =  (D N A  =  (N tN t))++ ; (; (N tN t ЄЄ {A , T , C , G }){A , T , C , G })
RN A  =  (RN A  =  ( rN trN t))++ ; (; ( rN TrN T ЄЄ {A , U , C , G }){A , U , C , G })
P ro te in  =  (AA)Pro te in  =  (AA)++ ; (AA  ; (AA  ЄЄ {20  Am ino  A cids} ){20  Am ino A cids} )
P rePre --m RN Am RN A =  (=  (ExonExon )[()[( In tronIn tron )()( ExonExon )])] ** ;;

m RN Am RN A =  (=  (ExonExon ))++ ;;

Functions:Functions:
PrePre --m RN Am RN A =  F=  F 00 (D NA ); (F(D NA ); (F 00 : transcrip tion): transcrip tion)
m RN Am RN A =  F=  F 11 ( P re( P re --m RN Am RN A ); (F); (F 11 : Sp lic ing): Sp lic ing)
P ro te in  =  FPro te in  =  F 22 ((m RNAm RN A ); (F); (F 22 : T ransla tion ): T ransla tion )
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Promoter and Gene Transcription

Promoter and Transcription Factor

Promoter is a stretch DNA sequence surrounding transcription start site (TSS) of a

gene. Conventionally, DNA sequence from –499 to +100 surrounding TSS of a gene is

considered as promoter region(Praz, Perier et al. 2002). Gene transcription is regulated by

a group of proteins called transcription factors. Promoter contains most of transcription

factor binding sites (TFBS) for corresponding gene transcription. The expression level of

a particular gene is largely dependent on the interaction of its promoter and transcription

factors. The abundances and tissue distribution patterns of transcription factors control

their target genes’ expression patterns by binding to corresponding TFBS in target genes’

promoter region.

Characteristics of Eukaryotic Type II Promoter

Although promoter sequences are various among different genes, a typical

eukaryotic type II promoter usually contains several core elements and/or proximal

promoter elements for basal level transcription(Hampsey 1998). The most common one is

TATA box (Goldberg-Hogness box), which locates about 30 base pairs (bp) upstream

from the TSS.  Another core element is initiator (Inr), which locates right on TSS. The

binding of TATA box binding protein (TBP) to the TATA box or Inr is the first step of

the initiation of mRNA transcription. For promoters without TATA box, other

mechanisms are used to attract RNA polymerase to promoter. Usually, a general

transcription factor called SP1, which binds GC box located from +56 bp to –55 bp

around TSS, serves as a mediator between promoter and RNA polymerase(Farnham and

Cornwell 1991). One conserve downstream promoter element (DPE) has been found to

be located from +28 to +32 relative to TSS. It is the other key element playing a role in

core promoters that lack a TATA box motif. Moreover, distinct mechanisms exist for
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TATA box dependent promoters and DPE dependent promoters(Kadonaga 2002).

Promoters can be classified based on the existences of those elements(Suzuki, Tsunoda et

al. 2001).

Promoter Prediction Algorithms

Currently, most of human genomic sequence has been revealed. With expression

sequence tag (EST) projects, millions of 3’-end sequences for mRNAs have been

deposited onto NCBI EST databases. However, the difficulties in obtaining 5’-end

sequences of mRNAs lead to a large number of incomplete gene structures. Therefore,

for most genes, promoter is undetermined even partial of gene structure has been

revealed.  This situation leads to the appearance of promoter prediction as a hot research

topic in computational biological field. As early as the beginning of 1980’s, attempt has

been made to reveal the sequence patterns of phage promoters(Otsuka and Kunisawa

1982). Since then, lots of efforts have been taken to study the sequence patterns of

promoters and develop models and algorithms to predict promoters from prokaryotic

genomes to eukaryotic genomes(Mulligan, Hawley et al. 1984; Staden 1984; Bucher and

Trifonov 1986). Promoter prediction algorithms can be classified into several categories.

The first class relies on the recognition of individual transcription elements or consensus

sequences(Prestridge 1995; Hutchinson 1996; Scherf, Klingenhoff et al. 2000). The

second group is neural networks and markov model based, such as Markov model audic

and promoter2.0 (Audic and Claverie 1997; Knudsen 1999). Some methods are taking

advantage of highly associated sequences of promoter, such as CpG island(Davuluri,

Grosse et al. 2001; Ponger and Mouchiroud 2002). Although most of human genomic

DNA has been sequenced, the prediction of human promoters is still far away from

successful. In spite of lots of algorithms existed for promoter prediction, it has been well

known that most of current promoter prediction algorithms predict much more false
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positive promoters than real promoters.  Even a combination of multiple prediction

algorithms couldn’t solve this problem(Liu and States 2002). Recently, the prediction

algorithm orientated  by existent mRNA sequences showed a promising method for less

false-positive prediction(Liu and States 2002). However, the arbitrary searching for

promoter within 2.5kb range of 5’-end of a cDNA sequence in the algorithm is still likely

lead to a positive-positive prediction. It has been shown that human gene structure may

follow certain rules, such as the first intron of a gene is twice longer than its second

intron(Chen, Gentles et al. 2002). However, a complete study has not been carried out to

determine the value of gene structure property in the prediction of its promoter.  An

attempt to establish a model to predict promoter based on gene structure will be taken in

this study.

CpG island and Gene Transcription

Definition of CpG island

CpG island is a stretch of DNA sequence, which is at least 200 nucleotides long,

having C and G contents greater than 0.5 and observed/expected CpG ratio greater than

0.6(Gardiner-Garden and Frommer 1987). The middle ‘p’ in ‘CpG’ stands for the

phosphate group, which serves as a linkage of C nucleotide to the next G. CpG islands

are estimated to be located on ~50% of human gene promoter regions. In 1989, the

silencing of retinoblasta (RB) gene, which is a tumor suppressor gene, was found to be

associated with the methylation of CpG island on its promoter region(Greger, Passarge et

al. 1989). Since then, more and more evidences showed that methylation of CpG island

are one of the important mechanisms involved in down regulation of gene expression.

Moreover, CpG island methylation has been found to be involved in lots of biological

processes, such as cancer oncogenesis, development, and aging process(Ehrlich, Jiang et
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al. 2002; Kramer, Schultheis et al. 2002; Oakes, Smiraglia et al. 2003). A review issue of

Oncogene has been provided in

December 2002 on the current advance of CpG methylation study.

Based on the association of CpG islands and promoters, a recent study leaded to a

new definition for CpG island which are more likely to be on promoter region(Takai and

Jones 2002). New definition for CpG island is that CpG islands are regions of DNA of

greater than 500 bp with a G+C equal to or greater than 55% and observed CpG/expected

CpG of 0.65. Moreover, it has been shown that CpG island with new definition has

excluded most Alu repetitive elements.

Markov Chain and Hidden Markov Model

Traditionally, the approach to identify CpG island can be classified into two

groups. One is based on “window slip”. This approach simply scans an input DNA

sequence with a desired window size for CpG island. It is relatively easy to be

implemented, but doesn’t offer a solution for an accurate segmentation of CpG islands.

The other approach is based on Hidden Markov Model (HMM). In HMM, DNA

sequence is treated as an output of a state machine, which composed of a series of state

transition. The procedure for this approach is that: first develop a matrix for

distinguishing in-island subsequence from out-of-island subsequence based on training

set of known CpG islands; then apply the matrix on an input DNA sequence to determine

the most likely transitions between CpG island and non-CpG island subsequence. Markov

chain model and hidden markov model are triplet state machines, and both use a same set

of alphabet to represent four kinds of nucleotides existing in a DNA molecule. Transition

from one state to next will emit a nucleotide. By running the state machine, a string of

sequence will be produced. Markov Chain Model is a finite state machine with triplet:

M= (Σ, Ѕ, θ), where Σ is an alphabet of {A,T,C,G} for nucleotides; Ѕ is a finite set of
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states and Ѕ = {A, T, C, G}; and Θ is a finite set of state transition probabilities. HMM is

developed from Markov Chain theory. It is also a finite state machine with triplet M= (Σ,

Ѕ, θ), where Σ is an alphabet of {A,T,C,G}; Ѕ is a finite set of states capable of emitting

symbols of Σ with Ѕ = {A+, T+,C+,G+,A-,T-,C-,G-}; and Θ is a finite set composed of

state transition probabilities and emission probabilities. The emission probability of a

given state is always 0 or 1 in HMM for CpG island. For instance, for state A, the

probability to emit an ‘A’ is 1, while that of other symbols is 0. The transition

probabilities are listed on table 1. (Richard Durbin. Biological Sequence Analysis. 1999)

Viterbi Algorithm and Dynamic Programming:
•Initial state:

P0(0) =1; and Pn(0) = 0 for n>0

• Recursive State:

For i = 1 to L:

PL(i) = eL(xi)(Maxn{Pn(i-1)*TnL})

  PL(i): probability of observation of I in state L

eL(xi): Emission probability of Xi in state L

                 TnL: Transition Probability from state n to  L

• Termination State:

P(X|p) = Maxn{Pn(L)*Tnf})
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CHAPTER II

PROMOTER PREDICTION WITH HUMAN FULL

LENGTH cDNAs

Rational of Promoter Prediction Model

Today’s trend in the study of transcription mechanism is to try associate large-

scale gene expression data to transcriptional regulatory elements.  A long-term goal has

been set to establish a gene expression regulatory network. Several promoter and

transcription factor databases have been developed for various kinds of purposes. With

longest history, Eukaryotic Promoter Database (EPD) contains the most strictly selected

promoter sequences with only 276 entries for human promoters associated with

supporting experimental data (Praz, Perier et al. 2002).  It is a most reliable promoter

database, and has been widely used as a good resource for the development of promoter

prediction algorithm. However, the limit number of human promoter entries in EPD is far

away from practical application in large-scale gene expression study.  Compared with

EPD, Human Promoter Database constructed in Boston University has 2,004 promoter

entries. However, the data set of this database is derived from a simply merge of three

different resources, including EPD. Not further verification has been provided, and web

interface is not friendly designed for gene expression analysis. A reliable human

promoter set is highly desired for currently large-scale gene expression study.

With the progress of full-length cDNA project, more and more cDNA data are

available for correctly prediction of human promoters. ESTs and full-length cDNAs have

been shown to be valuable for promoter prediction(Liu and States 2002). It  has been
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shown that certain rules may exist for a typical human gene structure(Chen, Gentles et al.

2002). A comprehensive analysis would be necessary to further address the possibility to

infer whether a given cDNA fragment is a full-length cDNA sequence based on gene

structure. In this study, cDNA sequences from EPD, Chromosome 21 and Chromosome

22 were applied as a training set to establish the promoter prediction model. By mapping

these cDNAs to human genome, all corresponding gene structures were obtained and

subjected to statistical analysis. An efficient promoter prediction algorithm is developed

based on the comprehensive understanding of those gene structures.

Human Genome and Full length cDNA

Human Genomic DNA Sequence

In the middle of 1980s’, the advance on DNA sequencing related techniques

promoted scientists to start the largest biological project to sequence entire human

genome(Hood, Hunkapiller et al. 1987).  Human genome project was then officially

initiated in 1990 by the Department of Energy and the National Institutes of Health in an

effort to determine whole genomic sequence and identify all human genes. By January

2003, 96% of human genome has been complete sequenced, and 3% is under the way,

table 2. Human genomic DNA sequence, including draft sequence, is available on web

from NCBI (http://www.ncbi.nlm.nih.gov/genome/guide/human/).

Mammalian Gene Collection

Mammalian gene collection (MGC) from National Center for Biotechnology

Information (NCBI) is established to eventually provide a complete set of full-length

cDNA clones of human and mouse genes. A full-length cDNA clone contains all the

coding information for corresponding protein, which is so called as open reading frame

(ORF). Based on 5’-end and/or 3’-end sequences of a cDNA clone, cDNA clones are

http://www.ncbi.nlm.nih.gov/genome/guide/human/
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further selected and subjected to high accuracy sequencing. However, in term of mRNA

level, full-length cDNA may not contain the transcriptional start site, and not a ‘full

length’ template. Currently over ten thousands human cDNA sequences and clones are

available from MGC (http://mgc.nci.nih.gov/). Most of those full-length cDNA

sequences are believed to be the known cDNAs with longest 5’-end. Moreover, all those

sequences and their associated annotations are publicly available to research community.

Database of Human Transcriptional Start Sites

Another attractive full-length cDNA resource is Database of Human

Transcriptional Start Sites (DBTSS) in Japan, which provides 7,889 gene entries(Suzuki,

Yamashita et al. 2002).  By using oligo-capping technique, full-length cDNA clones in

DBTSS are assumed to have the transcriptional start sites. Therefore, compared to MGC,

DBTSS are believed to be even better for promoter identification, since it may provide

longer 5’-end sequences and correct TSS, which are essential to determine promoter

region for a particular gene.  It has been shown that 4,802 sequences from DBTSS extend

reference sequences in NCBI to 5’-end. However, 4,194 sequences didn’t provide longer

5’-end sequence. It has been estimated that around 60% of human genes have a coding

first exon(Davuluri, Grosse et al. 2001). According to personal discussion with Dr. Tom

Bair, most of translations start sites (ATG) were found in first exon in MGC. It implies

that a number of genes in MGC may not contain TSS although they have full-length

coding sequence. The other interesting result is that the average length ratio between first

intron and second intron for MGC genes is above 4.0 (not for sure yet, Tom Bair).

Therefore, although MGC and DBTSS provide much more entries than EPD, extra work

is still required to predict  the true transcription start sites before corresponding promoter

sequences can be extracted from human genomic sequence.

http://mgc.nci.nih.gov/
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Softwares used and/or implemented

UICluster

UICluster was developed in Thomas Casavant’s lab in the University of Iowa. It

takes a file with cDNA sequences in fasta format as an input, and grouped cDNAs

together based on sequence similarity. As default value, all sequences share 40 bp

identical substring of sequence are considered to be derived from one gene.

Basic Local Alignment Tool

BLAT was developed by W. James Kent from department of biology and center

for molecular biology of RNA, University of California-Santa Cruz  in 2002. It is

extremely powerful for align large number of DNA entries against nucleotide database.

Blat has been used to align human full length cDNAs against human genomic sequence.

Results and Interpretation

Clustering full length cDNAs

A total number of 14,584 MGC clones’ sequences were downloaded from MGC

(http://mgc.nci.nih.gov/index_html). 4,802 cDNAs’ sequences, which were shown to

have longer 5’-end than reference sequences have been downloaded from DBTSS

(http://dbtss.hgc.jp/samp_home.html).  Two sets of cDNAs sequences were concocted

and subjected to UICluster. Sequences sharing more than 100 bp identical substring were

clustered together. For 19,386 input sequences, 11,485 clusters were obtained. Sequences

with longest 5’-end were selected from each cluster.

Model Test and Application

Genes from EPD, chromosome 21 and chromosome 22 will be divided into two

groups. One group will be used for generating models, while the other group will be

http://mgc.nci.nih.gov/index_html
http://dbtss.hgc.jp/samp_home.html
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saved as a verification set.  The model will be test by verification the predicted result in a

verification subset of training set. An estimation of prediction efficiency will be provided,

such as the ratio of false positive prediction.

The follow-up phase will be the characterization of those predicted potential

promoter regions. For each of the potential promoter region, the existence information of

promoter elements will be obtained, such as TATA box, GC box, Inr etc. The

methylation status of CpG Island has been known as a suppression mechanism for a

number of genes involved in cancer development. Whether a potential promoter is

localized on CpG island or not will also be determined.

Those potential promoter regions with associated characterization information

will be provided for a parallel project to construct a human specialized promoter database

for microarray data mining.
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CHAPTER III

CpG  ISLAND IDENTIFICATION IN HUMAN

GENOME WITH HIDDEN HARKOVE MODLE

Softwares used and/or implemented

A CpG island finder has been implement with window shifting algorithm. The

inputs for CPG island finder are: Human Genomic Sequence (Contig sequence);   CpG

island length threshold; GC content threshold; observed CpG/expected CpG ratio

threshold. The outputs of the program are: CpG island’s location; CpG island length; GC

content; observed CpG/expected CpG ratio; CpG island sequence. This program has been

developed and  tested for various kinds of nucleotide sequence inputs.

Results and Interpretation

One side effect of CpG island methylation is that the methylated C tends to

mutate into T. This mutation leads to a low CG content in genome. Based on human

genomic sequence to date, the average CG content in human genome is about 40.9%. The

chromosome with the highest CG content is chromosome 19 with 48.3% CG content,

while chromosome with the lowest CG content is chromosome  4 with 38.2% CG

content. The nucleotide compositions and CG content of human genome has been

summarized on table 3.
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CHAPTER IV

FUTURE DIRECTION

The ultimate goal of my study is to develop a comprehensive gene expression

analysis platform to provide a maximal integration of informational and software

resources. To achieve this goal, the first step will be the understanding and generation of

biological mechanisms on gene expression. The study of genome, gene structure and the

regulation of gene expression is the cornerstone for the design of any analysis tool.  The

research descripted in this thesis provide the fundamental data for further human gene

promoter prediction and gene expression study.
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Table 1. Transition Probabilities for CpG island prediction with HMM model

__________________________________________________________________

__________________________________________________________________

0.1820.3840.3550.079T

0.1250.3750.3390.161G

0.1880.2740.3680.171C

0.1200.4260.2740.180A

T+G+C+A+

0.2920.2920.2390.177

0.2080.2980.2460.248

0.3020.0780.2980.322

0.2100.2850.2050.300

T-G-C-A-
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Table 2: Current Status of Human Genome Sequencing Process (Jan 5, 2003)*

*Adapted from http://www.ncbi.nlm.nih.gov/genome/seq/ (Jan 5, 2003)

Chromosome Total Clones Draft Clones Finished Clones Percent Finished 
1 2202 71 2089  94.9%
2 1966 14 1948  99.1%
3 1740 82 1630  93.7%
4 1629 47 1572  96.5%
5 1775 54 1700  95.8%
6 1795 2 1790  99.7%
7 1526 1 1514  99.2%
8 1239 79 1133  91.4%
9 999 22 963  96.4%
10 1132 6 1117  98.7%
11 1147 43 1088  94.9%
12 1140 74 1044  91.6%
13 854 0 854  100.0%
14 655 1 642  98.0%
15 710 68 618  87.0%
16 725 44 672  92.7%
17 692 132 541  78.2%
18 600 6 585  97.5%
19 861 9 852  99.0%
20 632 0 632  100.0%
21 473 0 472  99.8%
22 527 0 527  100.0%
X 1588 37 1508  95.0%
Y 200 0 200  100.0%
Total 26807 792 25691  95.8%

http://www.ncbi.nlm.nih.gov/genome/seq/
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Table 3: Nucleotide Compositions and CG Content of Human Genome*

Chromosome Con
tig

TotalNT aCount tCount cCount gCount nCount cgContent

chromosome 1 111 221782893 64532501 64666282 46259567 46251685 72858 0.417125283
chromosome 2 67 237637456 70911807 71105627 47775263 47824440 20319 0.402292234
chromosome 3 107 194846173 58727854 58669259 38668317 38688705 90775 0.397015865
chromosome 4 57 188402715 58140436 58164039 36016604 36033636 48000 0.382426761
chromosome 5 58 177705559 53637443 53771935 35091021 35138115 67045 0.395199432
chromosome 6 17 175762617 52891826 52814604 35013076 35043110 1 0.398584108
chromosome 7 14 153794793 45567291 45630891 31314481 31282130 0 0.407013851
chromosome 8 52 142788062 42769319 42690950 28651630 28615675 60028 0.401065076
chromosome 9 53 117013362 34301875 34365726 24168748 24160480 16533 0.413023155
chromosome 10 29 131098977 38267257 38314243 27245588 27256413 15476 0.415731703
chromosome 11 43 133239679 38918604 38909875 27663099 27681230 66798 0.415374229
chromosome 12 74 129362603 38253072 38315714 26329402 26367790 96623 0.407360325
chromosome 13 7 95228136 29246468 29330772 18326525 18324371 0 0.384874655
chromosome 14 7 88182284 25971017 26166493 17998763 18042993 3018 0.408718785
chromosome 15 33 83582680 24129759 24090964 17669778 17656733 35446 0.422653485
chromosome 16 37 80889146 22271234 22359413 18065334 18147858 45162 0.447689137
chromosome 17 49 80734148 21862814 21988386 18398790 18403479 80679 0.45584514
chromosome 18 14 74619305 22451800 22471114 14827882 14850569 17940 0.397731539
chromosome 19 17 56446152 14562199 14586541 13625730 13653808 17873 0.483284281
chromosome 20 7 59424940 16503719 16705836 13087575 13127810 0 0.441151224
chromosome 21 5 33917895 10059003 9994559 6937434 6926717 179 0.408756233
chromosome 22 11 33821705 8846873 8800702 8090307 8083806 17 0.478216962
chromosome X 69 147274156 44549100 44643242 29008458 29036066 37288 0.39412566
chromosome Y 6 22660226 6859095 6948801 4410543 4441787 0 0.390654974
Summary 944 2860215662 844232366 845505968 584643915 585039406 792058 0.408949345

* Based on human genomic sequence released on Jan 5, 2003, NCBI
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