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Abstract

Database systems have greatly reduced the cost of managing large collec-
tions of data. The use of small computing devices for collecting data, such as
embedded microprocessors and sensor nodes, has greatly increased. Due to
their limited resources, adequate database systems do not currently exist for
the smallest of computers. LittleD is a relational database supporting ad-hoc
queries on microprocessors. By using reduced-footprint parsing techniques
and compact memory allocation strategies, LittleD can execute common
SQL queries involving joins and selections within seconds while requiring
less than 2KB of memory.
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Chapter 1

Introduction

1.1 Motivation

A growing push towards the collection of data from any and all processes
is underway. The movement known as the “internet-of-things” [GBMP13]
is networking together devices measuring and controlling home appliances,
industrial mechanisms, transportation systems, environmental sensors, and
many other previously disconnected entities. Gathering and leveraging this
massive amount of information requires cheap and abundant sensor nodes
or micro-controllers. In a typical use scenario, sensor nodes may be used
to collect data over an extended period of time. Periodically, the data will
be retrieved from each sensor at which point analysis is performed on the
complete data collection. This analysis may involve filtering irrelevant infor-
mation away, transforming data according to some mathematical procedure,
and computing statistics such as means or extremums over data sets.

Should each device contain significant amounts of data, the time and en-
ergy costs of transmitting the information across networks can be prohibitive.
Further, network communications endanger collected data by exposing them
to imperfect or potentially unreliable protocols. On-device querying allows
for reduced network communication, thus reducing potential data loss or
corruption and energy consumption. Further, data collection may occur
without the presence of network communication, and it may be necessary
for a device to make autonomous decisions based on previously collected
information. Thus developing data query and management techniques for
the smallest of computing devices is critical.

1.2 Challenges

The cost of deploying even simple data management solutions for small
computing devices remains high. This is not without good reason. A typical
database management system (DBMS), targeting a workstation or server,
may have gigabytes or even petabytes worth of random access memory for
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1.3. Goals and Research Questions

query translation, optimization, and execution. A typical sensor node has 1
KB to 1MB of RAM, with many having between 2KB to 64KB of memory.
Further, these devices may be expected to collect data on a battery over
days, weeks, or months, so energy must be used sparingly. Stable storage
usually comes in the form of flash memory, either of NAND or NOR type
[GT05]. Finally, code space, which is the memory reserved for compiled
execution instructions, is usually in the range of 16 KB to 1 MB.

Existing APIs provide access to the most popular relational database
software for servers. Significant research and development effort has been
spent optimizing query performance for these applications. A server could
potentially have millions of times more memory than an embedded processor,
in addition to effectively unlimited energy and copious stable storage space
for both compiled code and data management. These systems are intended to
manage information at a scale not possible with the typical microprocessor.

1.3 Goals and Research Questions

The primary goal of LittleD is to provide an application-ready relational
database management system for the smallest of computing devices. The
developed database should seek to best utilize the limited resources available,
including memory, processing cycles and energy, code space, and stable
storage, as efficiently as possible.

An important subgoal of this thesis work is to determine whether SQL
translation is possible on device. Query execution algorithms have been
provided in previous works [ABP03] for sensor nodes, but can SQL translation
techniques be leveraged concurrently to form a complete system? What
restrictions must be respected? It is expected that execution cycles and
memory will oppose each other, but how will code space play into the resource
mix? What relational operators can and should be implemented on device,
and which relational operators are potentially less beneficial?

1.4 Thesis Statement

This thesis will examine if it is possible to build a SQL query processor
on an embedded sensor node that has efficient performance for querying and
data management. The expectation is that a relational database system will
be constructed, and the major limitations of memory, CPU, and code space
will be analyzed to determine the most critical resource constraints. The
system will be compared to Antelope [TD11].
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Chapter 2

Background

2.1 The Relational Model and its Algebra

Codd [Cod70] first proposed the relational model in 1970, and though
today’s relational databases differ from the original model slightly in some
details, relational database management systems (DBMSs) continue to be
popular. In the relational model, a number of operators are defined which op-
erate over relations, which are defined mathematically. Let S1, S2, S3, . . . , Sn
be a collection of n sets. A relation R is a subset of the Cartesian product
S1 × S2 × S3 × · · · × Sn. That is, R consists of n-tuples, sometimes referred
to as records or rows, where the ith element in a tuple is an element of Si.
A relation that contains n-tuples is said to be n-ary. As is customary for
sets, the order of tuples in a relation is irrelevant, and each tuple is unique
in that there are no duplicate tuples. As implied by the Cartesian product,
the order of elements in the tuple is important. Typically, each element in a
tuple, called an attribute or column, is labeled with a name to convey some
meaning of the domain it is selected from.

Figure 2.1: A relation in Codd’s model, called “employee”.
employee Name depNum Salary

‘Sarah Oliver’ 1 $100000
‘John Smith’ 1 $45000

‘Christian Elliott’ 2 $30000
‘Taylor Moore’ 3 $80000
‘Jen Austin’ 3 $90000

Figure 2.2: A relation in Codd’s model, called “department”.
department ID Name

1 ‘Management’
2 ‘Development’
3 ‘Sales’

3



2.1. The Relational Model and its Algebra

Figure 2.3: A relation in Codd’s model, called “costs”.
costs invoiceNum depNum Description Amount

1 1 ‘Training for John’ $3000
2 1 ‘Logo design work’ $9000
3 3 ‘Sales tracking app’ $10000
4 3 ‘Sales retreat’ $1000
5 2 ‘IDE software’ $8329

Note that this construction for relations bears a strong similarity to a
table of values. The attributes are the columns within the table, and the
tuples are the rows.

The power of the relational model comes from the operators defined,
which taken together form the relational algebra. Operators can be classified
as either unary, those which take one relation as its input, or binary, those
which take two relations as input. Every operator returns a single relation
as output. The following is a brief discussion of relational operators.

The selection operator σ is a unary operator that also takes as input
a Boolean predicate p involving attributes of the relation. The result of a
selection is a new relation that contains only those tuples of the input relation
that satisfy p. One can imagine that this operator iterates through each tuple
in a relation, and allows a tuple to pass through into the output relation if
it satisfies the predicate. The tuples present in the output relation are not
changed otherwise, though the number of tuples in the output relation may
decrease.

Figure 2.4: A selection: σSalary>=50000 AND Salary<100000(employee)
Name depNum Salary

‘Taylor Moore’ 3 $80000
‘Jen Austin’ 3 $90000

The projection operator π is a unary operator that additionally takes as
input a series of expressions that describe how to transform each tuple in
the input relation into a new tuple to be placed in the output relation. A
simple example would be creating a new relation from an input relation R by
adding attributes x and y of R together, as well as including c as the second
attribute in the output. This would be expressed as πa+b,c(R). One should
notice that the number of attributes in the tuples of the output relation may
be less than, equal to, or greater than the number of attributes in the tuples
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2.1. The Relational Model and its Algebra

from the input relation. Further, the order of the attributes could change.

Figure 2.5: A projection: πinvoiceNum, Amount(employee)

invoiceNum Amount
1 $3000
2 $9000
3 $10000
4 $1000
5 $8329

The Cartesian product, ×, is a binary operator which takes as input two
relations R and S and outputs a relation O. The tuples of O are constructed
by taking all pairs of tuples between R and S and creating new tuples where
all attribute values from each pair exist in the new tuple. Written R× S,
a tuple in O has the form (a1, a2, . . . , an, an+1, an+2, . . . , am+n) where ai
appears in a tuple from R if 0 ≤ i ≤ n and appears in S if 0 ≤ i ≤ m.

Figure 2.6: A Cartesian product: employee× department
Name depNum Salary ID Name

‘Sarah Oliver’ 1 $100000 1 ‘Management’
‘Sarah Oliver’ 1 $100000 2 ‘Development’
‘Sarah Oliver’ 1 $100000 3 ‘Sales’
‘John Smith’ 1 $45000 1 ‘Management’
‘John Smith’ 1 $45000 2 ‘Development’
‘John Smith’ 1 $45000 3 ‘Sales’

‘Christian Elliott’ 2 $30000 1 ‘Management’
‘Christian Elliott’ 2 $30000 2 ‘Development’
‘Christian Elliott’ 2 $30000 3 ‘Sales’

‘Taylor Moore’ 3 $80000 1 ‘Management’
‘Taylor Moore’ 3 $80000 2 ‘Development’
‘Taylor Moore’ 3 $80000 3 ‘Sales’
‘Jen Austin’ 3 $90000 1 ‘Management’
‘Jen Austin’ 3 $90000 2 ‘Development’
‘Jen Austin’ 3 $90000 3 ‘Sales’

Join operators are binary operators that produce an improper subset of
the Cartesian product over the same input relations. Within the relational
algebra, many types of joins are defined, but for the present work, only one
is necessary. A θ-join, θ-1, filters the result of a Cartesian product by a

5



2.2. SQL and its Core Features

predicate θ. The following is an identity in terms of the resultant relation:

1θ (R,S) = σθ(R× S) (2.1)

Figure 2.7: A θ-join: employee 1employee.deptNum=department.ID department

Name depNum Salary ID Name
‘Sarah Oliver’ 1 $100000 1 ‘Management’
‘John Smith’ 1 $45000 1 ‘Management’

‘Christian Elliott’ 2 $30000 2 ‘Development’
‘Taylor Moore’ 3 $80000 3 ‘Sales’
‘Jen Austin’ 3 $90000 3 ‘Sales’

In contrast to the theoretical model of relations and their algebra that
has been developed, practical considerations dictate deviations in how the
model is implemented. It is sometimes necessary to allow for a relation to
contain duplicate records. Often times, database systems will allow for ways
to remove duplicates within a relation. While most relational DBMSs will
not guarantee a specific order on un-indexed relations, it is reasonable to
assume that an implicit order exists due to the nature of digital storage
media. Further, a computer is generally unable to determine the domain of
possible values from the name of an attribute. As such, schemas, which are
ordered lists of name and domain type pairs for each attribute, are used. A
schema may also describe other properties of a relation not discussed here,
including value constraints.

2.2 SQL and its Core Features

How a user of a relational database interacts with the system is through
SQL, which stands for Structured Query Language. SQL has been stan-
dardized as a language1 by the American National Standards Institute2 first
in 1986 and then by the International Organization of Standardization3 in
1987. Enterprise class relational DBMSs implement many of the numerous
standardized language features found in SQL. For databases targeting smaller
computing devices, such robust language support is impossible due to code

1http://standards.iso.org/ittf/PubliclyAvailableStandards/
c053681_ISO_IEC_9075-1_2011.zip

2http://www.ansi.org/
3http://www.iso.org/iso/home.html
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2.2. SQL and its Core Features

space restrictions. What immediately follows is a discussion of the core set
of SQL features supported by this work.

In SQL, identifiers are used to name relations and attributes, as well as
other important objects such as indexes. Reserved words or key words are
strings that cannot be used as identifiers unless identifier quotes are used as
delimiters. Commands such as SELECT and WHERE are examples of reserved
words. SQL is written in statements, which are sets of tokens, including
reserved words and identifiers, that should be interpreted and executed as a
whole. Statements are whitespace ignorant except for the whitespace needed
to delimit individual tokens. In general, statements are classified by the
action they perform. All statements have a form or syntax they must adhere
to in order to be valid.

Schemas for relations are defined in CREATE TABLE statements. They
follow the basic form found in Figure 2.8. The attributes are defined in the

Figure 2.8: Syntax for creating a relation in SQL.

CREATE TABLE <relation-name>
(

<attribute1-identifier>
<attribute1-type>
[<attribute1-constraints>],

<attribute2-identifier>
<attribute2-type>
[<attribute2-constraints>],

...
<attributeN-identifier>

<attributeN-type>
[<attributeN-constraints>]

[, extra_constraints]
);

order they should appear in the tuples of the relation. The most common
types of attribute constraints are key constraints. A superkey for a relation is
any subset of the attributes that uniquely identify a row. A key is a superkey
where no attribute can be removed from the set such that the set is still
a superkey. A primary key is a key that is designated to identify tuples
within a relation. A foreign key is a key within a relation R that identifies
tuples in a relation S. The attributes of a foreign key from R to S each map
directly to a single attribute of the primary key of relation S. Further, the
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2.2. SQL and its Core Features

domains of the attributes in the foreign key must be an improper subset of
the domain of the attribute each is mapped to.

Another commonly used constraint involves the nullity of an attribute.
NULL represents a lack of value or a missing value. An element in a tuple
may be NULL regardless of the attribute’s domain provided no constraint
prevents it from doing so. If NOT NULL is included in the list of constraints
for an attribute in a relation’s schema, that attribute can never be set to
NULL.

Figure 2.9: An example relation with key and nullity constraints.

CREATE TABLE department
(

id INT PRIMARY KEY,
name CHAR NOT NULL

);

Once a schema has been defined, INSERT, UPDATE, and DELETE state-
ments can be used to add data to a relation, modify data in a relation,
and remove data from a relation, respectively. These three statements form
what is referred to as the Data Manipulation Language portion of SQL. The
syntax for an INSERT statement is given by Figure 2.10. In the second form

Figure 2.10: Syntax for adding a tuple to a relation.

INSERT INTO <relation-name>
VALUES (

<attribute1-val>,
<attribute2-val>,
...,
<attributeN-val>

)

or alternatively

INSERT INTO <relation-name>
(<attribute-list>) VALUES (

<attribute-value-list>
)

the values must agree with the domains specified in the list of attributes.

8
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Any unspecified columns in the attribute list are set to NULL. If a nullity
constraint is violated, an error would occur.

A DELETE statement removes tuples from a relation. Its syntax is as in
Figure 2.11. The WHERE clause specifies a filtering predicate that selectively

Figure 2.11: Syntax for deleting tuples from a relation.

DELETE FROM <relation-name>
WHERE <predicate>

chooses tuples for removal. For instance, DELETE FROM R WHERE x = 1
only removes those tuples in the relation R that have the x attribute set to
1.

The UPDATE statement modifies tuples already in a relation. The state-
ment takes the form of Figure 2.12. The attribute values must match the

Figure 2.12: Syntax for updating tuples in a relation.

UPDATE <relation-name>
SET <attribute-name1>=<attribute-val1>
[, <attribute-name2>=<attribute-val2>[, ...]]
WHERE <predicate>

domains of the paired attribute names specified in the SET clause. As with
DELETE statements, the WHERE clause selectively chooses which tuples to
update. As an example, UPDATE R SET x=2 WHERE y > 1 changes all
x attributes in relation R to have value 2 whenever the attribute y has value
greater than 1. In this example, x has some sort of real-valued domain.

The records stored within a database are useless if there is no way to
extract them. The SELECT statement is used to retrieve information from
one or more relations. The result of a SELECT statement is usually a relation,
but can also be an atomic value. Codd [Cod70] defined an atomic value as
one that could not be decomposed. An attribute’s value is almost always
atomic. The SELECT statement syntax is in Figure 2.13. The SELECT
statement is both powerful and complicated. The only mandatory clause
within the statement is the SELECT clause, but only the most trivial of
queries requires it alone. The list of expressions in the SELECT clause may
involve attributes from relations listed in the FROM clause. Each expression
can be arbitrarily complex, involving arithmetic operations (+, −, ∗, /, %),

9



2.2. SQL and its Core Features

Figure 2.13: Syntax for extracting data from a database in SQL.

SELECT <expression-list>
FROM <relation-list>
WHERE <predicate>
GROUP BY <grouping-list>
HAVING <predicate-list>
ORDER BY <expression-list>

defined functions (SUBSTR(...)), as well as aggregate functions. Further,
the special * operator is shorthand for all attributes.

Figure 2.14: A SELECT statement without a projection.

SELECT *
FROM employee

Figure 2.15: A SELECT statement with projecting expressions.

SELECT name, salary*2 - 10000
FROM employee

The FROM clause contains a list of relations to be joined together. In
the simplest of forms, tables are listed with commas separating each table,
with each comma implicitly defining a Cartesian product or a join if an
appropriate filtering predicate is specified in the WHERE clause. Figure 2.16
provides an example of such a query.

Alternatively, one can use an explicit syntax to specify joins. As a single
relation specification within the FROM clause, a series of tables can be joined
using JOIN ON syntax, as in Figure 2.17.

This same syntax can also be used to specify different types of outer joins
not covered here.

The WHERE clause is familiar from UPDATE and DELETE statements.
For SELECT statements, the WHERE clause is very important because query
translators are able to break apart a predicate specified here such that each
piece can be evaluated within the specified joins. This is important because
it means tuples are filtered before they are considered for joins, which results
in fewer computations for a query. Better yet, the user writing the query
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Figure 2.16: A SELECT statement involving two implicit joins. The condition
for the joins are all specified in the WHERE clause.

SELECT *
FROM R, S, T
WHERE R.id = S.id AND S.t_id = T.id

Figure 2.17: A SELECT statement involving one implicit join and two explicit
joins. Note that the join condition can be specified in either the ON clause
or the WHERE clause for explicit join notation.

SELECT *
FROM R,

S JOIN T ON S.t_id = T.id JOIN W ON T.id = W.id
WHERE R.id = S.id

usually is not required to think about how to optimally filter tuples at each
join. From the user’s perspective, the FROM clause defines a relation resulting
from repeated Cartesian products that are filtered using a selection predicate
defined in the WHERE clause. As will be seen, there are code complexity costs
associated with such optimization.

The GROUP BY clause controls how aggregate functions operate. An ag-
gregate function takes as input some arbitrary inner expression not involving
an aggregate function itself. According to the GROUP BY clause, the input
relation (the result of the FROM clause’s joins filtered by ON and WHERE
predicates) is iterated over and the inner expression is evaluated once for
every tuple, and an aggregate value is computed. Almost all SQL systems
support AVG, MAX, MIN, COUNT, and SUM as aggregate functions, each doing
exactly what the name implies.

Consider a relation R = {(1, 2), (3, 4)} with the first attribute named
odds and the second named evens. Then

SELECT MAX(odds) * MIN(evens) FROM R

would return the relation {(6)} (or in many systems, the single atomic value
6).

In many instances, aggregates may need to be performed within partitions
or categories. For example, a business owner may wish to know what his
most expensive bill was in each department. The relation costs contains
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attributes depNum, invoiceNum, description, and amount (see Figure 2.3).
Simply specifying the query

SELECT MAX(amount) FROM costs

will result in getting the max overall cost. Using the GROUP BY clause, this
becomes

SELECT depNum, MAX(amount)
FROM costs
GROUP BY depNum

which will return a max for each department. If the owner wanted to
further break down costs by invoice, she may simply add the invoiceNum
attribute to the GROUP BY list

SELECT depNum, invoiceNum MAX(amount)
FROM costs
GROUP BY depNum, invoiceNum

The attributes or expressions appearing in the SELECT clause that are
outside of an aggregate function must be in the GROUP BY clause. Otherwise,
the query will not make sense, and most systems will raise an error.

Filtering predicates involving aggregate functions can be specified in the
HAVING clause, but not the WHERE clause. A predicate defined in the WHERE
clause is always evaluated before any aggregate function in the SELECT clause
is defined. This is for performance and correctness reasons. If an aggregate is
being computed, the fewer tuples to be considered, the faster the computation
completes. Further, an aggregate should not consider those tuples which do
not match the WHERE predicate since it might affect the computed values.
The HAVING clause evaluates after an aggregate is computed. Continuing
the last example, if the business owner only wishes to view those costs above
$8000 dollars, she would write

SELECT depNum, invoiceNum, MAX(amount)
FROM costs
GROUP BY depNum, invoiceNum
HAVING MAX(amount) > 8000

Once a relation has been built, it may be necessary to order the result
according arbitrary criteria. The ORDER BY clause provides the necessary

12



2.3. Existing Query Processing Techniques

mechanism to do so. The clause specifies a list of attributes or expressions,
each optionally followed by a keyword to indicate ordering direction, either
ASCENDING (ASC) or DESCENDING (DESC). ASCENDING is assumed if no
direction keyword is present. Should the business owner wish to know which
departments had the most expensive bills over $10000 in decreasing order,
she could write

SELECT depNum, invoiceNum, MAX(amount)
FROM costs
GROUP BY depNum, invoiceNum
HAVING MAX(amount) > 8000
ORDER BY MAX(amount) DESC

Since order must be enforced after joins and aggregation, aggregate
functions may appear in the ORDER BY clause but are not required. Further,
aggregate functions used in the ORDER BY clause need not show up anywhere
else. For instance, the business owner may wish to order the results primarily
by the average money spent per department, and then secondarily by the
department number. She would then write

SELECT depNum, invoiceNum, MAX(amount)
FROM costs
GROUP BY depNum
HAVING MAX(amount) > 8000
ORDER BY AVG(amount) DESC, depNum

Note that since depNum appears in the ORDER BY clause, it must also
appear in the GROUP BY clause. Otherwise, the query would be asking the
database to sort on values that may not be consistent within the same group,
and would have no way of deciding which value to choose. If there are no
grouping attributes and no use of aggregate functions, then any attribute or
expression may appear in the ORDER BY clause.

2.3 Existing Query Processing Techniques

Converting the text of a query to an executable form is called query
processing, to which there are usually multiple steps [Gra93]. Query parsing
converts the input query into a tree of symbols called an expression tree
or parse tree. This parse tree is then translated into a logical query tree or
logical query plan to be optimized. Once all optimization work is complete,
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the resulting logical query tree is converted to a physical plan, also called a
physical query tree. The evaluator then executes the physical plan to return
the query output.

Query optimization is perhaps the most important step for most systems.
A logical query plan can be improved to use less computational cycles, less
memory, or both by using appropriate algorithms for operators as well as
by reorganizing entire sections of the query tree. Perhaps the most common
instance of such reorganization is expression pushing. One form of expression
pushing involves breaking apart predicates and pushing pieces down into
operators at lower portions of the tree such that fewer tuples are processed
at operators higher in the tree. This form was discussed in Section 2.2.
Another type of expression pushing places new operators, usually projections,
at targeted areas in the query plan to reduce the size of each tuple processed.

Algorithm choice for the relational operators is another tool used by
database systems to reduce query execution costs. Typical relational database
systems have the luxury of large amounts of available RAM in addition to
virtually unlimited stable storage. These system qualities allow for business-
class RDBMSs to leverage algorithms involving hash buckets [DKO+84],
external merge sorts [DKO+84], among other clever tools.

None of these techniques are feasible for databases targeting much smaller
devices. Using valuable code space on complicated optimization procedures
or varying implementations for each operator is impractical. Algorithms
making heavy use of memory are not feasible since the database may have
less than 1KB of RAM available to it. Swapping in-memory data to and from
stable storage is also not advisable since flash memories have asymmetric
read and write performance characteristics. Thus, new querying techniques
are required.

The simplest technique, as discussed by the PicoDBMS [ABP03] frame-
work, is to enforce minimal RAM usage through re-computation. The authors
define a framework including algorithms which achieve the lowest RAM foot-
print possible for basic relational operators. The authors demonstrate that
this re-computation becomes exorbitantly costly as the amount of data grows.
Giving even small amounts of extra RAM to their algorithms greatly reduces
execution cycles.

A similar class of algorithms for relational operators known as ‘tuple-at-a-
time’ algorithms require only a single tuple or two be present in memory at a
given instant. Each operator returns a single tuple on request. When a tuple
is requested, it requests the next tuple from each of its child operators and
attempts to produce a result. If an operator cannot produce a tuple from the
current child tuples, then it will request new child tuples as necessary. When
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any of the children run out of tuples to return, then the current operator
has also run out of tuples. Scan operators, which do not themselves have
children and are always the deepest child operators, read tuples into memory,
one at a time, until the entire relation has been scanned. The tuple-at-a-
time algorithms for each of the relational operations under consideration are
detailed here.

Algorithm 1 Tuple-at-a-time selection

1: procedure Select(child, p) . Child operator, filtering predicate
2: do
3: t← next(child)
4: while t 6= nil and p excludes t
5: return t
6: end procedure

Algorithm 2 Tuple-at-a-time projection

1: procedure Project(child, exprs) . Child operator, projections
2: told ← Next(child)
3: if told = nil then return nil
4: end if
5: tnew ← NewTuple()
6: for each e ∈ exprs do
7: AddAttribute(tnew, told, e)
8: end for
9: return tnew

10: end procedure
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Algorithm 3 Tuple-at-a-time nested-tuple join

1: procedure NTJoin(left, right, p, tleft)
2: while true do
3: tright ← Next(right)
4: if tright = nil then
5: tleft ← Next(left)
6: if tleft = nil then
7: return nil
8: end if
9: Rewind(right)

10: tright ← Next(right)
11: end if
12: if Joins?(tleft, tright, p) then . If tuples join for predicate
13: return Join(tleft, tright)
14: end if
15: end while
16: end procedure

These algorithms all assume no order within the relation. They are
memory efficient in the sense that they require little more memory than that
of a single tuple. However, these algorithms potentially require more time
than needed assuming some order on the input relations. For instance, the
join algorithm presented is the classic nested-tuple join, which loops through
each tuple in the left input for each tuple in the right input. If the order of
one of the relations is known for the join predicate, one can process each
tuple of the unordered relation exactly once by logarithmically searching for
the first tuple matching the join criterion and iterating over the rest. This
reduces the computational and I/O complexity cost from the product of the
sizes of the two input relations to |U |log2(|O|)4 on average where U is the
unordered relation and O is the ordered relation. Other relational algorithms
similarly benefit from the use of indexes to reduce the total number of tuples
processed.

4In the degenerate case where every tuple from the unordered relation matches every
other tuple in the ordered relation, the worst-case complexity is still quadratic.
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Algorithm 4 Tuple-at-a-time one-sided index join

1: procedure OSIJoin(indexed, unindexed, p, tunidx, leftindexed)
2: while true do
3: tidx ← Next(indexed)
4: while tidx = nil do
5: tunidx ← Next(unindexed)
6: if tunidx = nil then
7: return nil
8: end if
9: tidx ← FindFirstMatching(indexed)

10: end while
11: if Joins?(tidx, tunidx, p) then
12: if leftindexed then
13: return Join(tidx, tunidx)
14: else
15: return Join(tunidx, tidx)
16: end if
17: end if
18: end while
19: end procedure

2.4 Previous Work

Since most embedded systems use flash memories, many people have
put effort into creating safe, efficient algorithms for managing data on such
devices. Gal et. al. [GT05] provide key algorithms including those for
block-mapping and erase-unit reclamation with wear levelling. They then
go on to describe the implementation details of several file systems for flash
memories. Indexing structures for the two most common forms of flash
memory, NOR flash and NAND flash, have also been the focus of many
authors ([LZYK+06], [KJKK07], [AGS+09]). Sorting algorithms for flash
memories have also been devised [CL10].

COUGAR [BGS01] and TinyDB [MFHH05] are data management sys-
tems for sensor networks. Query translation and parsing is performed
off-device. The databases read sensors as if they were relations distributed
across a network of devices and a single lead node coordinates queries.
Queries involving selections, projections, joins, aggregation, and grouping
are supported through an SQL-like interface (TinyDB) or XML (COUGAR).
TinyDB additionally allows users to query sensor readings directly at fixed
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sampling periods. The sampling periods can be directly specified, or alterna-
tively, a lifetime goal in hours, days, or joules used by the system to estimate
appropriate sampling rates can be provided. Sensors can be optionally read
based on their voltage requirements. COUGAR also provides mechanisms
for detailing the intended duration of a query.

PicoDBMS [PBVB01] [ABP03] implements a relational DBMSs for small
computing devices without on-board query translation. PicoDBMS provides
a design framework that recomputes partial query results as much as possi-
ble to reduce memory requirements. Further, PicoDBMS implements this
framework to demonstrate the relationship between memory requirements
and execution time. The algorithms described within the work [ABP03]
adapt to available memory. Slow execution time results from limited memory
available. As the available memory grows, execution time falls drastically.
PicoDBMS was specifically designed for smart cards where security is of
great importance. A key application is in personal health cards that track
patient records [PBVB01].

DBMSs for less-constrained embedded devices such as smart phones
currently exist. The popular SQLite5 is used on iOS and Android phones
and tablets all the way up to web browsers on desktop computers. Other
relational databases, including H2 Database Engine6, SQL Server Compact7,
and MiniSQL8 also target less-constrained embedded systems. Non-relational
databases for similar computing devices include UnQLite9 and BerkeleyDB10.
None of these systems meet the extreme code space and memory restrictions
of the smallest of devices.

Antelope [TD11] is a relational database for constrained devices that
leverages AQL, a language similar to but not compliant with SQL. AQL
has separate statements for declaring a relation and adding attributes to a
relation. Antelope requires indexes for joins and aggregation. It is also able
to use indexes to speed up projections and selections. Further, Antelope
requires a fixed amount of RAM totalling over 3.7KB. For example, the
SELECT expression 2*x/3 + 7*y defining a new projected attribute is not
supported in Antelope. Expression evaluation is supported via a shunting-
yard style algorithm for parsing to a post-fix byte code to be evaluated.

5http://www.sqlite.org/
6http://www.h2database.com/
7http://www.microsoft.com/en-us/sqlserver/
8http://www.hughes.com.au/products/msql
9http://www.unqlite.org/

10http://www.oracle.com/technetwork/database/
database-technologies/berkeleydb/overview/index.html
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Chapter 3

LittleD Implementation
Summary

LittleD uses tuple-at-a-time algorithms to keep memory usage to a mini-
mum. For larger datasets involving joins, simple indexes are used to achieve
reduced computational and I/O complexities. LittleD specifically supports
in-order indexes, also called in-place indexes, where the desired order of
the tuples is assumed to be the physical order of the tuples in the relation.
These techniques are not new but represent a good basis for the execution of
queries.

The major difference between LittleD and other systems is the query
translation procedure. Traditional query parsing and optimization is memory
and code space intensive. An auto-generated lexical analyzer, also known
as a lexer, cannot be used since the resulting binary is too large for the
constrained space of the target devices. Using an auto-generated parser is
likewise impossible. Further, traditional parsing techniques involve the use of
in-memory parse-trees. This extra demand on RAM consumption means that
queries whose executable form could potentially fit in the available memory
may become unanswerable. As such, the lexer and parser were hand written
to directly translate SQL into executable byte-code. The translation process
involves parsing, validation, and optimization all in a single component.

Table 3.1: Relational Operator Support and Implementation Details
Operator LittleD Antelope

Join
Nested tuple and index-
based

Index-based

Select Single-pass
Single-pass and index-
based

Project Arbitrary expressions Only simple attributes

Sort
Single-record selection sort
on arbitrary expressions

Index-based
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Figure 3.1: Query Processor Architecture for a typical SQL database and
LittleD
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To achieve a single translator component, the parsing order of the clauses
for SELECT-statements is fixed. The first clause to be parsed is the FROM
clause so that attribute validation can be performed on-the-fly. Attribute
validation ensures specified attributes throughout the query are neither am-
biguous (SELECT a FROM A, B WHERE A.a > B.a) nor non-existent.
Once the FROM clause has been parsed (and the scans and joins defined there
are created), the WHERE clause is parsed. Finally, the expressions within the
SELECT clause are parsed and validated.

Despite the lack of a distinct query optimizer, some optimization involving
joins is possible. Since join operators consume a considerable amount of
memory, re-ordering joins is not possible. To achieve relatively ideal but not
necessarily optimal join ordering, the following transformations are used:

− Un-indexed joins are converted to indexed joins whenever possible. The
filtering predicate must be compatible with an available index for one
of the join’s input relations. An index is compatible with a predicate
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the if index sorts the relation using the attributes from the relation in
the same way they are used in the joining predicate. For instance, a
relation’s index which orders on attribute x would not be compatible
with the join predicate x % 7 = y but would be compatible with the
join predicate x = y.

− Left-deep join trees are used exclusively. Standard join algorithms
iterate over each tuple in the right relation multiple times for each
tuple in the left relation. If the input relation on the right is itself a
join, that join must be re-computed multiple times. If it is on the left,
it must be computed only a single time. Since indexed joins can have
either the left or the right relation as the ordered relation, left-deep
trees generally provide good performance characteristics. Left-deep
trees are also easily constructed. During FROM clause parsing, each
relation can be initialized in the order they appear. Then the joins are
initialized in forward order. That is, after scans for each relation in
FROM R1, R2, ..., Rn have been initialized, memory is allocated
for the n− 1 join operators. Then the first join J1 between R1 and R2

is initialized. The second join between J2 and R3 is initialized, and so
forth until all the joins have been constructed.

A key requirement for this type of database is to use a memory allocator
that is as compact as possible. To accomplish this task, an allocator was
written using two stacks. An array of fixed sizes is declared statically and
then used as the allocation resource. The beginning and end of the array
are initially the tops of the front stack and back stack, respectively. New
allocations always occur on the top of one of these stacks, but de-allocations
may occur in any order. The allocator is able to detect out-of-order de-
allocations and mark these regions such that once the top of the stack is
finally freed, any previously marked regions immediately under the top are
also de-allocated. Due to the natural flow of data in relational databases, a
fixed order of allocations and de-allocations is common.

There are further advantages to using such a memory allocator. Until
the first de-allocation, no memory can possibly be fragmented. Since in
almost all cases the de-allocation of memory occurs all at the end, there is
effectively no memory fragmentation. The cost of allocating a new segment
on the front of the stack is two pointers and on the back the cost of allocation
is one pointer. Detecting out-of-memory errors is accomplished by simply
checking if a new allocation will cause the tops of the stacks to collide. By
knowing ahead of time how much memory is required to execute an execution
plan, out-of-memory problems can be detected well before runtime. Valuable
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energy is thus conserved and segmentation faults are also avoided, which
could lead to potential data corruption and other destructive behavior. Many
of the algorithms used to convert SQL into an executable plan require the
use of one or two stacks. In converting mixed-infix expressions into postfix
only byte code, the front stack is used for the resulting expression while the
back stack is used to determine operator order based-on operator precedence
and parentheses. Using the front stack for the resulting evaluable expression
means not having to reverse the expression once complete.

To reduce overhead even more, special functions were implemented which
allows for the top most memory sections on each stack to be extended in
size without modifying the current data. Not only does this reduce memory
overhead, it also significantly simplifies translation efforts. For example,
during the parsing of expressions, the size of byte-code representation of an
expression does not need to be known ahead of time, reducing the amount
of work needed for overall execution. Each time a new part of the expression
must be added, the stack is simply resized.
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Chapter 4

Experimental Results and
Discussion

4.1 Experimental Setup

In order to compare LittleD’s performance characteristics with Antelope,
a common execution platform was needed. A Zolertia Z1 device simulated
by the MSPSim emulator served precisely this purpose. MSPSim is cycle-
accurate. Both databases were compiled for the Contiki real-time operating
system [Con] and used the Coffee File System [TDHV09] to store relation
data.

The executed queries as expressed in both AQL and SQL are in Table
4.2. The input relation’s size and output relation size is also noted there.
Execution times are given in Figure 4.1 while memory usage is given in
Figure 4.2. Further, the Resource Product is defined to be the product of the
amount of memory used during a query multiplied by the number of seconds
taken to execute a query. This metric is meaningful in that it describes how
well the database balanced execution time, which is directly proportional to
the number of clock-cycles used and thus the amount of energy consumed,
and the memory required.

Both databases leverage inline indexes on the first attribute for all tables
and prefer indexing the right relation within a join whenever possible. For
LittleD, this reduces the memory needed when upgrading un-indexed joins
to indexed joins. As noted before, LittleD is capable of executing completely
un-indexed joins, while Antelope is not. Benchmarks are only given for
indexed joins.

4.2 Code Space and Memory Requirements

Both systems require a considerable amount of code space. As tested,
including a small amount of utility code for generating relations, Antelope
required 48 KB and LittleD required 55 KB. The amount of utility code
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Figure 4.1: Query Execution Experimental Results
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would be comparable to that needed to collect data in a real use-case.
Further, Antelope requires a fixed static allocation of 3.4 KB of RAM

plus between 0 to 328 KB of dynamically allocated memory [TD11]. In
comparison, LittleD uses a fixed amount memory. No more than 1000 bytes
of memory were required for each of the executed queries. Assuming Antelope
does not allocate any dynamic memory, Antelope requires over 500% more
memory than LittleD for the most memory-intensive queries. For the least
memory intensive queries, Antelope requires over 1300% more memory.

4.3 Discussion of Results

The first query is a serialized scan over a large relation without any
filtering predicate. LittleD does not build a projection when it is not necessary,
meaning it can execute the query faster than Antelope. Antelope does not
support an equivalent to SELECT * syntax and thus must build and execute
a projection, requiring valuable execution cycles.

Queries 2 and 3 have similar execution times for both databases. LittleD
and Antelope both use indexes to significantly decrease the number of tuples
handled. Antelope is able to use an index again for query 4, whereas
LittleD cannot due to more limited indexing support. Antelope uses an
inference engine to determine from a predicate the range of values that
must be iterated over. LittleD supports range expressions of the form attr
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Figure 4.2: LittleD vs. Antelope Memory Usage
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<RELOP> <INTVAL> where <RELOP> is one of =, ! =, >, <, >=, or <=
and <INTVAL> is an integer value. Once an index cannot be used, as in
query 5, again the two databases perform nearly equally.

Query 6 clearly demonstrates that the time taken to execute a query is
linearly proportional to the number of calculations that must be evaluated
per tuple. Calculating three operations over each tuple significantly increases
the amount of time needed, despite the small size of the output relation.
This query is not executable for Antelope because unlike LittleD, it does not
have support for arbitrary projecting expressions. Antelope only supports
the projection of individual attributes. In a real application, this would
mean that each tuple would need to be iterated over to calculate a new value.
Not only does this add considerable complexity to an application, it possibly
increases the amount of memory required for a task.

Queries 7, 8, and 9 all demonstrate Antelope’s superiority in terms of
execution time for similar joins. However, Antelope makes simplifying as-
sumptions, which can likely explain its speed advantage. AQL only allows
for equijoins, whereas LittleD supports arbitrary inner joins via SQL. Fur-
thermore, experimentation revealed that the implementation of the join
algorithm did not always return correct results. The benchmarks provided all
returned correct output relations, but for a variety of other cases, the output
relation was incorrect. These limitations make it difficult to compare the
join performances in a meaningful way, but it should be noted that LittleD
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Figure 4.3: Query Resource Efficiency Results
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was never more than three times slower than Antelope for the benchmarked
joins. Query 8 was slower than query 7 for both databases since a greater
number of binary searches are needed to compute the results.

For all queries, the resource product for LittleD is smaller than for
Antelope. In the closest case, Antelope has a resource product that is only
twice as large as LittleD. In the worst case for Antelope, its resource product
is over 40 times larger than that of LittleD.
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Table 4.1: Queries Executed
Query LittleD SQL String Antelope AQL String

1 SELECT * FROM r SELECT * FROM r

2
SELECT * FROM r WHERE
attr0 > 4999

SELECT attr0, attr1
FROM r WHERE attr0 >
4999

3
SELECT * FROM r WHERE
attr0 < 100

SELECT attr0, attr1
FROM r WHERE attr0 <
100

4
SELECT * FROM r WHERE
attr0 >= 7 AND attr0
<= 6009

SELECT attr0, attr1
FROM r WHERE attr0 >=
7 AND attr0 <= 6009

5
SELECT * FROM r WHERE
attr1 < 100

SELECT attr0, attr1
FROM r WHERE attr1 <
100

6

SELECT attr0, attr2/4,
(attr1+1)*2 FROM r
WHERE attr1 < 10 OR
(attr2 / 4) = 13

No Executable Equivalent

7
SELECT * FROM l,
r WHERE l.attr0 =
r.attr0

JOIN l, r ON attr0
PROJECT attr0, attr1

8
SELECT * FROM l,
r WHERE l.attr0 =
r.attr0

JOIN l, r ON attr0
PROJECT attr0, attr1

9
SELECT * FROM l,
r WHERE l.attr0 =
r.attr0

JOIN l, r ON attr0
PROJECT attr0, attr1

27



4.3. Discussion of Results

Table 4.2: Information about queried relations. For joins, table l has same
schema as table r.
Query Relation Schema Relation Sizes Output Tuples

1
CREATE TABLE r
(attr0 INT, attr1
INT, attr2 INT)

|r| = 10000 10000

2
CREATE TABLE r
(attr0 INT, attr1
INT, attr2 INT)

|r| = 10000 4999

3
CREATE TABLE r
(attr0 INT, attr1
INT, attr2 INT)

|r| = 10000 5000

3
CREATE TABLE r
(attr0 INT, attr1
INT, attr2 INT)

|r| = 10000 100

4
CREATE TABLE r
(attr0 INT, attr1
INT, attr2 INT)

|r| = 10000 6003

5
CREATE TABLE r
(attr0 INT, attr1
INT, attr2 INT)

|r| = 10000 6003

6
CREATE TABLE r
(attr0 INT, attr1
INT, attr2 INT)

|r| = 10000 6

7
CREATE TABLE r
(attr0 INT, attr1
INT)

|l| = 100, |r| = 1000 100

8
CREATE TABLE r
(attr0 INT, attr1
INT)

|l| = 1000, |r| = 100 100

9
CREATE TABLE r
(attr0 INT, attr1
INT)

|l| = 100, |r| = 100 100
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Chapter 5

Conclusion

In this work, LittleD, a relational database for sensor nodes and embedded
computing devices, was presented. A tuple-at-a-time approach to query
algorithms was used. The novel features of LittleD include a single-component
SQL to executable-plan translator and a memory allocator using two stacks
within a single memory region.

Experimentally, LittleD is always more memory efficient than Antelope,
the database that most closely matches the goals of LittleD, while having com-
parable execution time performance and similar code space requirements. No
query for LittleD was more than three times slower than a comparable query
for Antelope, though Antelope always used at least five times more memory
than LittleD. LittleD supports the more familiar SQL standard including
more general expressions in projections in comparison with Antelope.

This work also provides useful insights to applications of database tech-
nology with microprocessors. The use of indexes drastically improves the
performance of many queries and should thus be regarded as a key component
of any database targeting resource constrained platforms. The resources
available, namely memory, stable storage, code space (ROM), and execution
time and energy, are not equally important. While memory is limited, LittleD
has low memory requirements for reasonable SELECT-FROM-WHERE queries.
If a database system cannot fit into the code space of a device, it can never
be used, and thus it should be considered at present the most constraining
resource. Almost half of the ROM required for LittleD to execute is consumed
by the query translation system. While SQL translation is possible on device,
it is not necessarily beneficial for all applications. Finding ways to reduce
the complexity of the parser, possibly by moving query translation off device,
would allow for smarter algorithms to be used in query execution, possibly
saving execution cycles and thus energy. Device manufacturer’s would be
wise to give these devices more ROM to accommodate for more sophisticated
solutions. Though not tested here, all resources become significantly more
taxed when sorting and aggregation are also included. Developers using
LittleD or similar systems may well have to choose which features to compile
for an application due to such resource limitations.
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5.1 Future Work

Future research will focus on further reducing resource costs. A more
sophisticated indexing strategy will be investigated for data where an order
cannot be assumed at insertion time. Finding ways to better leverage the
indexes throughout the query execution engine will allow for lower RAM
and energy usage. Potentially moving query translation off-device could also
save valuable code space. Improved sorting methods such as MinSort [CL10]
will also be implemented.
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