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Abstract

In this work, we explore an online reinforcement learning problem called the multi-armed bandit

for application to improving outcomes in a web marketing context. Specifically, we aim to produce

tools for the efficient experiment design of variations of a website with the goal of increasing some

desired behavior such as purchases.

We provide a detailed reference, with a statistical lens, of the existing research in variants and

associated policies known for the problem, then produce a set of theoretical and empirical analyses

of specific application area questions. Concretely, we provide a number of contributions:

First, we present a new standardized simulation platform integrating knowledge and techniques

from the existing literature for the evaluation of bandit algorithms in a set of pre-defined worlds.

To the best of our knowledge, this is the first comprehensive simulation platform for multi-armed

bandits capable of arbitrary arms, parameterization, algorithms and repeatable experimentation.

Second, we integrate Thompson sampling into linear model techniques and explore a number of

implementation questions, finding both that replication of Thompson sampling and adjusting for

estimative uncertainty is a plausible mechanism for improving the results.

Third, we explore novel techniques for dealing with certain types of structural non-stationarity

such as drift and find that the technique of weighted least squares is a strong tool for handling both

known and unknown drift. Empirically, in the unspecified case, an exponential decaying weight

provides good performance in a large variety of cases; in the specified case, an experimenter can

select a weighting strategy to reflect their known drift achieving state-of-the-art results.

Fourth, we present the first known oracle-free measure of regret called statistical regret, which

utilizes intuitions from the confidence interval to produce a type of interval metric by replaying

late-experiment knowledge over prior actions to determine how performant an experimenter can

believe their results to be.

Fifth, we present preliminary results on a specification-robust and computationally efficient

sampling technique called the Simple Optimistic Sampler which shows promising outcomes via a

technique which requires no modelling assumptions to implement.
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Preface

This thesis is the original and independent work of the author, Giuseppe A. Burtini. The research

was identified, designed, performed and analyzed by the author.

Sections 3.2 (Linear Model Thompson Sampling: LinTS) and 3.4 (Nonstationary Time Series

Techniques) draw heavily from the published work Burtini et al. [36] (2015a), where Drs. Jason

Loeppky and Ramon Lawrence provided an advisory role.

A variant of the work which appears in chapter 2, in which Drs. Jason Loeppky and Ramon

Lawrence provided an advisory and editorial role, has been submitted to Statistics Surveys Burtini

et al. [37] and published on the preprint archive arXiv.org.

The work which appears in sections 3.3, 3.5 and 3.6 is intended to be submitted for external

publication either in whole or in part at a future date.

All other work is unpublished as of this date.

The title “One Weird Trick” for Advertising Outcomes refers to a style of advertising popularized

in 2013 after the acknowledgment of some influential experimental results in consumer psychology

– highlighting just how fundamental, and even formulaic, the scientific approach of advertising has

become. The language of “One Weird Trick” itself has become memetic in online advertising and

even in a minority of academic work [97]. This work discusses an approach to performance-driven

experimentation appropriate for scientific advertising.
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Chapter 1

Introduction

The real world has a wealth of circumstance where one must simultaneously explore their sur-

roundings, options or choices while also maintaining or maximizing some variable: their output,

well-being or wealth. Indeed the pursuit of a good life can be represented as finding a balance

between “exploration,” or the investigation of new options and “exploitation,” the utilization of

the knowledge one has already accrued. People make these decisions on a regular basis, from

career and education (“should I continue to invest in education, exploration, or begin exploiting

the knowledge I have accrued?”) to shopping and selection (“should I purchase a product I have

already experienced and am satisfied with, or should I explore other options?”) and everything in

between.

These problems have been studied extensively in a human decision making context, a game

theory “maximizing” context, and the positive psychology “satisficing” context of increasing hap-

piness through decision making. This type of decision making also arises in learning problems of the

statistical and machine learning variety and is represented within a broad class of problems called

reinforcement learning. One common form of this exploration vs. exploitation tradeoff is called the

multi-armed bandit problem where the world can be imagined as a collection of slot machines, each

with a different but unknown payoff, and the player must play, repeatedly, to maximize his wealth.

This is the form of the sequential decision making problem for exploration vs. exploitation that we

will explore in this work.

The model for this exploration vs. exploitation tradeoff that we consider in this work is called

the multi-armed bandit or the multi-armed bandit problem. It describes the environment where

an unknowledgeable player in a casino has to make repeated decisions about which slot machine

(colloquially, a “one-armed bandit”) to play in order to maximize his or her total reward. Peter

Whittle, an early researcher in the area, captured the elegant application of the multi-armed bandit

and the entirety of the importance of exploration vs. exploitation tradeoffs in his 1989 quote:

“Bandit problems embody in essential form a conflict evident in all human action: in-

formation versus immediate payoff.”

1



When the first efficient, tractable solution to the multi-armed bandit was presented [65], Whittle

recalls [66] an early conversation with a colleague that highlighted the immense difficulty with which

the problem was first seen:

Colleague 1: “What would you say if you were told that the multi-armed bandit problem

had been solved?”

Colleague 2: “Sir, the multi-armed bandit problem is not of such a nature that it can be

solved.”

Indeed the problem was said [67] to have historically been seen as a weapon of war: Allied scien-

tists proposed to deliver a related problem to Germany “as the ultimate instrument of intellectual

sabotage.”

Before we begin with a more specific definition of the problem, a final quote to set the tone and

a perspective which inspires the theory of the multi-armed bandit.

“To consult the statistician after an experiment is finished is often merely to ask him to

conduct a post-mortem examination. He can perhaps say what the experiment died of.”

— R. A. Fisher at the Presidential Address to the First Indian Statistical Congress, 1938.

1.1 Problem Definition

Often these exploration vs. exploitation problems arise in a business context, where the efficiency

of such choices is a strong determinant of business success. This work addresses the challenges in

multivariate experimental optimization in an online advertising firm environment. The theoretical

lens which we develop for use within this context is a variant of the multi-armed bandit (MAB)

problem. The multi-armed bandit problem, first1 proposed by Robbins (1952) which built the

new model on the sequential analysis work of Wald (1947) and others, has been extensively used

to model the exploration-exploitation tradeoff in reinforcement learning and experiment design.

The traditional multi-armed bandit problem is the prime example of a sequential exploration-

exploitation tradeoff problem. In the problem, an agent aims to balance gaining new knowledge

1Thompson (1933) provides an answer to a related question: how to identify the probability of a distribution
being better than all others from a set of distributions, and has thusly been sometimes credited as the origin of the
multi-armed bandit. Even more confounding on the origins of the multi-armed bandit, Dr. Peter Whittle said in
review of the 1979 paper of Gittins [67] the following “As I said, the problem is a classic one; it was formulated
during the war, and efforts to solve it so sapped the energies and minds of Allied analysts that the suggestion was
made that the problem be dropped over Germany, as the ultimate instrument of intellectual sabotage. In the event,
it seems to have landed on Cardiff Arms Park. And there is justice now, for if a Welsh Rugby pack scrumming down
is not a multi-armed bandit, then what is?” As World War II ended in 1945, this provides evidence that the problem
was under discussion at least privately by the military if not elsewhere prior to the Robbins (1952) paper. Robbins
(1952) is the first indexed paper to call the problem the multi-armed bandit and provides a formulation similar to
the formulation used to date.
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with exploiting its current knowledge. This applies in many variants in both commercial contexts

— where vendors may wish to explore new products or new solutions while exploiting existing

knowledge — and in numerous research contexts from clinical trials to simulating animal behaviour

to adaptive network routing.

The specific application explored in this thesis is motivated from the view of an online mar-

keting firm aiming to maximize its revenue through an efficient balance of exploration (trying new

solutions, learning) and exploitation (utilizing learned knowledge to profit). Specifically, the model

with which we approach the problem is one where there is a hierarchical funnel of traffic, with each

stage having its own vector of parameters and specific objective, but a payout not being achieved

until the visitor has successfully performed an action in all the stages. The stages are outlined as

follows.

1. T (
−→
t ): Traffic acquisition. This level is where most of the demographic information about

the user is decided. Variables at this level are either individually fixed (gender, geographic

location) or fluid (time of day) from the perspective of the system and are either directly

selectable (such as age or gender on some targeting platforms) by the targeting vector
−→
t or

indirectly influenceable (such as factors related to state of mind, which may be influenced

by the advertisement text and imagery, or immediately preceding thoughts, which may be

influenced in aggregate by selection of a particular medium to purchase advertisements on).

Every “trial” at this level has a cost which may or may not be fixed across repeated trials,

depending on the particular media chosen. In one version of the model, traffic acquisition

is assumed to come from a source that is much larger than the firm where the firm cannot

appreciably influence either the supply or price of available traffic. In another version of the

model, the firm is large in relation to the traffic source and traffic can be exhausted or prices

increased as demand increases.

2. P (T,−→w ): Pre-sales. During pre-sales, the user is shown text, video and graphical content

on a website principally designed by a marketing professional with the assistance of both

domain expertise and statistical testing. The controllable factors are denoted −→w , however,

the dimensionality of this vector is extremely high with many of the variables going largely

unexplored. This includes variables ranging from color to word choice to ordering and page

design and layout and much more. In many contexts, the pre-sales process may involve

other interaction including e-mail or phone call lead generation. In our model, the pre-sales

function P is influenced by the result of the traffic acquisition step in a high-dimensional way:

specifically, which users are selected affects the impact of each variable in the feature vector
−→w . This is the level at which we focus the majority of our experimentation, however, it is

easy to extend this to testing at the targeting vector or product selection level.

3. C(P, β): Conversion. This is the final step where the user becomes a customer. As the
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pre-sales step is often designed to be general, this step may choose a different product β (with

a fixed vector of features, which we do not control and can only observe with uncertainty) for

different users or different pre-sales vector results. In the case of an indirect marketing firm

relationship, this may be the set of steps after pre-sale and product selection not controlled

from within the system, such as price or order form design. In a more direct consulting

relationship, all steps leading prior to sale are under control and this step is simply the

recording of a success condition, with a given value, in the bandit system.

The goal at any step of the process is to bring the user to the next step successfully. Broadly,

our task is to choose S = {−→t ,−→w , β} from a finite2 set of alternatives to maximize the sum of time-

discounted revenue and satisfy competitive business objectives such as risk tolerance and ethical

factors. In practice, this is generally achieved with experts selecting each of the choice variables.

In our model, we explore the algorithms necessary to replace or augment this expert with an

automated experiment.

In a real world application with risk management considerations, it is often important to consider

the problem within the context of “runs” and “horizons.” Specifically, for a given run of the

problem, the system will settle on a specific group of parameters that can be expected to run

for some horizon before exogenous factors change the state of the world or the business moves

on. For a variety of reasons, it may not be optimal to maximize immediate profit with that

consideration, if the selection of parameters that currently maximize profit will influence how future

users respond. In modern business, this takes the form of ethical constraints (including “price

gouging” and discriminatory pricing) and an expectation of certain constraints on the pre-sales

vector −→w . These competing objectives, from legal concerns to ethical constraints and other-than-

profit business objectives, complicate the problem significantly.

Fundamentally, this problem (and many applications of the multi-armed bandit problem) is

at the intersection and forefront of economics, operations research, game theory, decision theory,

statistics and computer science in the way it combines computational learning and statistical esti-

mates with an appropriate level of dynamic decision making and risk-coordination in a real, applied

business environment.

2In a variant of the problem, some of the variables are discrete and finite and others are theoretically continuous
and unbounded, such as color or font size selection; in practice, most selection parameters can be considered bounded
to a relatively small range. Similarly, most observed factors about our users or experimental subjects (covariates or
contextual variables) are categorical or easily discretized.

4



1.2 Motivation

1.2.1 Specific Interest Area

The area of online marketing can be considered one where a semi-random3 flow of users (each

treated as an experimental subject) arrive to a website, — each with its own context vector which

describes properties of uncertain relevance to the objective function considered — the users are

delivered a treatment (a variant of the “pre-sales” vector) and then at some time in the (near)

future, a reward (e.g., a purchase of a product) of variable value (possibly zero) is observed for that

user. Each user has an explicit cost to the business that can range from very small (e.g., if they

arrived via search engine traffic or word of mouth) to a large fraction of total expected revenue

(e.g., if they arrived to the website via a pay-per-click or pay-per-lead service).

As a concrete, but by no means limiting, example, we can imagine the treatment being a selection

between a red button and a blue button, with our objective (reward) being 0 or 1 indicating whether

a user clicked the button or not. The colour of the button could plausibly effect the likelihood of

drawing the user’s attention and thus attracting their click. The variants can range in scale from

being small micro-experiments (such as buttons, language choice or colours) to fully transformed

versions of a website, as long as the objective (reward) is well-defined for all variants.

The motivation in exploring this area is one of improving business performance on the web.

There is clear room for improvement in how testing is currently performed within the marketing

context. The environment is well-modelled by the multi-armed bandit, but in the applied context,

there is little application of the multi-armed bandit to this space.

Bandit strategies, in particular, appear especially useful for performing experimentation with

the same type of complicating factors that arise in web experiments. In relatively small sample size

environments, for example, by properly balancing exploration and exploitation, multi-armed bandit

algorithms can achieve payoff rates that significantly exceed that of traditional testing models

in general, but especially in the case where a traditional model would not have yet finished its

experiment. Additionally, many of the explored bandit strategies do not require a fixed exploration

period a priori, which is more appropriate in a business context where total users, horizon and

other variables may not be predictable.

Importantly, the bandit model, as we will explore in future sections, generally does not require

selection of any fixed significance level or other statistical assumptions prior to application. This

is important, as experiment designers in the online advertising context may not be statistically

sophisticated and simply wish to apply a prebuilt solution to their exploration.

While web experimentation is the motivating field for the remainder of this work, we do not

experiment specifically in a “real world” environment, rather, we work within a simulation envi-

3This level of the funnel can often be controlled, at least in part, by targeted advertising and selective user
acquisition mechanisms.
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ronment to test and resolve a number of theoretical and empirical questions that are relevant to

the application of the multi-armed bandit in a variety of environments.

1.2.2 Other Applications

Online advertising is not the only appropriate application of the multi-armed bandit problem. While

not the focus of this work, the literature is ripe with many applications, many of which may benefit

from a hierarchical or contextual analysis and provide further inspiration for immediate application.

Most of the other applications discussed here are predictive or prescriptive in the sense that they

act as a decision theory mechanism, however, there is a range of descriptive literature which utilizes

bandit models as tools to attempt to explain empirically estimated behaviour [24, 25, 84, 91, 110,

127]. These are not explored in detail as they do not share much analytical similarity with the

problem at hand.

Clinical Trials

One of the most widely discussed applications of the multi-armed bandit problem is that of dif-

ferential allocation in clinical trials [82, 153]. In a clinical trial, real patients are being treated

with medications with unknown properties – selecting between which is an exploration-exploitation

tradeoff problem. In the multi-armed bandit application, the goal is to simultaneously learn the

properties of the medication (explore) and cure the patients (exploit): as specific medication starts

to show statistical promise, it could be prescribed to a larger fraction of the patients creating more

positive outcomes in expectation. The ethical implications of minimizing tail-effect losses, con-

straining total regret and monitoring for model error make this an interesting research area with

high value impact.

The medical domain is particularly amiable to a variant of the multi-armed bandit problem

where there are covarying and confounding factors. In this variant, patient criteria for admission,

selection into a particular trial or particular medication and patient factors such as age, sex and

other variables may influence treatment or interact with the medication in a meaningful way. The

ability to consider this contextual information is also important when it can provide a more rapid

or more accurate understanding of the world, as there is an extremely high cost associated with

errors in this domain.

Adaptive Routing

The multi-armed bandit problem has been applied in the context of learning ideal routing paths

through a computer network. This is specifically interesting as it can be phrased as a hierarchical

(and hierarchical-contextual, if we have a vector of features for each node) problem traversing a

directed (or undirected) graph. Simply, each route is tested and median time, variance or other

objective value of interest is monitored and minimized.
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Portfolio Design

Hoffman, Brochu, and de Freitas [77] propose a mechanism that relies on a multi-armed bandit

strategy to select among competing portfolio selection strategies called acquisition functions. This

indicates a common theme in multi-armed bandit applications where competing mechanisms (or

experts) are chosen via a bandit process. Sorensen [136] explores modelling venture capital decisions

within a bandit framework.

Natural Resource Exploration

In a number of natural resource exploration contexts, bandit models with side-information have

been applied to balance “earning” (exploitation) and “learning” (exploration) within the search

procedure. Given a fixed set of resources, a firm’s decision between further exploration within

their region and the harvest of the sites with maximal expected value based on currently observed

information has been compared primarily in oil exploration [20, 21, 28]. There is room for similar

application in this space for mineral exploration and optimal farmland utilization exploration as

well as room to extend the model in general to support covariates of a planar type such as coordinate

and geographic covarying parameters.

Research and Development Investment

Weitzman [158] introduced an example of the bandit problem in which a firm explores two compet-

ing technologies, the benefits of which are uncertain, to produce a commodity at a minimal cost.

A substantial amount of work since has produced further development in how firms can optimally

balance exploration and exploitation [45, 122] in research and development expenditure. Some of

the literature extends the concept of the bandit model to have “switching costs” between arms

[17], representative of the often extremely high cost of changing technique or investigating new

production methods in a commercial context.

Employee Resource Allocation

Related to the research investment problem is the general problem of human resource management.

Farias and Madan [58] produce a modification of the contextually informed model where arms

cannot be discarded once pulled and utilize packing problem type heuristic to admit a practical

solution. This “cannot be discarded” trait approximates the hiring problem for a variable skill,

large number of staff employment environment. Many other papers have investigated the employee

resource allocation problem within a variety of contexts: allocating tasks to staff, allocating staff

to departments, selecting staff, and more. This is very different than the exploratory stochastic

model we explore, but it demonstrates the generality of the model.
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Crowdsourcing

Related to the employee resource allocation problem, crowdsourcing has recently become a popular

solution for collecting and distributing human capital for a variety of creative and computational

problems from graphic design4 to microcomputation to research task allocation. Jain, Gujar, Bhat,

Zoeter, and Narahari [80] introduce a multi-armed bandit model for assuring accuracy and mini-

mizing total cost in a crowd-worker environment. The mechanism they propose, called Constrained

Confidence Bound, is one that identifies “quality consensus” to combine multiple competing advi-

sors in an cost-optimal way. This problem arises again in our work when we introduce the expert

system to our training function. The problem of combining competing expertise has been considered

extensively in the psychology and management literature [85] however, rarely have actionable de-

cision mechanisms been proposed. Recently, a variety of other researchers have produced adaptive

algorithms for multi-armed bandit treatment of the crowdsourcing and task assignment problems

[2, 75, 146].

General Real World Explore/Exploit Tradeoffs

Dumitriu et al. [54] discusses an approach to the multi-armed bandit problem in the stylized

context of professional golfers selecting a brand of golf ball. The real world is ripe with exploration-

exploitation tradeoffs from selecting optimal fishing tackle for an angler to deciding upon an optimal

career path for a student, many of which involve hierarchical or context-informed decisions. A

sufficiently simple algorithm to be performed by humans or a decision making toolset for professional

management could provide significant guidance in a variety of practical situations.

1.3 Research Contribution

In this section we enumerate and begin to motivate our research contributions, which include a

standardized simulation platform, a set of new policies or algorithms for the multi-armed bandit

problem and some insight into an online measurement of regret and so-called optimism in the face

of uncertainty. Each of these contributions takes the form of concrete experimental, developmental

or algorithmic work. In addition to these explicit contributions, the background section provides

a significant contribution itself: an extensive survey of the literature, concisely enumerating and

providing a taxonomy for much of the significant progress throughout the space of multi-armed

bandit problems and their variants.

1.3.1 A Simulation Platform for Multi-Armed Bandits

To date, there is no standardized simulation platform for comparing stochastic multi-armed bandit

policies. We produce a repeatable, parallelized and extensible platform for experimentation and

4For example, the online business 99Designs uses crowdsourcing to operate contests for producing logos, website
layouts and other design elements.
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a set of standardized worlds for comparisons. The count and associated parameters of underlying

payoff distributions are configurable and support non-stationarity in both changepoint and drift

fashion, mixed distribution models and contextual covariates. Further, the platform supports

integration with the PASCAL Exploration vs. Exploitation (EvE) Challenge dataset [79] and

the Yahoo! real world news click-through data [103], two popular datasets for comparing the

performance of stochastic bandit policies.

The importance of a preset standardized set of experiments is hard to overstate. Researcher

selected experiments are prone to an unintentional form of selection bias which may result in a

loss of the quality of results and a slower pace of research understanding and progress. While our

available worlds aim to be general in many dimensions and violations of assumptions, the platform

is extensible in a way that allows the creation of new worlds and new sets of experiments easily.

The platform computes as many meaningful empirical measures that we could define, including

everything computable presented in Section 2.1 of this work. This includes all the computable vari-

ants of regret, variance and empirical confidence intervals of regret and other measures, divergence

measures of difficulty, computation time and more. We include a small set of data visualization

tools to transform the detailed iterate- and replicate- level outputs of the simulator into graphical

representations of regret over iterates (for evaluation of small sample and convergence behavior) and

regret comparisons across varying categorizations of the underlying world (assumption violations,

distributions, or size/scale of the problem) and policy or policy configuration.

This platform emerges as the tool which drives our further experimentation. The extensible

and repeatable nature allows us to rapidly develop tests for a variety of application-level and

parameter-level questions, as well as experiment with new policies and variants of existing policies.

1.3.2 LinTS: The Regression Thompson Sampler

We first extend a popular policy called LinUCB [101] to solve a variant of multi-armed bandit prob-

lems with (linear) covarying factors called the contextual bandit problem. This extension replaces

a fixed substrategy called UCB (upper confidence bounds) with a technique from the efficient

probability matching paradigm proposed by Thompson [144], producing an easily implemented,

tractable, regression-based Thompson sampler which we call Linear Thompson Sampling (LinTS).

We then utilize the simulation platform to show experimentally how various choices in LinTS affect

the final results in terms of measures of success.

1.3.3 Experiments in Thompson Sampling

We return to analyzing a number of application area questions in Thompson sampling, especially

those related to the impact of optimism in the face of uncertainty to the policy, finding some

interesting trends in the performance of such a model. We show that excessive optimism, to an

extent not previously considered in the literature, may provide a beneficial approach in certain
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probability matching environments, and we discuss the plausible implications of this result on the

understanding of optimism. We further find a number of interesting results in this light including

a strict reduction in regret from a prescient uncertainty correction — to the extent it is available

— which applies in the regression sampling case and again consider the interesting interaction

with this effect and optimism in light of our understanding of optimistic exploration. Together,

these results provide both a guidance in the implementation-level decision making with regard

to the deployment of an efficient bandit process and an interesting theoretical direction for the

understanding of optimism.

1.3.4 Time-series Techniques for Non-Stationary Bandits

Extending our work in defining LinTS, the regression-based Thompson sampler, we explore a num-

ber of time-series approaches to removing underlying trends and non-stationarities in the rewards

process. One especially promising technique is an exponentially-weighted decay process which al-

lows the handling of a priori unknown forms of underlying drift and performs well on all tested

variants of drift. Further, we show that if there is knowledge of the form of drift, one can perform

near optimally using an appropriately calibrated decay technique. We explore a number of other

plausible approaches to time-series detrending that do not find significant promise in the unknown

drift-form application.

1.3.5 Statistical Regret for Applied Bandit Models

In general, the measure used to quantify the result of a bandit process is the regret – that is, a loss

function type measure which captures the difference in the largest achievable payoff and the payoff

actually achieved. To compute regret it is necessary to know the largest achievable payoff – that

is, to have an oracle which provides the correct answer for comparison. Outside of a simulation

environment, this is not a computable quantity: if an oracle was available, there would be no need

to perform online exploration or the associated exploration vs. exploitation tradeoff decisions. We

define a prediction interval -based measure which allows the ex-post computation of a calibrated

regret upper and lower bound. We show the interval behaves like a traditional confidence interval,

allowing the user to configure γ, the interval’s confidence level which produces a tradeoff between

tightness of the interval and the frequency with which the interval correctly includes the true value.

This is a significant contribution for the measurement, diagnostics and parameter selection of

multi-armed bandit policies in an applied context. By the nature of the problem, there is little room

for traditional experimentation to identify the ideal parameter structure and an online analytical

method is required. Statistical regret shows that an evaluation process for the quality of parameter

selection can be produced and that differing individual runs of a bandit process can be examined

and compared quantitatively in practice.
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1.3.6 Simple Efficient Sampling for Optimistic Surrogate Models

The principle of optimism in the face of uncertainty arises repeatedly in multi-armed bandit poli-

cies. Similarly, the principle of probability matching, especially the probability matching sampling

technique of Thompson [144] is a regular tool used in the treatment of these problems. Com-

bined, we provide a treatment of optimistic sampling that provides easily implemented efficient

techniques which both accurately capture the intended optimistic model and perform in constant

computational complexity. First, we present the most simple case, a technique for sampling op-

timistically from a symmetric distribution, then we extend that to a sampling technique for the

optimistic surrogates of any generalized nonsymmetric distribution. These techniques, while both

simple, are important, as some results in the literature have understated the effect of optimism

by erroneously selecting a sampling technique which, while optimistic in the strict sense, does not

accurately capture the intended surrogate model.

Finally, in this section, we provide a new technique for producing a distribution-free sampler

which can take on both optimism and contextual variables as augmenting behaviors. We show with

experimentation that this technique is at least as strong (in terms of regret) as the parametric,

distribution-dependent sampler, while providing increased robustness to misspecification.

1.4 Outline

The rest of this thesis proceeds as follows. In Chapter 2, we rigorously introduce the formal prob-

lem, introduce the different variables that are worthy of consideration for each potential selection

policy and explore the policies that have been applied in the literature thus far, and finally discuss

a selection of variants to the pure formal problem that are relevant to our application. When dis-

cussing policies, we have chosen to err on the side of intuitive and applicable explanations leaving

any exposition of correctness or asymptotics to the referenced papers. In Chapter 3, we discuss our

research contributions from both a theoretical and applied perspective and integrate the results

into the existing literature. Finally, in the last chapter, we discuss future work in a broad sense and

explore avenues for further research that would both advance the state of the theoretical literature

and provide large value in an economic sense.
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Chapter 2

Background

Chronologically, Robbins [125] introduces the idea of the important tradeoff between exploration

and exploitation in recurring decision problems with uncertainty, building on the prior sequential

decision problem work of Wald [154] and Arrow et al. [8]. Lai and Robbins [99] produce the

first asymptotic analysis of the objective function of such a decision process showing a bound of

O(log t) for the regret of the standard stochastic, finite-armed, multi-armed bandit, and produced

a regret-efficient solution where the rewards of a given arm are stationary and independent and

identically distributed (i.i.d.) with no contextual information or covariates. In the coming sections,

we will explore some of the large number of algorithms which have been proposed since Lai and

Robbins [99] including ε-exploration approaches [152, 156], upper-confidence bound techniques [16],

probability matching techniques [6] and others. Many variants of the initial problem have also been

investigated in the literature including the many- or infinite-armed, adversarial, contextual, and

non-stationary cases.

Initially, bandit problems were discussed in the context of the sequential design of experiments

[99, 125] and adaptive experiment design as a natural progression of the experimental design lit-

erature which seeks to design efficient tools for identifying causal effects. Recently, a policy or

decision-theoretic lens has been used, characterizing the problem as a recurrent policy selection to

maximize some utility function or minimize some regret function.

The terminology “bandit” originates from the colloquialism “one-armed bandit” used to describe

slot machines. It is important to note immediately that this stylized terminology suggests the

negative expected value embodied in the context of the word “bandit,” despite that not being a

requirement, nor being common in most applications of the model. In one common formalization of

the multi-armed bandit model, the player can sequentially select to play any arm from the K ≥ 1

arms and obtain some payoff x ∈ R with some probability p ∈ [0, 1]. This specific formalization

has explicitly defined binomial arms (fixed payoff, random variable payoff probability), however

in our interpretation of the problem, the distribution on the arms can (and often is) be from any

distribution.
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In all variants of the bandit problem only the payoff for the selected arm at any time step is

observed and not the payoffs for non-selected arms. This is the “partial information” nature of the

bandit problem which distinguishes the problem from generalized reinforcement learning, where

“full information” (observing the payoff of all arms, whether selected or not) is usually assumed.

In many variants of the problem, the reward distribution itself is not assumed, however, rewards

are assumed to be i.i.d. across arms and across prior plays. Some variants of the problem relax

both of these assumptions. Similarly, it is generally assumed that both K, the number of machines

(or “arms”) and x, the payoff function are finite and stationary (time-invariant), however, variants

relaxing these assumptions have also been considered. An important variant of the problem intro-

duces the concept of a known, finite time-horizon, H to bound play time. Two important variants,

the contextual problem and the adversarial problem, remove assumptions such that there are fewer

or even no statistical assumptions made about the reward generating process.

In our motivating web development example, the “arms” in the multi-armed bandit become the

variants of a website being experimented with. For example, there may be three arms: one where

a red button is displayed to the user, one where a yellow button is displayed and a final variant

where a blue button is displayed.

2.1 The Stochastic Multi-Armed Bandit Model

2.1.1 A Stylized Example

Throughout the rest of this work, an example will be valuable to elucidate variants, applications and

algorithms. Imagine yourself walking into a casino and being presented with a row of slot machines.

Prior to your visit, you had absolutely zero knowledge about the payoff probabilities of the machines:

they may have negative, positive or neutral expected value, they may all be the same or they may

not. Your prior information is complete uncertainty1. The challenge, broadly, is to identify how to

play the machines to maximize your return. This is a challenge of balancing exploration (collecting

new, high-value information to minimize uncertainty) with exploitation (using the knowledge you

have already acquired to gain the expected reward). An obvious intuitive solution, is to start

recording results and play each machine some fixed number of times (or randomly) to get an

estimate of the payoff rate of each machine, then, if the expected payoff is positive, play the

strongest machine indefinitely into the future. This solution is very close to the strategy known as

ε-first, which, while intuitive, has a number of undesirable properties and can be outperformed by

more sophisticated strategies which we will explore in more detail later in this chapter.

1However, in some Bayesian bandit contexts, perhaps you wish to consider the variant where you have prior
information and wish to explore further.
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2.1.2 Considerations

In the following section, we explore some of the important considerations and measures which vary

across different problems and policies.

Measures of Regret

There are a number of possible objective functions to evaluate a bandit process that have been

used within the literature. In general, regret-based objectives are loss functions which compare the

performance of a process with an oracle (a policy which ex-ante knows all information about the

underlying distributions) over a finite and discrete time horizon t = 1, ...,H. The definitions vary

on how the stochastic nature of the process is considered and what information and selections are

made available to the oracle. The sequence of arms selected St can itself be a random variable (such

as in the Thompson sampling case discussed later). Expectation Eθ is taken over the parameters

of the arm distribution(s) θ which is taken as fixed per-arm and time a priori.

For most practical applications of multi-armed bandit models this is the most important con-

ceptual variable to consider. Unfortunately, regret is not consistently defined in the literature as

a single variable of interest, but generally takes one of a variety of forms. In a pragmatic sense,

regret has the same meaning as it has in English: the remorse (which would be) felt as a result

of dissatisfaction with the agents choices. We enumerate some of the varieties of regret that are

discussed (explicitly or implicitly) within the literature here.

1. Expected-Payoff (Strong-) Regret (R̄P ). This is the difference between the expected

payoff an oracle would have earned, selected per play (
∑

maxi=1,2,...,K xi,t) and what the

algorithm being tested (
∑
xSt,t) earned. Formally,

R̄P =
H∑
t=1

(
max

i=1,2,...,K
Eθi,t [xi,t]

)
−

H∑
t=1

xSt,t. (2.1)

In this measure, regret is a random variable in both θ and St. It is possible to produce an R̄P

that is negative (indicating that the policy outperformed the expectation), and it is possible

for two runs to display regret incongruent with the best policy in expectation. The Figure 2.1

shows a two-arm example where expected-payoff regret would compute a regret of negative

2 (for a single play) assuming the policy picked Arm 1 and drew a value at the solid vertical

green line. The dashed lines indicate the expectation. This regret of −2 = 8 − 10 is despite

playing the suboptimal (in expectation) arm (arm 1). This measure has also been referred to

as empirical regret by, for example, Eckles and Kaptein [55] but other works such as Maillard

[104], Seldin, Szepesvári, Auer, and Abbasi-Yadkori [134] have used the term empirical regret

with a range of different meanings.

The main motivation for this form of regret is its ability to compute meaningful results appro-
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Payoff

0 7 8 10 16

Arm 1, µ=7
Arm 2, µ=8

Figure 2.1: An example of playing an expected-suboptimal arm but achieving a high reward
due to random variation. The solid vertical line indicates the payoff realized (x1,t = 10)
from the selected arm (St = 1).

priate for risk-aware bandits (such as an application in medical trials with risk limitations or

portfolio design with maximum drawdown limitations). Some interesting statistics possible

with this form of regret include the standard deviation and γ-percentile.

2. Expected-Expected (Strong-) Regret (R̄E). Similar to expected-payoff regret, this form

takes the expectation of the arm payoffs in addition. In simulations with well-defined expected

values, expected-expected regret can quantify the achievement of the policy without consid-

ering statistical variance. Formally,

R̄E =
H∑
t=1

(
max

i=1,2,...,K
Eθi,t [xi,t]

)
−

H∑
t=1

EθSt,t [xSt,t]. (2.2)

In general, existing regret proofs hinge on this definition of regret. Expected-expected regret

may be a biased measure of the true parameter of interest in the case of a non-symmetric

sampling process (St) when there is a focus on risk (such as in the case of a drawdown sensitive

financial market policy or other loss-mitigation objective function). In this measure, regret

is no longer a random variable in θ. An arm selection fully determines the regret measure for

a single draw, independent of the drawn value. In the stationary case, the expectation Eθi,t
can be written without the t in the subscript as the distribution is not dependent on time.

In our prior example, if arm 1 (the suboptimal arm) is selected and a payoff of 10 is observed

as shown, the expected-expected regret will still be Eθ[x2]− Eθ[x1] = 8− 7 = 1.

3. Adversarial Regret (
¯
R). Adversarial regret, also called “weak regret”, variants can be
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constructed of each of the prior definitions of regret. In adversarial regret, the oracle must

pick only one arm for all plays. Specifically, the maximization operator is moved outside

the summation to select only the single arm which is optimal in aggregate over all plays.

In summary, adversarial regret measures the difference in the single best arm being played

repeatedly and the choices the algorithm made. Formally,

¯
R =

(
max

i=1,2,...,K

H∑
t=1

Eθi,t [xi,t]

)
−

H∑
t=1

EθSt,t [xSt,t]. (2.3)

With the maximization outside the summation, we select a single arm i for all t, a result that

compares played arms only to the best in aggregate, naive to per-iterate changes in the ideal

arm.

This is used most often in the adversarial bandits literature where “best arm per play” regret

results may no longer be ideal due to the assumptions of the model, but it is also sometimes

used in non-adversarial literature for reasons of accident or provability. In particular, in the

adversarial regret model, the learning problem can be made arbitrarily hard under traditional

measures of regret, for example, a large number of low payoff arms may be provided among

one high paying arm selected randomly. In a traditional measure, this would result in a high

level of regret while in the adversarial measure, only the arm which has the highest total

payoff over all iterates is considered.

4. Simple Regret (~R). Like adversarial regret, simple regret variants can be constructed of

each of the prior variants of regret. Simple regret contrasts other regret measures by being

non-cumulative, that is, it only considers the regret at the current time. Simple regret at

time H is the difference in the selected arm and the best arm at that point in time, with no

consideration for prior plays. Formally, for expected-expected simple regret,

~RE =

(
max

i=1,2,...,K
Eθi,H [xi,H ]

)
− EθSt,H [xSH ,H ]. (2.4)

The intuition of the value of simple regret is in the limiting properties of a well-behaved bandit

algorithm. It is expected that a bandit algorithm will, in the probability limit, converge to

play the best arm, and as such, simple regret will converge to zero. In some variants of the

problem, such as infinitely-armed bandits [39], simple regret is available where other regret

measures are not. A common variant of simple regret which draws on the same intuitions

is long-term average regret defined as any traditional regret measure (say expected-expected

regret) divided by the horizon (R̄E/H), as the horizon tends to infinity.

5. Bayesian Regret (R̄Bayes). The election science literature (among others) gives us a tech-

nique called Bayesian regret that lends itself well to bandit analysis through the frequent
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application of Bayesian-derived strategies. Bubeck and Liu [31], Kaufmann et al. [89] and

others provide the first use of variants of this measure in a bandit context. The difference

in Bayesian regret and the traditional regret measures is only that the parameters of the

distributions (θi,t) are taken explicitly to be themselves drawn from some prior distribution

parameterized on Θ. Formally,

R̄Bayes = EΘ[R̄], (2.5)

θi,t ∼ f(Θ).

Many bandit policies (especially sampling-based techniques) are inherently Bayesian in nature

(despite often being analyzed in a frequentist framework) lending Bayesian regret credibility

as a reliable formalization of the concept.

6. Suboptimal Plays (N∨). Suboptimal plays is a simple measure of regret accrued by count-

ing the number of plays that were not the best arm. This does not account for the scale of

the difference. Formally,

N∨ =
H∑
t=1

1[St 6= arg max
i=1,2,...,K

Eθi,t [xi,t]]. (2.6)

In the simple (stationary, context-free) two arm case, suboptimal plays is a sufficient measure

for comparing algorithms as the gap between all suboptimal decisions (there is only one) is

the same. In the three arm case shown in Figure 2.2, we can see that arm 3 is much worse

than the next best arm (arm 1), however, if either arm is played, we increment a simple

counter of suboptimality.

The biggest advantages to suboptimal plays over other measures is that of unit independence

and scale invariance. This simple measure provides a count of plays that were not the best

with no consideration of how suboptimal they were.

Two further definitions of regret show up in the literature, generally referred to as expected

regret and denoted ER and pseudo-regret, referred to as R̄. These arise more frequently in work

that is derived from the adversarial and non-stochastic approaches to representing bandit problems

as they require a different perspective on the problem than we take. Specifically, if a bandit process

is represented as a fixed a priori matrix of dimensions H (time horizon) by K (number of arms)

where each entry represents a payoff with possibly fixed structure2, we can eliminate the underlying

2Structure allows representation of stationary or non-stationary payoffs, distribution-derived payoffs and other
complicating factors.
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Payoff

0.0 6.5 9.0 18.0

Arm 1, µ= 9
Arm 2, µ=10
Arm 3, µ=6.5

Figure 2.2: A play from arm 3 (the most suboptimal with expectation of 6.5) is drawn earning
a reward of (7.5). Giving an expected-expected regret of 10− (6.5) = 3.5, an expected-
payoff regret of 10− (7.5) = 2.5 and a suboptimal plays regret of just 1, a counter for
the number of times an arm other than the optimal was played. The solid vertical line
indicates the payoff realized (x3,t = 7.5) from the selected arm (St = 3).

essential randomness from the consideration3. We use a capital X to denote a two dimensional

matrix of the form previously described.

7. Expected Regret (ERn) [30]. Expected regret is treated as the gold-standard in the liter-

ature which uses it. This is distinct from what we are calling expected-expected regret (R̄E)

in what is meant by the word “expected.” Formally,

ERn = E

[
max

i=1,2,...,K

n∑
t=1

Xi,t −
n∑
t=1

XSt,t

]
. (2.7)

In this case, expectation is taken both over any randomness in the creation of the rewards

matrix Xi,t and any randomness in the selection of St. As such, this produces a measure of

regret which requires the agent to be prescient to any purely random factors in the reward

matrix in order to achieve zero regret. In other words, it is no longer sufficient to select the

arm with the highest expected payoff (expected in what is possible to know) but rather one

must select the arm with the highest actual payoff in order to achieve zero regret.

This way of thinking eliminates any stochastic nature from the forecasting discussion, as

we measure against the ideal world state for a particular instance of the game (inside the

expectation) and then average that over all possible world states (outside the expectation).

3This is in some sense an operationalization of a bandit process represented with true randomness, as in practice,
the randomness is implemented with a pseudo-random number generator which amounts to a vector of fixed a priori
numbers derived from some seed.
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This perspective of evaluation is distinct from the techniques generally applied to perform

forecasting in a stochastic bandit, where knowledge is expressed with uncertainty and the

underlying world has some inherent (unexplainable) uncertainty.

8. Pseudo-Regret (R̄n) [30]. This measure is identical to the regret we refer to as adversarial

regret (
¯
R) with the exception that the definition of expectation differs. As in the previous

definition, expectation here E is defined to be expectation both over the creation of the

random rewards matrix and over any randomness in the selection process – that is, it produces

a weighted average over all possible world states, while in adversarial regret expectation is

pushed in to be over the reward distribution. Formally,

R̄n = max
i=1,2,...,K

E

[
n∑
t=1

Xi,t −
n∑
t=1

XSt,t

]
. (2.8)

In this case, the optimal decision is defined only in expectation. In the stationary, context-free

stochastic setting, this reduces to a simpler equation where µ∗ is the mean payoff of the best

arm, that is, using our earlier definition of expectation: µ∗ = maxi=1,2,...,K Eθ[xi]. Formally,

R̄n = nµ∗ −
n∑
t=1

EµSt . (2.9)

Furthermore, Audibert and Bubeck [11] relate these two quantities and show that R̄n ≤ ERn
via an argument reliant on Jensen’s inequality and in the stationary, context-free stochastic

case, further show the gap is bounded by ERn − R̄n ≤
√

n logK
2 .

In the rest of this work, we view the bandit problem as an exclusively stochastic problem (from

the perspective of the agent) where arms are represented as unknown distributions and thus avoid

utilizing these two measures of regret.

As we will show in the following sections, in experiments, the selection of regret measure is

paramount to the understanding of policy decisions.

The variable definitions of regret are a serious issue in comparing bandit algorithms in many

contexts. In much of the published research, it is difficult to identify which definition of regret is

utilized, as it is quite easy to phrase a plain language definition of regret in a form that leaves the

oracle criteria ambiguous4.

Lai and Robbins [99] demonstrated that the lower bound of regret for policies for the general

stochastic multi-armed bandit problem was O(log t). This lower bound does not hold for all variants

4As an example – though definitely not to single out these authors, as ambiguity of this sort is common – a
sentence defining regret as “the difference between the sum of rewards expected after N successive arm pulls, and
what would have been obtained by only pulling the optimal arm” appears in Granmo and Berg [70] and is not in
itself clear whether “only pulling the optimal arm” means the singular mean optimal arm (as in pseudo-regret) or
the variable per-play optimal arm (as in strong regret) or even the prescient form of expected regret.
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of the problem, and indeed it is easy to construct synthetic variants of the problem with zero

minimum regret.

It is important to note that regret is further complicated in a number of variants of the problem.

Broadly, regret is only a simply defined concept in the case where there is a single best arm (or

a set of indistinguishable best arms). In any variant of the problem where the best arm changes

over time, plays or context or in any variant where the payoff choice is chosen adversarially or from

a non-stationary distribution, there will be substantial complications to the analysis of regret, in

particular with regard to what information the oracle has available to it.

Variance and Bounds of Regret

Similarly to the well-known bias/variance tradeoffs in the estimator selection literature, variance

minimization is an important consideration for many applications. In the most extreme case, a high-

variance algorithm will be completely unacceptable in a practical sense even if it had a minimal

expectation regret. Certain choices in the measurement of regret are more appropriate if one

chooses to measure variance than others, for instance, selecting expected-payoff regret allows one

to measure the variance of an individual payoff (e.g., a next play payoff variance) while expected-

expected regret will only allow measurement of variance across repeated plays of the full sequence.

Often, rather than measuring variance of a policy, a high-probability bound on the regret is pro-

posed. High-probability bounds arise from the “probably approximately correct” learning (PAC

learning) literature [149] which provides a framework for evaluating learning algorithms with tradi-

tional asymptotic measures from computational complexity theory. The language PACε,δ-learnable

provides that an algorithm exists such that it can learn the true value with an error rate less than

ε with probability of at least 1− δ in the limit or within finite number of fixed iterates.

High-probability bounds introduce this PAC learning framework to regret analysis. The primary

difference from the regret in expectation is that a high-probability bound considers the potential

variation in return, which can be (and is, in many cases) large, a factor which is very important in

medical and many financial contexts, where stakes are high. Intuitively, a high-probability bound

provides a function that can be used to evaluate a bound at a given probability. This is a statement

of the form P [R(n) > bhigh probability] ≤ δ where R(n) is the regret after n plays, bhigh probability is

the high-probability bound and δ is the probability with which we evaluate the “high” probability.

The parameter δ is often picked to be a function of the form n−c for a fixed constant c [9].

To provide an intuitive understanding of high-probability bounds compared to expectation

regret, consider the slot-playing ε-first example: if we have two slot machines to pick between, and

we explore 10 times (5 each) to measure our empirical estimates of each arm then exploit the best

measured machine forever. In expectation the best machine will be picked, however, randomness

and the small number of plays may result in a single win dominating the results and causing the

estimate of the best machine to be incorrect. While the expectation of regret in this model is zero,
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the variance of regret is high: in many5 plays, the regret will tend to infinity. The high-probability

bound in general, will say that for p% or fewer of the repeated plays of the game, the regret will

exceed b. In this specific example, it is likely the bound will be very weak for any reasonable δ,

as in this particular strategy, a small number of lucky early explorations will result in suboptimal

plays forever, accruing large regret.

Historically, prior to high-probability bounds being introduced for the multi-armed bandit prob-

lem, strict bounds were provided for certain algorithms. These bounds tend to be much weaker

than the high-probability bounds found in more recent research.

Higher Moments and Risk Measures of Regret

In some contexts, other parameters of the shape of the regret distribution may prove relevant. There

is very little work analyzing or applying moments higher than variance. Skewness and kurtosis

may interest some applications, especially those where risk is being calculated upon the notion of

regret. In general, while important, risk-aware or risk-averse bandits are conjectured by Audibert

and Bubeck [11] and others as a significantly more complex problem and few major publications

explore these problems. In one of the few, Carpentier and Valko [38] propose a measure of regret

that is based on the extreme value of the arm distribution, producing an algorithm which minimizes

tail events in a constrained environment. There is a substantial literature of risk measurement and

mitigation in financial market research which the bandits literature may benefit from in the future.

Feedback Delay

In many problems, there is a simultaneity issue with training: new trials may run before the

rewards for older problems have been observed. In other problems, there is a tradeoff between

computation time (to recompute decision parameters for the model) and model accuracy: a longer

computation time creates more feedback delay and more accurate answers, but the feedback delay

effects the currency of the answers. For example, a user may be delivered an advertisement and

still be reading or navigating through the process, or a computation process for that user may not

have completed, when another user arrives, this delay is called feedback delay. Feedback delay is

an important, often unexplored, consideration for multi-armed bandit policies with some policies

being unviable in high delay environments producing an environment where fast suboptimal (in

terms of theoretical regret) policies may outperform slower, theoretically-optimal policies.

Problem Difficulty

In the context of quantifying performance of algorithms in a distribution agnostic sense, a measure of

“hardness” is important. Specifically, a problem where the difference between the optimal arms and

non-optimal arms is small seems to have some “intrinsic difficulty” that applies across algorithms.

5Dependent on the gap between the two machines.
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In order to capture this intrinsic difficulty, Audibert et al. [12] introduced two measures of hardness

of identifying the best distribution in a set of K distributions, which they go on to prove are within

a logarithmic factor of each other. The measures presented are,

H1 =
K∑
i=1

1

∆2
i

(2.10)

and

H2 = max
i∈{1,...,K}

i

∆2
i

(2.11)

where ∆i is the difference between the i ∈ Kth arm’s payoff and the optimal arm’s payoff.

Further, there is existing work in the statistics literature aiming to quantify the difference

between distributions. Many statistical tests are dependent on the idea of quantifying the distance

between an assumed true distribution and the observed empirical distribution. One such measure,

Kullback-Leibler (K-L) divergence, has been proposed [30, 99, 105] as an appropriate tool for

the bandit problem. Broadly, Kullback-Leibler divergence is the logarithmic ratio between two

distributions with regard to the first distribution. Formally,

D(P,Q) =

∫ ∞
−∞

ln

(
p(x)

q(x)

)
p(x)dx. (2.12)

Where p(x), q(x) is the probability density function of P, Q respectively. While this is not a

true metric, in that it does not satisfy the triangle inequality nor is it symmetric, for our purpose,

it can be used to quantify the distance between the optimal arm and all other arms. In the two

arm case, this is a valid measure of the desired property. In the k > 2 arm case, an arm-iterated

regret-weighted K-L divergence can be proposed of the form,

Darms =
K∑
k=0

D(Bbest, Bk) · µBbest . (2.13)

.

Stationarity of the Problem

One of the strongest assumptions of many statistical models, including most variants of the multi-

armed bandit problem, is that the underlying distributions and parameters are stationary. In

many contexts, including the context studied here, this is not a reasonable assumption: the state

of the world is changing around the learning process and in our context, the best arm in one time

period may not be the best arm in another. Non-stationary problems are in general challenging

for algorithms that make stationarity assumptions, whether explicit or implicit, as the real world

performance of any such policy can continuously degrade in response to unconsidered changes in the
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distribution. In particular, rapid changes of the distribution and switching-type models (day, night;

seasonal; or any other repeatedly changing, but unmodelled, confounding factor) have extremely

poor performance on many fixed policies.

Some variants of the model, known generally as non-stationary bandit models have been pro-

posed with drifting or step-function changing parameters. A simple solution to deal with non-

stationarity is to allow the data to “decay” out of the model with a time-weighted component,

however, this solution requires an accurate model of the appropriate rate of decay to be efficient.

Non-stationarity is very important in the advertising context, as there is no reason to believe the

underlying distributions are static. This is discussed at depth in the non-stationary bandits section

(2.2.5).

Change-Point Detection For the step-function variant of the problem, change-point analysis (or

step detection in signal theory) is a deeply researched statistical technique aimed at identifying

the times when the underlying probability distribution of a stochastic process changes. Mellor

and Shapiro [108] introduces an online Bayesian change-point detection algorithm appropriate for

use in a variety of “switching environments” where the underlying arm distributions change in

semi-structured ways.

Kalman Filters For the drifting or noisy version of the problem, a Kalman filter “state transition

model” technique has been applied. Granmo and Berg [70] introduce a Bayesian technique that

uses sibling Kalman filters to define the distributions for a Thompson sampling-type policy and

demonstrate that it is empirically strong for both non-stationary and stationary variants of the

problem, suggesting it could be a strong technique in cases of uncertainty. Later, we explore time

series techniques for solving non-stationarity in the context of a changing world.

Ethical and Practical Constraints

In medical and research applications of multi-armed bandit models, exploratory phases may involve

human subjects. These cases bring with them ethical constraints independent of the moments of

the distribution. Specifically, in medical applications it may be desirable to bound the exploratory

portion of a model without exception or to favour exploiting new knowledge as soon as it passes some

statistical significance. In a resource exploration context, some locations may be environmentally

sensitive or unexplorable for legal reasons; these might take the form of a hole in our exploration

function in a contextual bandit framework or simply some bandits which are left unexplored in a

pure bandit framework.

Practically, other constraints may exist. In some contexts, such as investment in research

or private corporation stock, the exploration may be bounded by large minimum or insufficient

maximum investments. In a financial portfolio or marketing context, due to model or stochastic
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error, it may never be desirable to expose a large portion of a firm’s total capital to any one optimal

result (or, in a contextual framework, any cluster of results). We consider the application of risk-

based measures to attempt to quantify this effect and later discuss state of the art results with

respect to satisficing and convex tinkering from risk management research on how to best deal with

this within our marketing context.

Practical Significance

The multi-armed bandit specification discards one motivation of traditional experiment design:

statistical significance or hypothesis testing6. Fortunately, the model maintains some sense of

economic or practical significance: arms which have largely different rewards will still, to the extent

possible, be identified as such in the multi-armed bandit, as a good, uncertainty-aware policy (such

as UCB or Thompson sampling) must isolate the best arm from the others in a similar sense

they must in a traditional experiment design in order to ensure they are appropriately balancing

exploration and exploitation.

2.1.3 Formalization

To reiterate the nature of the problem we are considering, we provide the following summary

formalization. A (finite-armed, stochastic) multi-armed bandit problem is a process where an agent

(or forecaster) must choose repeatedly between K independent and unknown reward distributions

(called arms) over a (known or unknown) time horizon H in order to maximize his total reward (or

equivalently, minimize some total regret, compared to an oracle strategy). At each time step, t, the

strategy or policy selects (plays) a single arm St and receives a reward of xSt,t drawn from the ith

arm distribution which the policy uses to inform further decisions. In our application, individual

arms represent webpage modifications with the goal of maximizing desired user behavior (sales,

time engaged, etc.).

2.2 Studied Problem Variants

For each of the variants of the model, we introduce the variant, describe the state of the research

and then explore how different algorithms can be applied to this specific problem variant. In

particular, we explore the common threads in terms of algorithm design, model assumptions and

other factors that tie together the variants and known solutions to the problem. At the end of this

section, the reader should have a strong intuition for both the state of the art and sufficient context

to understand and approach new variants of the model.

6While achieving strict statistical significance in the test of distinguishing arms from each other is not a direct
goal in the multi-armed bandit model, [87] shows that the model does not exclude traditional significance testing,
especially when the goal is only to identify that a given arm performs strongly.
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2.2.1 Traditional K-Armed Stochastic Bandit

The most studied variant of the model is the traditional model described earlier in this chapter,

with a discrete, finite number of arms (K) for the agent to choose between at each time step t.

There are a large number of techniques for solving this variant, many of which meet various notions

of provably efficient.

A strategy or algorithm used to solve the multi-armed bandit problem is often called a policy.

We discuss a set of policies, the ε policies [141], dependent on a parameter ε which determines

how much exploration takes place, a set of policies called UCB-strategies (upper confidence bound

strategies), based on the observation by Auer, Cesa-Bianchi, and Fischer [15] on utilizing upper

confidence bounds, a variety of standalone policies and finally probability matching policies which

rely on the idea of matching the probability of success with the probability of drawing that arm.

Strategies like ε-based strategies that maintain an ongoing distinction between exploitation and

exploration phases are called semi-uniform.

ε-greedy

The ε-greedy approach appears to be the most widely used simple strategy to solve the simple

stochastic, i.i.d. form of the (discrete) multi-armed bandit model in practice. The strategy, in

which the agent selects a random arm 0 ≤ ε ≤ 1 fraction of the time, and the arm with the best

observed mean so far otherwise, was first presented by Watkins [156] as a solution to the equivalent

one-state Markov decision process problem7. The choice of ε and strategy for estimating the mean

is left to the application.

ε-based strategies have been well studied. Even-Dar et al. [57] show that after O
(
K
α2 log K

δ

)
random plays an α-optimal arm will be found with probability greater than 1 − δ, a result that

applies to all major ε strategies.

Constant ε With a constant value of ε, a linear bound on regret can be achieved. Constant ε-

greedy policies are necessarily suboptimal, as a constant ε prevents the strategy, in general, from

asymptotically reaching the optimal arm [152]. That is, even after strong knowledge is acquired,

the strategy will continue to behave randomly some ε fraction of the time.

Adaptive and ε-Decreasing One of the more salient variants of ε-greedy is the ε-decreasing strategy.

In a stationary, finite horizon environment, it is logical to have a policy do more exploration early

and more exploitation as it becomes more confident about its knowledge or as it gets closer to

its horizon. This can be implemented with a variance weighted strategy or by simply decreasing

ε according to some rule (time, observations, etc.). In known-horizon environments, ε-decreasing

7Watkins’ motivation was in modelling learning processes in the real world, not for machine learning. The
distinction does not appear to be important for the particular policy he devises.
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policies can weight the rate exploration as a function of the remaining horizon available, though no

known work has explicitly defined the correct functional form to do so.

A simple ε-decreasing strategy is natural and given by Vermorel and Mohri [152] which defines

ε(t) as the value of ε after t plays as min(1, ε0t ) where ε0 is left as a choice to the user. A similar

strategy is called GreedyMix and analyzed in Cesa-Bianchi and Fischer [40] where ε(t) (referred to

as γ) is defined as min(1, 5K
d2
· ln(t−1)

t−1 ) where 0 < d < 1 is a constant picked by the user8. GreedyMix

is shown to have regret on the order of ln(H)2 for H trials for Bernoulli- and normally-distributed

bandits. Selection of d is left to the reader, and performance degrades if a sub-optimal value of d

is selected.

An interesting result regarding ε-decreasing policies is given by Auer, Cesa-Bianchi, and Fischer

[15] with the simulations on a policy called εn-greedy. εn-greedy is the generalized form of ε greedy

where the fraction of exploration is a function of the time step. At each time step t, we select the

εt = ε(t). By defining ε(t) ≡ min
{

1, cK
d2t

}
and correctly selecting an unknown parameter c > 0

and a lower bound 0 < d < 1 on the difference between the reward expectations of the best and

second best arms, we get a policy that which has an expected regret of O(logH). Unfortunately, as

noted in Auer et al. [15] this result is not of a lot of practical use, for the same reason GreedyMix

lacks practicality: the selection of the constant factors c and d are dependent on the underlying

distribution which we are trying to estimate and the performance degrades rapidly in the incorrectly

tuned case. A theoretical, but not particularly practical, extension of this strategy is one where

ε(t) is correctly chosen for each time step; this strategy is guaranteed to converge in an optimal

number of trials in expectation.

ε-first

In the non-academic web optimization and testing literature, ε-first is used extensively, generally

for 2-armed bandits and is widely known as “A/B testing”9. In ε-first, the horizon, H, must be

known a priori. The first ε · H plays are called the exploration phase, and the agent picks arms

uniformly randomly, producing an estimate of each arm’s payoff. In the remaining (1− ε) ·H plays,

called the exploitation phase, the agent strictly picks the best empirically estimated arm.

An ε-first strategy is superior to an ε-greedy strategy when the horizon is fixed and stationarity

8Note that by letting ε0 = 5K
d2

GreedyMix is similar to the Vermorel and Mohri strategy, but not the same, as the

rate of decrease is ln(t−1)
t−1

.
9The extensive toolsets available for automating this testing often perform “A/B testing” incorrectly. Specifically,

they perform testing with repeated testing without an appropriate multiple testing significance adjustment. It is
up to the user, who is generally not expected to be familiar with the statistics involved, to behave appropriately to
maintain the assumptions of the model. Many researchers have addressed the multiple testing issue, for an overview
of the problem see Jennison and Turnbull [82]; for an review of strategies for correcting multiple testing errors, see
Hsu [78] or Westfall, Young, and Wright [159]. Indeed, the most fragile of these toolsets offer functionality to make
decisions “upon reaching significance” (using an unadjusted measure of significance) which suggests a significance
test after every trial: the worst form of the multiple-testing problem, resulting in a false positive rate which increases
as the number of trials increases [82].
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on the arms can be assumed as the estimates are expected to be better for a larger number of

plays and thus fewer suboptimal plays will be likely. Compared to ε-greedy, ε-first is vulnerable

to non-stationarity of the reward distribution, because all learning takes place “upfront”. ε-first is

also vulnerable to errors in estimating the time horizon, the number of trials remaining.

Multiple Epoch A variant of the ε algorithms is the multiple epoch approach. Multiple epoch

approaches can be applied to many multi-armed bandit policies (e.g., Langford and Zhang [100]),

but they are largely unstudied in non-ε approaches. They may show promise in non-stationary

bandit cases where the epoch length (and data decaying) can be used to control for the maximum

deviation. In the multiple epoch approach, we divide our total time horizon (known or unknown,

finite or infinite) into epochs of an integer length. The respective policy is then applied within

the epoch. For example, in the ε-first strategy, this eliminates some of the vulnerability to non-

stationarity and horizon-unawareness by allowing learning to take place at spaced periods within

the total time.

UCB1

Much of the research in regret bounds demonstrates regret that is logarithmic (“optimal”) only

asymptotically. Auer et al. [15] present an algorithm originating in Agrawal [5] called UCB1 which

achieves expected logarithmic regret uniformly over time, for all reward distributions, with no prior

knowledge of the reward distribution required. UCB1 is the first strategy we have discussed that

is not a semi-uniform strategy, that is, it does not maintain a distinction between an exploratory

phase and an exploitation phase, choosing instead to optimize how exploration happens at each

individual iterate. UCB1 belongs to the general family of upper confidence bound (UCB) algorithms,

first proposed in Lai and Robbins [99] but developed extensively in Auer et al. [15]. UCB algorithms

take the form of picking the arm which maximizes a surrogate function, i.e., they pick,

i = arg max
i

µi + Pi, (2.14)

where µi is the “average function” which estimates the mean payoff of arm i and Pi is a padding

function which generally takes the form of an approximation of the uncertainty on µi. The primary

contribution of variants of the UCB algorithms is the selection of Pi.

For convenience, let ∆i be defined the same way as in Auer et al. [15]: ∆i ≡ µ∗ − µi where µ∗

represents the mean reward expected from the optimal arm and µi represents the current reward

expectation for arm i.

UCB1 begins by playing each arm once to create an initial estimate. Then, for each iterate t,

arm i is selected to achieve the maximum value maxi x̄i +
√

2 ln t
ni

where x̄i is the average observed

reward of arm i thus far (the empirical mean) and ni is the number of times arm i has been played.

The second term in this equation acts as an approximation for “optimism” by treating arms which
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have been played less as more uncertain (and thus plausibly better) than arms that have been played

frequently. In UCB1’s strict formulation, the bound is derived from the Chernoff-Hoeffding bound

[22, 44, 76] on the right tail distributions for the estimation of Bernoulli random variables, but the

confidence bound model applies equally well to any distribution where an appropriate bound can

be defined.

The second term in the maximization criterion has been extended, as in the MOSS algorithm

[10] (discussed in an upcoming section) to consider the remaining horizon to create an “exploratory

value” that is declining in finite time or to improve the tightness of the bound on variance.

UCB1 as specified has a bounded regret at time t, for Bernoulli arms, given by the following

formula, shown in the original paper,

8 ·

 ∑
i:µi<µ∗

(
ln t

∆i

)+

(
1 +

π2

3

)( K∑
i=1

∆i

)
. (2.15)

UCB2

UCB2, an iterative improvement over UCB1, reduces the constant term in the fraction of time a

suboptimal arm will be selected, reducing the overall regret, at the cost of only a slightly more

complicated algorithm.

In UCB2, iterates are broken into epochs of a varying size. In each epoch, arm i is selected to

maximize x̄i +
√

(1+α)(ln(et/(1+α)ri ))
2(1+α)ri and then played exactly d(1 + α)ri+1 − (1 + α)rie times before

ending the epoch and selecting a new arm. ri is a counter indicating how many epochs arm i has

been selected in and 0 < α < 1 is a parameter that influences learning rate discussed below.

The bound of regret for UCB2 is known for times t ≥ maxi:µi<µ∗
1

2∆2
i

and is given by,

∑
i:µi<µ∗

(
(1 + α)(1 + 4α) ln(2e∆2

i t)

2∆i
+
cα
∆i

)
, (2.16)

where e is Euler’s constant and cα = 1 + (1+α)e
α2 + (1+α

α )(1+α)(1 + 11(1+α)
5α2 ln(1+α)

) as proven in Auer

et al. [15]. The important property of cα to notice is that cα → ∞ as α → 0, forcing a trade-off

between the selection of α to minimize the first term towards 1/(2∆2
i ) and the second term. The

original paper suggests optimal results from setting α such that it is decreasing slowly in t but is

not specific to the form of decrease; in practice, they also demonstrate, the choice of α does not

seem to matter much as long as it is kept relatively small.

UCB-Tuned

A strict improvement over both UCB solutions can be made by tuning the upper bound parameter

in UCB1’s decision rule. Specifically, Auer et al. [15] further expands these solutions by replacing
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the second term
√

2 ln t
ni

with the tuned term
√

ln t
ni

min(1
4 , Vi(ni)) where Vi is an estimate of the

upper bound of the variance of arm i given by, for example,

Vi(ni) ≡

(
1

ni

ni∑
τ=1

X2
i,τ

)
− X̄2

i,ni +

√
2 ln t

ni
, (2.17)

where ni is the number of times arm i has been played out of t total plays. UCB-Tuned

empirically outperforms UCB1 and UCB2 in terms of frequency of picking the best arm. Further,

Auer et al. [15] indicate that UCB-Tuned is “not very” sensitive to the variance of the arms.

Simple experimentation shows that UCB-Tuned as defined above outperforms the earlier UCBs

significantly in all tested worlds.

MOSS

MOSS [11], or the Minimax Optimal Strategy in the Stochastic case, produces a variant of UCB1

that is presented in a generalized context, such that it can apply to all known bandit variants or

subproblems. In MOSS, the ln t component of the padding function in UCB1 for arm i is replaced

with ln H
Kni

where ni is the number of times arm i has been played, H is the total number of

iterates to be played (the horizon, at the beginning) and K is the number of arms available in a

stochastic (non-adversarial) bandit problem. The work of Audibert and Bubeck [11] shows that

expected regret for MOSS is bounded from above, by,

ER ≤ 25
√
HK ≤ 23K

∆
log

(
max

(
140H∆2

K
, 104

))
, (2.18)

where ∆ = mini:∆i>0 ∆i, the smallest gap between the optimal arm and the second best arm.

Note that this calculation of regret applies continuously in the stochastic case, but we will see

later in the adversarial discussion that it is marginally complicated in that environment due to

non-unicity of the optimal arm.

Bayes-UCB

Combined with KL-UCB (covered in the next section), Bayes-UCB [88] — an explicitly Bayesian

variant of UCB — represents the current state of the art of UCB algorithms. It is an asymptotically

efficient advanced algorithm with promising empirical results. In the Bayesian approach to the

multi-armed bandit problem, each arm is represented as an estimate of a distribution that is updated

in the traditional Bayesian fashion. Kaufmann et al. [88] show that this Bayesian-derived UCB

has a cumulative regret that empirically outperforms the strongest of the original UCB algorithms

by a substantial margin in a handful of selected problems while having the advantage of being

distribution agnostic and showing the early-iterate flexibility of a Bayesian approach to knowledge

acquisition. A computational complexity challenge is acknowledged but not explored in depth.
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Bayes-UCB is similar to the probability matching strategies to be discussed later: quantiles of a

distribution are estimated to increasingly tight bounds and the probability of a given arm “being

the best” is used to determine the next step. To perform Bayes-UCB, the algorithm requires a prior

on the arms, Π0 and a function to compute the quantiles of the expected distributions, Q(α, ρ)

such that Pρ(X ≤ Q(α, ρ)) = α. At each time step t, Bayes-UCB draws the arm i to maximize the

quantile selected as follows. It picks

i = arg max
i

qi(t) = Q(1− 1

t
, λt−1

i ), (2.19)

where Q meets the property described above and λ
(t−1)
i is the estimated posterior distribution

of arm i at the previous time step. This is then updated according to the Bayesian updating rule

and used as the prior for the next iteration.

In a theoretical analysis, Kaufmann et al. [88] show that Bayes-UCB achieves asymptotic opti-

mality and a non-asymptotic finite-time regret in O(H).

It is interesting to note that by treating the quantile function and underlying model appropri-

ately, Bayes-UCB can, in theory, represent any distribution and most subproblems of the multi-

armed bandit. As a simple but valuable example, by representing the underlying model as a

Bayesian regression, one can include contextual information in the bandit process.

KL-UCB

KL-UCB [105] presents a modern approach to UCB for the standard stochastic bandits prob-

lem where the padding function is derived from the so-called Kullback-Leibler (K-L) divergence.

KL-UCB demonstrates regret that improves the regret bounds from earlier UCB algorithms by

considering the distance between the estimated distributions of each arm as a factor in the padding

function. Specifically, define the Kullback-Leibler divergence[62, 98] (for Bernoulli distribution

arms) as,

d(p, q) = p log
p

q
+ (1− p) log

1− p
1− q

, (2.20)

with convention of 0 log 0 = 0, 0 log 0
0 = 0, and x log x

0 = +∞ for x > 0. The Kullback-

Leibler divergence d(p, q) provides a probability-weighted measure of the difference between two

distributions which does not rely on collapsing the distribution to a midpoint (e.g., expectation).

To pick an arm in each iteration of KL-UCB, we maximize

i = arg max
i

ni · d(µi,M) ≤ log t+ c log log t (2.21)

where M is picked from the set of all possible reward distributions. The K-L divergence of

d(x,M) is strictly convex and increasing in [x, 1) [62] making this equation tractable.
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POKER and price of knowledge

A non-UCB algorithm, POKER [152] or Price of Knowledge and Estimated Reward is a generaliz-

able economic analysis inspired approach to the problem.

The intuition behind POKER is to assign a “value” of the information (the “exploration bonus”)

gained while pulling a given arm. This value is estimated for each arm, and then the arm with

the highest expected payoff plus expected value of information is played. Value of information is

defined to maximize expected outcome over the horizon. To gain an intuition, first assume an oracle

provides the best arm as arm i∗ with payoff µ∗, that we have an estimate for each arm’s payoff µ̂i

and that we have an estimated best arm î with estimated payoff µ̂∗. Define the magnitude of the

expected improvement as δ = E[µ∗ − µ̂∗], then the probability of an improvement for a given arm

is P [µi − µ̂∗ ≥ δ].
When there are (H − t) plays left, any new knowledge found in this iterate can be exploited

(H − t) times. This means the expected improvement has a (non-discounted) value of δ · (H − t).
A problem arises in computing δ, as if i∗ and µ∗ were known, there would be no need to

explore. Instead, the ordered estimate of the means are used. Imagine, an ordered list of the mean

rewards as µ̂i1 ≥ · · · ≥ µ̂iq . Vermorel and Mohri [152] choose, based on primarily empirical results,

to approximate δ proportional to the gap between µ̂i1 and the µ̂i√K arm. Specifically, they set

δ =
µ̂i1−µ̂i√K√

K
. That is, if there are K arms, the difference between the best and the

√
Kth best

current estimate is proportional to the plausible gain.

In the limit (as the number of arms approaches infinity), this approximation strategy ensures

bias and variance minimization.

Additionally, one can observe that the whole probability P [µi − µ̂∗ ≥ δ] = P [µi ≥ µ̂∗ + δ] is

approximated (or identical, in the event of normally distributed means10) by the cumulative prob-

ability of the reward higher than the best empirically expected reward plus expected improvement

µ̂∗ + δ,

P [µi ≥ µ̂∗ + δ] =

∫ ∞
µ̂∗+δ

N

(
x, µ̂i,

σ̂i√
ni

)
dx, (2.22)

where N(x, µ, σ) represents the normal distribution and ni means the number of times arm i

has been played and mean µi and variance σi take on their usual meaning.

This gives us sufficient information to define a decision criterion. Select the arm which maximizes

the expected sum of total rewards over the horizon H. Formally, at each time step t, select arm i

to play:

arg max
i

µi + δ(H − t)P [µi ≥ µ̂∗ + δ] (2.23)

10This is true in the limit by the central limit theorem, but as there may be a small number of arms and trials, it
may be a poor approximation in some environments.
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Note that δ(H− t) is the total expected gain over the remaining horizon. By multiplying by the

probability this arm will actually exceed the best known arm, we achieve a sensible expectation to

maximize. This value could be easily time-discounted by introducing a sum of discounted payoffs

if the time horizon was measured at a scale where time-discounting were of value.

POKER uses knowledge of the length of the horizon or number of plays that remain, (H −
t), as a parameter that effectively determines how to weight exploration and exploitation. The

authors make the claim that requiring the horizon explicitly is a more intuitive parameter than the

parameters associated with many other algorithms. Additionally, the parameter can be set to a

fixed value to simply use it to balance exploration and exploitation in the case horizon is unknown

or infinite.

Vermorel and Mohri [152] introduce the POKER policy and use the term zero-regret strategy

to describe it. In their context, zero-regret means guaranteed to converge on the optimal strategy,

eventually: that is, a strategy which has average per-play regret tending to zero for any problem

which has a horizon tending to infinity. The term zero-regret will not be used in the rest of our

discussion, preferring instead “guaranteed to converge to zero.”

The authors compare POKER to ε strategies, Exp3 (discussed in a future section) and others on

a real world redundant retrieval11 routing problem and find that POKER outperforms ε strategies

by a factor of approximately 3. As of this writing, there has been no known finite time analysis of

regret for POKER.

2.2.2 K-Armed vs. Infinite-Armed Bandits

Expanding on the traditional model is a variant which treats the number of arms as an infinite or

continuous range with some functional form defining the relationship or a sufficient mechanism for

discretizing the infinite space. This variant allows for substantial variation in problem difficulty by

varying how much the agent knows about the arm relationship.

As an example of the infinite-armed bandit case, consider the case of picking a color for a

purchase button to optimize clicks. Each user that views the purchase button is (possibly) influ-

enced by its color, and color is a (theoretically) continuous function. As it would be impossible to

sample all the colors, in the infinite-armed case, for the analysis of an infinite-armed bandit to be

tractable, there must exist an underlying well-behaved function defining the relationship between

arms (colors) and the payoff function (clicks).

While the infinite-armed case is very interesting from a web optimization and online advertising

perspective, it is not a major source of motivation for this work choosing to prefer a focus on discrete

changes. As such, only a quick overview of the state of the art is provided here for completeness.

One of the earliest works in this space was Agrawal [5].

11The problem is to identify the fastest source for a content delivery network with numerous redundant sources of
requested data.
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Recent work has studied such variants of the infinite armed problem as high-dimensional spaces

[147, 148], non-smooth spaces [47] and multiple-objectives [151], although work on theoretical

analysis of the existing algorithms is still ongoing. An approach to define a computationally and

mathematically feasible regret in a generalized infinite-armed case is presented in Carpentier and

Valko [39].

Bandit Algorithm for Smooth Trees (BAST)

[48] present an analysis of the popular UCT (upper confidence bound for trees) algorithm which

combines Monte Carlo tree-based techniques from artificial intelligence12 with the UCB1 algorithm

discussed prior. UCT is popular in planning problems for game-playing artificial intelligence, but

not itself appropriate for infinite-armed bandit problems as it applies in a space where the number

of potential decisions extremely large13, not infinite.

The Bandit Algorithm for Smooth Trees introduces a mechanism related to continuity in to

the tree approach, choosing to, for example, represent a continuous space as a tree with repeated

branches dividing that space. The fundamental assumption is that leaf nodes in the tree can

be expected to have similar values in the payoff space. Coquelin and Munos [48] represent this

assumption rigorously requiring that for any level in the tree, there exists a value δd > 0 called the

smoothness coefficient such that for at least one (optimal) node i in that level d the gap between

the optimal leaf node (µ∗) and all other leaf nodes is bounded by δd. Formally,

µ∗ − µj ≤ δd ∀j ∈ leaf(i) (2.24)

Assumptions of this style are the core tool with which infinite-armed bandits are generally

represented. The tree is then generally assumed to take a coarse-to-fine hierarchical representation

of the space down to some maximum tree height.

BAST performs selection at each level of the tree using a variant of the UCB algorithms which

takes in to consideration the estimates of nearby nodes. Specifically, for a given smoothness co-

efficient δd for each level on the tree, a selection mechanism for any non-leaf node is given as

maximizing

Bi,ni = min
{

(maxBj,nj ), Xi,ni + δd + cni
}

(2.25)

And for any leaf node as the simple UCB criteria,

12A good survey of related algorithms for tree search is given by Browne et al. [29].
13Many games are well modelled as a tree structure where each decision reveals a new set of decisions until an end

state (win or lose) is reached. These trees can grow very rapidly, but are not generally continuous. A number of
techniques are proposed for dealing with them [120] and these techniques frequently overlap with some techniques
proposed for infinite- or continuum-armed bandits.
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Bi,ni = Xi,ni + cni (2.26)

Where cni takes the role of the padding function from UCB and is defined as

cn =

√
log(2Nn(n+ 1)β−1

2n
(2.27)

A technique described in [49] and [64] is also explored in [48] which allows the online production

of the tree with or without the assumption of a maximum tree height. In the iterative growing

variant of BAST, the algorithm starts with only the root node, then at each iterate, selects a

leaf node via its selection mechanism described above and expands the node in to two new child

nodes, immediately choosing to play each child node once. This iterative technique still requires

O(n) memory to maintain the tree, but results in only optimal branches being explored in depth,

a desirable property.

Hierarchical Optimistic Optimization (HOO)

Similar to BAST, Hierarchical Optimistic Optimization [34, 35, 92] attempts to build an estimate

of the functional form f by treating the problem as a hierarchical (coarse-to-fine) tree, with a

particular focus on only maintaining a high-precision estimate of f near its maxima. HOO builds

and maintains a binary tree where each level is an increasingly precise subspace of the total space

of arms, X. Each node in the tree tracks its interval range (subspace), how many times the node

has been traversed and the empirical estimate of the reward, which it uses to compute an optimistic

upper bound estimate, B, for this leaf’s reward in a similar fashion to the UCB algorithms. At

each time step, the algorithm traverses the tree, picking the highest B node at each junction until

it reaches a leaf. At a leaf, it splits the node and creates a new point which is evaluated and the

upper bound estimate is updated up the tree accordingly.

This makes an assumption about the shape of f , but not one as strong as the BAST algorithm

did. Rather than requiring continuity in a strongly defined sense as in the δd existence assumption

before, HOO requires only that a dissimilarity function exists which puts a lower bound on the

mean-payoff function over the arbitrary space the arms exist in.

In HOO, the selection strategy for each node requires a measure µd,i which represents the

empirical mean of the payoff from each time the node been traversed and Nd,i, the number of times

that node has been traversed. We use d to denote depth in the tree, as in the BAST exposition,

and i to denote the specific node. Following again in the UCB strategy, the corresponding upper

confidence bound criterion can be given as

µd,i +

√
2 lnn

Nd,i
+ υ1ρ

d (2.28)
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where 0 < ρ < 1 and υ1 > 0 are parameters selected by the implementer

Since their work, there has been work on an algorithm called Open-Loop Optimistic Planning

(OLOP) [32, 150] and a combination work called hierarchical OLOP [157] which combines the meth-

ods. These are not explored in more detail here, as infinite-armed bandits do not arise significantly

in the remainder of our work.

2.2.3 Adversarial Bandits

One of the strongest generalizations of the k-armed bandit problem is the adversarial bandits

problem. In this problem, rather than rewards being picked from an a priori fixed distribution,

rewards are selected, in the worst case per-play, by an adversary. The problem is transformed into

an iterated three step process; in step 1, the adversary picks the reward distributions (generally with

full availability of the list of prior choices, though the constraints on the distribution are discussed);

in step 2, the agent picks an arm; in step 3, the rewards are assigned. This is a strong generalization

because it removes the distribution dependence on the arms (and as such, stationarity and other

distribution-dependent assumptions); an algorithm that satisfies the adversarial bandits problem

will satisfy more specific14 bandits problems, albeit, often sub-optimally.

As adversarial bandits are such a strong generalization, Audibert and Bubeck [11] provide a

taxonomy of bandit problems that builds from the constraints on the adversary’s selection process.

Fundamentally, allowing the distribution to vary in each time, they let n represent the number of

possible distributions available. They then provide five distinctions. (1) The purely deterministic

bandit problem, where rewards are characterized as a matrix of nK rewards, where K represents the

number of arms and n the number of time steps. In each time step, a single deterministic reward

is set (fixed a priori) for each arm. (2) The stochastic bandit problem – the variant discussed in

the majority of this work – in this taxonomy is characterized by a single distribution for each arm,

stationary in time, independent and bounded on some range, say, xi ∈ [0, 1]. (3) The fully oblivious

adversarial bandit problem, in which there are n distributions for each arm, independent of each

other (both through time and across arms) and independent of the actor’s decisions, corresponding

to changes selected by the adversary across time. (4) The oblivious adversarial bandit problem, in

which the only constraint is that the distributions are selected independent of the actor’s decisions.

Finally, (5) the adversarial bandit, in their work referred to as the non-oblivious bandit problem,

where the reward distributions can be chosen as a function of the actor’s past decisions. For

reference, we have presented the distinctions and how they map to the bandit taxonomy we have

provided in Table 2.1.

In the majority of this work, we focus explicitly on the stochastic variants of the multi-armed

bandit problem, choosing a lens by which deterministic or even simply non-oblivious bandits are

not known to be deterministic or non-oblivious by the agent ahead of time. Our lens models the

14Especially, contextual bandits.
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various forms of oblivious bandits as considerations to the stochastic nature of the problem, for ex-

ample, treating contextual covariates and non-stationarity as a form of statistical misspecification,

even when sometimes that misspecification will be impossible to resolve (as in the case of Knightian

uncertainty [93], where the correct reward model has some immeasurable and incalculable compo-

nent). This differs from the lens in Audibert and Bubeck [11], providing a prospective which applies

more closely to the application area of interest in this work (one in which the true underlying model

almost certainly consists of unknown or unknowable covariates, but is also partially approximated

by variables we can observe), but comes at the cost of not generalizing to the pure non-oblivious

adversarial problems.

In our slot machine example, this is a world where the casino selects which machines will have

which payoff distributions after each play, in the worst case, in effort to minimize your reward. For

example, if a player were consistently picking the same machine, the casino would move the worst

payoff distribution to that machine. Indeed, the title of Auer and Cesa-Bianchi [14] paper intro-

ducing the problem, “Gambling in a rigged casino: the adversarial multi-armed bandit problem”

captures this stylized example well. In the general sense, the adversarial case makes no assumption

on the underlying payoff distribution, and the adversary does not need to necessarily be a true

minimizer.

The major caveat of adversarial bandits, is that our definition of “performance” needs to be

relaxed for any measures to be meaningful. Specifically, a strong performing algorithm must be

defined using a measure of regret that compares our decisions solely to a fixed machine over time,

that is, a strong adversarial bandit can still achieve logarithmic regret, but only if the “best arm”

is defined at time t = 0 and does not vary across trials. To rephrase, that means that of our

definitions of regret given earlier in this chapter, only the “weak-regret” notions can be meaningful

within an adversarial context.

In the online advertising context in this work, the general form of adversarial bandits have little

direct application other than as motivation for contextual (and distribution-free) bandits, as such

only a cursory overview of their evolution follows. Further work may include competition with other

advertisers as an adversarial case, though the specific implementation of the model is uncertain.

The majority of the efficient solutions to adversarial problems are variants of the Exp3 algo-

rithm presented in Auer, Cesa-Bianchi, Freund, and Schapire [16] for the general, no statistical

assumptions adversarial bandits case. Beygelzimer, Langford, Li, Reyzin, and Schapire [26] extend

the work of Auer et al. [16] and McMahan and Streeter [107] to transform Exp4 to produce a

high-probability bounded version called Exp4.P.

Hedge and Exp3

Auer and Cesa-Bianchi [14] present the first look at the adversarial bandit problem and include

an algorithm with high-probability bounded regret called Exp3: the exponential-weight algorithm
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for exploration and exploitation based on an algorithm called Hedge for the full information

problem. Exp3 [16] presents a readily understandable, simple algorithm for adversarial bandits.

Given a “pure exploration” parameter ε ∈ [0, 1], which measures the fraction of time the algorithm

selects a purely random decision, the algorithm then spends (1 − ε) of the time doing a weighted

exploration/exploitation based on the estimated actual reward.

The estimation process for Exp3 is an exponentially updating probability weighted sample. The

arm weight is updated immediately after pulling a given arm and being delivered the reward ρi

with the formula

wi,t = wi,t−1 · e
ε· ρi
pi,t·K , (2.29)

where wi,t is the arm i specific weight at time t and p is our selection criteria. The probability

of each specific arm to play in each iteration is selected according to p, which considers the arm

weighting and ε semi-uniformity, namely,

pi,t = (1− ε) wi,t∑K
j=1wj,t

+ ε · 1

K
. (2.30)

In some sense, Exp3 combines the semi-uniformity in the parameterization of ε strategies with

the “probability of best” weighted exploration/exploitation strategies of probability matching meth-

ods.

A computationally efficient version of Exp3 called Exp3.S is presented in Cesa-Bianchi and

Lugosi [41].

Exp4

Exp3 does not include any concept of contextual variables or “expert advice”. Auer et al. [16]

develop an extension of Exp3, called Exp4 (Exp3 with expert advice). Exp4 is identical to Exp3,

except the probability of play is selected with the addition of a set of N context vectors ξ per time

and the weight function is similarly replaced to consider the context vectors. One should note that

the weights w are now computed per context vector, where a context vector can be viewed as an

“expert” advising of a selection coefficient for each arm; we now use j to indicate the index of the

expert and continue to use i to indicate the index of the arm, for clarity,

wj,t = wj,t−1 · e
ε·
ρj ·ξj,t
pj,t·K . (2.31)

For the selection probability p, interpret ξj,t(i) as the advice coefficient expert j gives at time t

about arm i,

pi,t = (1− ε)
N∑
i=1

wj,tξj,t(j)∑K
k=1wk,t

+ ε · 1

K
. (2.32)
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Note that k represents an iterator over all arms in the second term. With a minor abuse of

notation, this is equivalent to Exp3 where we update our weight vector with the context ξ, reward

ρ, and selection probability p according to ξ · ρ/p for the arm played at each time step except that

the weight vector is now the summed contextual weight vector.

Exp4.P Exp4.P is a variant of the Exp4 algorithm presented in Beygelzimer, Langford, Li, Reyzin,

and Schapire [26] with bounded15 regret in the high-probability case of Õ(
√
KH logN). The bound

does not hold in high-probability in the original Exp4 presentation as the variance of importance-

weighted numerator term is too high [26]. Exp4.P modifies Exp4 such that the bound holds with

high-probability. The change in Exp4.P is only in how the weight vector is updated at time t.

Rather than using Equation (2.31), Exp4.P uses an updating function,

wj,t = wj,t−1 · e
ε
2
·
(
ρj ·ξj,t+v̂j,t

√
ln (N/δ)/KH

)
, (2.33)

where δ > 0 is a parameter that defines the desired probability bound of the regret (1− δ) and

vj,t is defined as

vj,t =
∑

1,...,K

ξi,t(j)

pi,t
. (2.34)

This modification allows Beygelzimer, Langford, Li, Reyzin, and Schapire [26] to bound regret

of the new algorithm, Exp4.P, with probability of at least 1− δ to −6
√
KH log(N/δ).

Stochastic and Adversarial Optimal (SAO)

Bubeck and Slivkins [33] introduce a testing technique that is capable of handling both the

stochastic (non-adversarial) problem and the adversarial problem with near-optimal regret results.

Stochastic problems generally use a different definition of regret than adversarial problems, so the

analysis provided in this work takes place in two parts assuming the model is either stochastic or

adversarial showing asymptotically regret of O(polylog(n)) in the stochastic case16 and the O(
√
n)

pseudo-regret from Exp3 in the adversarial case.

SAO proceeds in three phases, making it a semi-uniform strategy: exploration, exploitation and

the adversarial phase. The exploration and exploitation phases are largely as expected, interleaved

to operate pairwise (arm 1 vs. arm 2) and rule out “suboptimal” arms as it progresses. For the

remainder of this exposition, assume there are only two arms and arm 1 is strictly superior to

arm 2. Further, let C ∈ Ω(log n) be an arbitrary parameter which enforces consistency, selected

specifically for the application area, for example C = 12 log(n), let H̃i,t be the average observed

15The notation Õ(n) is read “soft-O of n” and is equivalent to O(n logk n), i.e., the big-O notation where logarithmic
factors are ignored.

16The notation O(polylog(n)) means O((logn)k) for some k. This is similar to the use of Õ to indicate the
insignificance logarithmic terms often bring to the analysis of algorithms.
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reward for arm i, t represent time (number of iterates so far) and τ∗ represent the point we switch

from exploration to exploitation.

We start in a state of exploration, where we pick an arm with equal probability for a minimum

of C2 rounds and until we find a “sufficiently superior” arm according to the condition,

|H̃1,t − H̃2,t| <
24C√
t
. (2.35)

During the exploitation phase, the arms are drawn according to the probabilities pt(2) = τ∗
2t and

pt(1) = 1−pt(2), that is, the probability of drawing the suboptimal arm is decreasing asymptotically

in time. A set of conditions is checked to see if the observed rewards still fit within the expected

stochastic model. The conditions checked are referred to as consistency conditions and are as

follows.

The first consistency condition, which checks if the observed rewards in exploitation are congru-

ent with the findings of the exploration phase, that is, whether the rewards are bounded in a range

consistent with our observation that arm 1 is better than arm 2 by approximately the observed

amount. Concretely, the first consistency condition is

8C
√
τ∗
≤ H̃1,t − H̃2,t ≤

40C
√
τ∗
. (2.36)

.

The second consistency condition, which checks that arm i’s estimate is still within bounds

of the expected estimate, consistent with the fact that during exploitation the suboptimal arm is

drawn with low probability. Consider Ĥi,t to be the expected reward from arm i at time t given that

the world is stochastic and the arm can be appropriately modelled, so that H̃i,t − Ĥi,t represents

the difference in the expected reward and the observed reward. Concretely, the second consistency

conditions are,

|H̃1,t − Ĥ1,t| ≤
6C√
t
, (2.37)

|H̃2,t − Ĥ2,t| ≤
6C
√
τ∗
. (2.38)

All the magic numbers in these conditions are derived from the high-probability Chernoff bounds

for the stochastic case. The different denominators on the right hand side of the equation account

for the low probability of drawing the inferior arm (arm 2) during exploitation.

In the event any of the consistency conditions fail, we assume the model is non-stochastic

and switch from the explore-exploit algorithm to that of Exp3. The work explores and proves

properties of the conditions. Selection of the consistency parameters is important, as they would

allow a carefully crafted adversary to maintain the conditions. Such conditions cannot allow the

adversary to create a high level of regret for the application yet must hold in high probability in
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the non-adversarial case.

This algorithm as described combines the asymptotic regret bounds of both UCB1 and Exp3 in

a near-optimal (asymptotic) fashion for both stochastic and the most general form of adversarial

bandits. There is no analysis of the finite time regret.
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Table 2.1: A hierarchy of bandit problems, categorized by the adversarial bandits general-
ization in Audibert and Bubeck [11].

Fully Oblivious
Each arm’s distribution may change through time, but are fully independent of each other both
across time and across arms, e.g., each arm changes to a randomly drawn new payoff every iterate.

– Deterministic
Arm payoffs are not random variables and are fully selected ahead of time, independently of both
each other, the player’s decisions and time.

– Stochastic
Arm distributions are random variables drawn from a distribution for each arm which is fixed in
time and independent of each other. In an equivalent alternative presentation, arm distributions
are drawn from a single K-dimensional distribution which is i.i.d.

Oblivious
Each arm’s distribution may change through time and may be correlated with itself, other arms, or
observed or unobserved covarying variables, but not with the player’s past decisions. This appears
as an “adversary” who is not informed of the player’s choices.

– Nonstationary Stochastic
Arm distributions may have their parameters drifting in time or have changepoints in time at which
they suddenly change in parameters.

– Contextual Stochastic
Arm distributions have observed or unobserved covariates which partially determine their payoff.
E.g., the web optimization environment described where a user may have demographic or individual
variables which make one arm better or worse for that specific context than another or the case of
a casino with slot machines half red and half blue, where red arms pay at a different rate than blue
arms (but the player does not know that ex-ante). Covariates can be received from the environment
(in the described case of an individual observer having them) or from the arms themselves (as in
the colored machines case).

Non-Oblivious
Arm distributions can be chosen as any function of the actor’s past decisions, including one that
meets the intuitive definition of “adversary,” e.g., the arms may be “designed to trick” the actor,
a long string of wins followed by a large loss.
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2.2.4 Contextual Bandits

The simple k-armed bandit problem performs sub-optimally by its design in the advertising context.

In general, the contextual bandits framework is more applicable than the non-contextual variants

of the problem, as it is rare that no context is available [100]17. Specifically, the simplest form of

the model selects from k advertisements then discovers the payout associated with that particular

play.

The contextual bandit setting has taken many names including bandits with context, bandit

problems with covariates [121, 131, 160], generalized linear bandits, associative bandits [139] and

bandit problems with expert advice [15]. The contextual bandit problem is closely related to work

in machine learning on supervised learning and reinforcement learning; indeed, some authors [53]

have referred to it as “the half-way point” between those fields because of the ability to construct

algorithms of a reinforcing nature with convergence guarantees while considering relatively general

models.

In this work, we further divide the context into both the advertisement (arm-context) and the

user or world-state (weather) being selected for (world-context), where arm-context can be used

to learn shared properties across arms in the same way as in infinite armed bandits, while world-

context interacts with arm context and is declared on a per step basis. In a more complicated

hierarchical model, we have even more information - we know at each step all the factors of the

preceding step (hierarchy and world context). This allows a much more rich learning process where

the hidden vector of contextual variables can be used to guide learning, even if they are incomplete.

Broadly, the expected reward can be approximated by a model of the form

Yi = α+ βAi + γWt + ξAiWt + ε (2.39)

where Yi indicates the expected payoff of a given arm conditional on the context, β indicates the

coefficient vector as a function of the arm context, and γ a coefficient vector of the world context.

In the web search context, the world context vector might be the words included in the search

query, in which case we would expect our agent, in the limit, to learn a model that suggests ideal

advertisements related to the query for any given search.

A slightly more general form of contextual or side-information bandits is referred to as associa-

tive reinforcement learning [139] in some statistical and machine learning literature.

Early research for the contextual bandit problem includes Wang et al. [155] and Pandey et al.

[118] and makes additional assumptions about the player’s knowledge of the distribution or re-

lationship between arms. One of the first practical algorithms to be discussed in the context of

horizon-unaware side-information bandits was Epoch-Greedy presented by Langford and Zhang

17While it is rare that no context is available, it is not rare that the value of the context is entirely unknown – in
the stylized example of a slot machine, the arms may be different colors, whether that is a determining factor in the
payoff probabilities or not may be a priori completely uncertain.
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[100]. One of the most salient works in this space is that of Dudik et al. [53] which brings contex-

tual learning to a practical light by producing an online learning algorithm with a running time in

polylog(N) and regret that is additive in feedback delay. Additionally, the work of Chu, Li, Reyzin,

and Schapire [46] produces an analysis of an intuitive linear model-type upper confidence bound

solution called LinUCB [1, 50, 128] derived from the UCB solutions for non-contextual bandits

which provides good real world performance.

Importantly, Exp4 [16] makes no statistical assumptions about the state of the world or arms

and therefore can be applied to the contextual problem, however, the majority research thus far

derived from Exp-type algorithms has been focused on the adversarial problem discussed prior.

One exception is the application of Exp4.P to the strictly contextual problem found in Beygelzimer

et al. [26].

Returning briefly to the slot machine example, contextual bandits model the situation where the

machines have properties (arm-context) we believe may effect their payoff: perhaps some machines

are red, some machines are blue (categorical context); perhaps machines closer to the front casino

seem to pay better (linear, continuous context). This could also represent the situation where

payoffs vary by day of week, time of day or another (world-context): perhaps slot machines in

general are set by the casino to pay more on weekdays than on weekends, in effort to increase the

number of plays during the week.

LinUCB

LinUCB is a strong, intuitive polynomial time approach to the contextual bandits problem. Largely,

LinUCB builds on the upper confidence bound work of the non-contextual bandits solution by syn-

thesizing concepts captured by the associative reinforcement learning algorithm LinRel[13]. Lin-

UCB introduces a feature vector to the UCB estimate which is maintained with a ridge regression.

In general form, LinUCB observes a set of d features per arm (i) xt,i at each time step (t) and

then selects an arm by a maximization of the regularized upper confidence bound estimate,

i = arg max
i

θ
′
txt,i + α

√
x
′
t,iA

−1xt,i, (2.40)

where α is a positive regularization parameter and θt is the coefficient estimate for the arm’s

features. (θt = A−1b where A and b are maintained via the ridge regression updating process after

observing the reward18)

LinUCB achieves regret in polylog(H). Specifically, the regret bound shown by Chu, Li, Reyzin,

and Schapire [46] is O(
√
Td ln3(KH ln(H)/δ)) for d dimensional feature vectors up to a probability

of 1 − δ. The algorithm’s sensitivity to non-stationarity and feedback delay has not yet been

investigated in depth though it may perform adequately on feedback delayed situations as the

18Recall that in the regression minimization problem, θ̂ = (X
′
X)−1X

′
y and let A = X

′
X and b = X

′
y where y is

the observed reward
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effect (or “pull”) of each additional observation should decrease in increasing trials.

We present a technique in Chapter 3 which extends LinUCB to the Thompson Sampling

paradigm for improved performance in handling variance in early pulls and in generalizing the

distribution underlying the regression coefficients.

CoFineUCB

An interesting approach to the contextual bandits problem is to treat the exploratory contexts as a

hierarchy. When this works, it could achieve logarithmic treatment of the features by treating them

as a tree. Generalizing LinUCB, CoFineUCB approaches the estimation in a coarse-to-fine approach

that allows increasing accuracy by drilling into a particular variable subspace. CoFineUCB extends

LinUCB to fit a model strictly within a selected “coarse” subspace with a regularization parameter

for the “fine” regression. The intuition provided is one of user’s preferences – if preferences can

be embedded in a coarse-fine hierarchy (e.g., movies (coarse), action movies (fine); or ice cream

(coarse), vanilla ice cream (fine)), then an initial model on the coarse levels can be supplemented

by a stronger model on only those within the class to predict the fine levels.

In practice, CoFineUCB has been used in a recommender system context and shows good

performance on experimental measures of regret when the coarse subspace accurately reduces the

prediction variation for most users.

Our technique presented in Chapter 3 for creating LinTS is applicable to the CoFineUCB results

to produce CoFineTS, an information-theoretically improved variant of the coarse-fine strategy.

Banditron and NeuralBandit

The contextual bandits solutions explored so far require the effect of context be linear in the param-

eters within the interval being estimated. While some flexibility exists in terms of acceptable error

rate and interval estimation, the linear regression techniques are all subject to similar constraints.

Banditron [86] and NeuralBandit [7] are recent algorithms for the non-linear contextual bandit

which utilize the insights from the multi-layer perceptron [126]. At a high-level, these algorithms

replace the (generally back-propagation based) updating process in the perceptron algorithm, with

a partial information technique using only the bandit feedback. The specific update process differs

in each algorithm.

As of the date of this work, neural network-based techniques lack much theoretical analysis and

show significantly suboptimal regret in stationary and linear applications, however they are robust

to both non-stationarity and non-linearity (and do not require a convex cost function whatsoever)

where they show superior results.
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2.2.5 Non-stationary Bandits

Non-stationary bandit problems is currently a very active research area. Slowly changing environ-

ments have been explored in depth in the Markov decision process literature [52, 140]. In their paper

[63], Garivier and Moulines prove an O(
√
n) lower-bound of regret for generalized non-stationary

bandits.

Discounted UCB(-T)

Discounted UCB and Discounted UCB-Tuned [63, 94] build on the work of UCB1 and UCB-Tuned

for the original stochastic bandit problem, modifying the uncertainty padding estimate (the second

term in the maximizing condition) and using a “local empirical average” instead of the traditional

average considering older data in a discounted fashion. Effectively, discounted UCB creates an

exponentially decayed version of UCB parameterized by some discount factor γ ∈ (0, 1).

In the same fashion as the original UCB, in Discounted UCB, at time t we select the arm i

that maximizes the form x̄i,t + ci,t where ci,t is a measure that “shifts” the estimate upward (often

selected as a variance-adjusted estimator of the “exploratory value” of arm i). In Discounted UCB,

however, we parameterize both terms of that equation with a discount factor γ. We use an indicator

function 1σ defined as 1 if the condition σ is true and 0 otherwise and a list At that indicates the

arm selected at time t. Specifically,

x̄i,t(γ) =
1

Nt(γ, i)

t∑
s=1

γt−sxs(i)1As=i, (2.41)

where Nt(γ, i) =
∑t

s=1 γ
t−s

1As=i is the discounted average denominator and xs(j) is the payoff

received from arm i so far. This equation serves to capture the mean discounted payoff estimate

for arm i at time t. And ci,t is,

ci,t(γ) = 2B

√
ξ log

∑K
j=1Nt(γ, j)

Nt(γ, i)
, (2.42)

where B is an upper bound on the reward, as in the general formulation of UCB1 and ξ is a

parameter selected as 1
2 in their paper, but with little further exploration.

Garivier and Moulines [63] shows that Discounted UCB achieves optimum non-stationary regret

up to logarithmic factors, Õ(
√
n). By replacing the ci,t term with the tuned term from UCB-Tuned

with an additional time discounting in the same γt−s fashion, we get a variant of Discounted

UCB, Discounted UCB-Tuned that is expected to have the same empirical improvements as in the

non-discounted case.
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Sliding-Window UCB(-T)

Sliding-Window UCB (SW-UCB) [63] is an extension of Discounted UCB to use a sliding window

rather than a continuous discount factor. A sliding window can be modelled as a discount factor

of 100% for all data points older than some parameter τ representing the size of the window. To

define the UCB functions for SW-UCB, [63] extends the same UCB1-type maximization process

x̄i,t + ci,t for a τ period window as,

x̄i,t(τ) =
1

Nt(τ)

t∑
s=t−τ+1

xs(i), (2.43)

where Nt(τ) = min(t, τ) is the total length of the set being summed over, eliminating the

discounting consideration from above19. The padding or optimism function, ci,t, then, is,

ci,t(τ) = B

√
ξ log(min(t, τ))

Nt(τ, i)
, (2.44)

where Nt(τ, i) indicates the number of times arm i was played in the window of length τ . SW-

UCB performs slightly better in their experimentation than the pure discounted approach and has

the benefit of not requiring maintenance of data older than τ records. Both algorithms are strongly

superior in regret to the Exp3 type algorithms and UCB1 with no non-stationarity modifications

for the non-stationary problems tested.

Adapt-EvE

Hartland, Gelly, Baskiotis, Teytaud, and Sebag [73] present an extension to the UCB-Tuned algo-

rithm [15] to deal with abrupt changes in the distribution associated with each arm. Adapt-EvE

is considered a meta-bandit algorithm in that it uses a bandit algorithm at a higher level of ab-

straction to determine which bandit algorithm parameterization to use at each time. In particular,

Adapt-EvE works by running the UCB-Tuned policy until a change-point in the underlying distri-

bution is detected using one of many change-point detection algorithms (in their paper they use the

Page-Hinckley test [18, 74, 116] with “discounted inertia” to only trigger in the change-point case,

not the drifting case20). Upon detecting a change-point, a meta-bandit is initialized with two arms:

one, which continues using the trained version of UCB-Tuned, and the other which resets all param-

eters and instantiates a new instance of Adapt-EvE. Training continues at the meta-bandit level

(learning whether to continue using the trained data or learn again) and at the selected sub-level.

19In their paper, Nt is erroneously provided as the same discounted version provided for discounted UCB. This
cannot be correct, as γ is no longer provided and the average would be incorrect.

20The rationale presented in Hartland et al. [73] for discounting the change-point statistic is that UCB-Tuned
is capable of handling slowly drifting reward distributions within itself. We show in Section 3.4 that for certain
forms of non-stationarity, UCB-Tuned is out-of-the-box insufficient to perform optimally and an informed detrending
technique is preferred.
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Kalman Filtered Bandit

Kalman filtered bandits [23, 70, 71] have been investigated in which the estimate of the mean

payout of an arm is maintained by a recursive sibling Kalman filter parameterized by two a priori

noise estimates σ2
ob for observation noise or measurement error and σ2

tr for transition noise (the

non-stationarity error). Results are somewhat sensitive to these noise estimates. At each time step

t, an estimate of the mean and variance for the arm played (with reward received xi,t) is updated,

µi,t =
(σ2
i,t−1 + σ2

tr) · xi,t + σ2
ob · µi,t−1

σ2
i,t−1 + σ2

tr + σ2
ob

, (2.45)

σ2
i,t =

(σ2
i,t−1 + σ2

tr) · σ2
ob

σ2
i,t−1 + σ2

tr + σ2
ob

. (2.46)

The non-played arms all have σ2
tr added to their variance estimate for each time step, indicating

how their uncertainty increases as time progresses. These equations and the general form of this

model arise from the well-studied Kalman filter. The numerous published extensions to the Kalman

filter for varying confounding factors can likely be applied in this space.

This approach performs very well in drifting and change-point cases, however is outperformed

by Adapt-EvE in the well-defined change-point case. The resilience to form of non-stationary make

this a valuable approach in the event the parameters can be well predicted. This has not been

explored within a contextual context, with Thompson sampling or probability matching techniques

or with an optimistic approach.

2.2.6 Probability Matching and Thompson Sampling

W. R. Thompson (1933), “On the likelihood that one unknown probability exceeds another in view

of the evidence of two samples” produced the first paper on an equivalent problem to the multi-

armed bandit in which a solution to the Bernoulli distribution bandit problem now referred to as

Thompson sampling is presented.

The stochastic solution presented by Thompson [144] involves matching the probability of play-

ing a particular arm with the arm’s inherent “probability of being the best” given the data observed

by sampling from each distribution precisely once and selecting the maximum sample. The lan-

guage probability matching arises from this intuition and seems to originate from Morin [112].

Probability matching is extensively used in the experimental psychology literature to describe the

behavior matching action probabilities to the probability of an outcome. This concept is distinct

from the actual implementation of sampling precisely once from the posterior estimate to simulate

the optimality pseudo-distribution, which we refer to as Thompson sampling. A factor motivating

this interplay of nomenclature is the increasingly common use of multi-armed bandit processes in

the modelling of animal and human psychology and behavior [e.g., 123, 137].

Scott [132] applies a strictly Bayesian framework to presenting Thompson sampling and specif-
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ically calls it randomized probability matching. We will simply use the language of Thompson

sampling through the rest of this discussion.

Thus far, we have not discussed any probability matching solutions. Probability matching is a

technique that draws on the Bayesian literature and theoretically applies directly to any variant of

the bandit problem where a probability of an arm being the best can be expressed as a distribution.

Recently, it has been shown in many analyses that probability matching techniques are competitive

with the state of the art in a variety of bandit and other learning contexts. We show later that a

nonparametric form of probability matching is available and compare it to existing similar solutions

(such as the quasi-parametric binomial probability matching technique of Agrawal and Goyal [6]

and the bootstrap-derived approach of Eckles and Kaptein [55]).

Recent research in Thompson sampling has provided an information-theoretic analysis [130],

various proofs and demonstrations of regret minimization [68, 72], a technique to apply Thompson

sampling via the online bootstrap [55], exploration of the cold-start problem21 in recommender

systems [115] and numerous applications of the technique [27, 68, 114, 135].

Strict bounds on regret were a hindrance to theoretical adaption of generalized Thompson sam-

pling, however, recently, bounds for a single specific model (traditional K-armed bandits with beta

prior distributions) have been discovered by Agrawal and Goyal [6]. For K = 2, their bound on

regret is given as O( lnH
∆ ); for K > 2 the bound is significantly worse, as O

(
lnH∑K

i=2 (∆i
2)

2

)
. Sig-

nificantly, the information-theoretic work of Russo and Van Roy [130] proves efficient (O(logH))

regret bounds for Thompson sampling and show convincingly that Thompson sampling performs

comparably to a correctly-tuned UCB-type algorithm in general. This is a result which had been ex-

pected, however is significant as Thompson sampling is a more general solution than any particular

implementation of a UCB-type algorithm.

Empirical research show this strategy has both excellent results in traditional constrained vari-

ants and in variants with less strongly maintained assumptions.

Thompson Sampling extends well to cases with generalized distributions for the arms. For

example, a Bayesian approach for Thompson Sampling for the common case of Bernoulli arms is

made computationally efficient and simple to implement by sampling from the appropriate product

of conjugate beta distributions parameterized in such a way that only tracking the number of

successes and number of failures is necessary.

In order to formalize the matching of our play probabilities with the probability of a given play

being the best play, we adopt a Bayesian framework and, in general, a parametric distribution over

a parameter set θ. We can compute the probability at time t of a given arm providing optimal

reward as,

21The cold-start problem is a particularly apt use of bandit modelling. Specifically, the problem models the issue
of being unable to draw any recommendations for new users until sufficient data has been collected for said user to
fit an appropriate model or prediction to his or her preferences. The multi-armed bandit model provides exploratory
guidance in some contexts to help address this problem.
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∫
1

[
St = arg max

i=1,...,K
Eθ[xi,t]

]
P (θ|x)dθ. (2.47)

Rather than computing the integral, Thompson [144] and others show that it suffices to sim-

ply sample from the estimated payoff distribution at each round and select the highest sampled

estimated reward. That is, the repeated selection of the maximum of a single draw from each

distribution, produces an estimate (and thus selection behavior) of the optimality distribution.

This result, while long known, is surprising and valuable, turning an intractable problem into a

computationally simple one.

Optimism in Probability Matching

A recurring perspective on the efficient use of uncertainty within such a multi-armed bandit (and

exploratory learning in general) has been that of “optimism in the face of uncertainty” [15, 99, 113,

142]. The idea is presented as a method for treating uncertainties and balancing exploration: when

a statistical uncertainty is present, a small but consistent gain in outcome [42] can be achieved

by simply remaining optimistic and assuming the value is in the “more desirable” portion of the

distribution under uncertainty. We show in a later section that “small but consistent” may not be

the right language to describe optimism, indeed the gains to optimism are inconsistent and can be

large.

This idea has been seen already in many of the static (non-probability matching) algorithms

presented prior. For example, any UCB-type algorithm derives its action estimates from an “op-

timistic” surrogate about the state of the empirical estimate. This form of static optimism is the

basis of most algorithms for multi-armed bandits, though the mechanism for defining optimism is

variable.

In probability matching, optimism is usually defined as mean-optimism, that is, sampling only

from the distributions which are above the mean. Often we will refer to the distribution of values

only above the mean as the optimistic surrogate distribution. Later, we will show how to efficiently

sample from this distribution for any tractable distribution, and then show how empirical sampling

and resampling can be used to improve the results when the true underlying distribution is unknown.

The Bernoulli Approach to Nonparametric Thompson Sampling

In the case of bounded bandits (that is, arms which have a reward guaranteed to be in some range),

Agrawal and Goyal [6] propose an algorithm which transforms any bounded distribution to look

like a Bernoulli distribution for the sake of sampling. First, the Bernoulli implementation of the

simplest form of Thompson Sampling is presented in Figure 2.3.

This implementation as described relies on the way the Beta(W +1, L+1) distribution behaves

accurately as an estimator of the mean and variance of the binomial (repeated Bernoulli trials)
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Data:
i: the set of available arms (i = 1, 2, ...,K)
Ω: some stopping rule (e.g., exit when the horizon H is reached)

Result: Thompson Sampling for Bernoulli Bandits

// Set counters of wins and losses for each arm to their prior (or one, for

ignorance).

initialize ∀i Wi ← 1 ;
initialize ∀i Li ← 1 ;
while (Ω) do

r̂∗ ← −∞;
St ← nil;
for each arm i do

// Draw once from the beta distribution representing each arm.

r̂test ← draw from Beta(Wi, Li);
// Record the best draw.

if r̂test > r̂∗ then
r̂∗ ← r̂test;
St ← i;

end

end
reward ← play(St);
if reward == 1 then

WSt ←WSt + 1;
else if reward == 0 then

LSt ← LSt + 1;
end

end

Figure 2.3: Thompson Sampling for Bernoulli Bandits

distribution and as such is only appropriate for arms drawn as a Bernoulli trial. When the rewards

are generated from an arbitrary bounded distribution, Agrawal and Goyal [6] suggests a simple

modification: assume the rewards are drawn from a distribution bounded between zero and one,

then, when a reward is observed, it performs a Bernoulli trial (i.e., a weighted coin flip) and updates

Wi or Li according to the payoff. The modified algorithm only augments the play function in the

pseudocode above to become one which plays and then flips a coin based on the value of the result.

This technique only works if the distribution is bounded in a range that can be treated (via

scaling) as [0,1]. In Chapter 3, we present both an empirical sampling technique which allows the

implementation of an optimistic variant of this strategy and a novel technique which produces a

distribution-free sampler without the boundedness requirement.
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Bootstrap Thompson Sampling

Eckles and Kaptein [55] present an implementation of Bootstrap Thompson Sampling (BTS) which

produces a scalable, robust approach to Thompson sampling. We show in this section that their

implementation can be modified to support an arbitrarily scaled form of optimism and a completely

nonparametric approach at minimal cost, at least for some subset of the problem space. We

then show that the sampling strategies shown in the Sampling Uncertainty section can be applied

here to avoid a number of poor edge-case performances and essentially control the risk of such a

policy. Finally, we expand the implementation to a categorical-contextual policy which subsets the

sampling space into categories to implement a refinement of the model.

The initial implementation of BTS involves selecting a parameter J which simultaneously con-

trols the computational complexity and relative greediness of the model. Upon receipt of each

reward ri, BTS trains J parametric models on the assumed underlying distribution by considering

the reward in each model with probability one-half. To select the next arm to play, BTS, on a per

arm basis, chooses one of the J replicates and uses the expected value of that model to predict

an empirical mean payoff. In the Thompson sampling style, the highest of those estimated payoffs

is selected as the action for this iterate. As the empirical mean is deterministic across the repli-

cates22, if J is too small, the decision becomes fundamentally greedy, choosing to only play the

best empirical arm prematurely. This technique works well, showing performance competitive with

the traditional model and even exceeding it in the case of heteroskedasticity.

Change-Point Thompson Sampling (CTS)

Mellor and Shapiro [108] present an algorithm based on a two-stage Thompson Sampling technique

combined with a particle filter based learning tool [3, 59, 60] for a specific form of non-stationarity

in the distributions. The non-stationarity utilized is a constant hazard rate change-point problem,

where the payoff distributions have sudden and complete changes at a constant (but unknown)

rate.

They model the problem as a non-contextual bandit simulation, where, because of the complete

and independent nature of the change, after a change is found all prior data has no value. In order

to utilize the randomized probability matching technique within this dual-unknown, they sample

first the posterior (produced from a particle filter technique) for the hazard rate, and then use

their drawn sample to sample from the bandit arms. This idea that Thompson sampling can be

applied at a recurring process inspires the basis for one of our linear bandits Thompson sampling

implementation experiments in Chapter 3.

A big contribution of the Mellor and Shapiro [108] paper is their simulation technique. They

amalgamate the (non-stationary) PASCAL EvE challenge [79], the Yahoo! [102] real world news

22Computing the expectation, rather than sampling from the subdistributions, gives us an efficient sampler in the
bootstrap sampling distribution θ, but does not maintain the “uncertainty awareness” property in the individual
distributions. A sufficiently large J returns the uncertainty awareness property of Thompson sampling.
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click-through data and a foreign exchange simulation [109]. Their algorithm shows great real world

performance, but underperforms on the simulation data.

2.3 Application Area

The multi-armed bandit represents the advertising problem explored in this work well. This much

can be seen simply by the size of the substantial related literature. Much of the literature in place

considers the inverse problem: selecting advertisements to display or purchase for a given vendor

to maximize its outcomes [117, 129], rather than the problem of maximizing an outcome given a

set of advertisements. These problems are related, but the experimental design on the sales copy

and web design side of the problem provides a substantially larger distribution of marketer-selected

variables, as well as a significantly different sampling distribution for experimentation over.

One of the most significant related works in the application area is that of Li et al. [101], where

the algorithm known as LinUCB is presented. LinUCB presents the first work to provide a simple

regression-based framework for multi-armed bandits and applies it explicitly in selecting the optimal

(in terms of revenue, time on site, or other objective criteria) news story to display on the homepage

of Yahoo.com. Their result is successful, applies the set of readily available contextual variables

in a clear and easy to understand manner and shows promise in extending to more complicated

variants of the same problem.

Scott [132] and Scott [133] present perspectives of Thompson sampling as applied to the on-

line advertising problem. Scott [133] in particular, provides a number of designs for experiments

intimately related to the problem under consideration in this work: explicit experiments in web

design or content selection. For example, an experiment for selecting button color for a call to

action button is presented where the experimental configuration is as a logistic regression with a

boolean variable in place for each of the available options. Scott [133] also draws attention to the

mixed modality of the objective function: showing that it is not always simply sales (or immediate

profits) that is the correct variable to optimize, but rather many intermediaries such as measures

of quality and measures of satisfaction are necessary to produce a long-term sustainably profitable

business.

A work by Tang et al. [143] produces a system for using the multi-armed bandit problem to

select the appropriate advertisement layout in order to increase effectiveness of an advertisement

(measured either in click-through rate or total revenue in an online advertisement auction context)

within an existing webpage. Their work relies both on a large corpus of work related to predicting

click-through rates [4, 19, 43, 69, 124] and a large corpus of available contextual variables from

the context of users being signed in to their LinkedIn accounts when displayed the advertising

in question. Importantly, their work, as in all of this work, finds that Thompson sampling is a

deceptively competitive tool for optimizing bandit problems of this nature.

Chapelle, Manavoglu, and Rosales [43] provide a comprehensive look at both the online adver-
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tising industry itself and the utilization of a logistic regression to predict the response to display

advertising via a number of contextual variables related to both the advertisement itself and the

context within which it is to be displayed. Such a prediction can be applied within a multi-armed

bandit context (in a technique related to that of Li et al. [101] or of our own LinTS model presented

in Section 3) to produce a revenue (or response) maximizing online exploration-exploitation aware

system.

As a quick review of the necessary background, the economic model under which our problem

is operating looks similar to many online eCommerce businesses: a product is for sale and there is

a user acquisition process which directs users to a pre-sales environment, where they are presented

the marketing information and opportunity to purchase the product. Three common forms of user

acquisition exist for businesses of this sort, each having two parties, the advertiser, who wishes

to acquire users to his marketing technique and the publisher, who operates an existing medium

with captive users to be advertised to. The three common user acquisition processes are: (1) a

long-term approach called search engine optimization (SEO), where the goal is to increase relevancy

in the search engines (e.g., Google.com) in order to acquire traffic from users who were searching

for target keywords; (2) a medium-term branding-oriented approach where advertisers pay cost per

mille (CPM) for views (priced per thousand), but not necessarily clicks, of their advertisements

on a selected other website; (3) the short-term approach of purchasing clicks directly, paid for

per-click on the advertisement. There exists a fourth case where advertisers pay publishers of their

advertisements per sale (CPA) of their product (or other action), but it is not directly considered

in our work, however, our primary goal (increasing “actions” or sales) could then be seen from the

perspective of the publisher.

In the first case, there is little short-term control over the number or cost of new users. In

the second case, the advertiser must select an advertisement creative in order to have the maxi-

mum desired effect. Often, CPM advertising will be used for branding campaigns, or advertising

campaigns where the immediate goal is not necessarily increased sales, but rather a longer term

relationship with the public. Our work does not consider the branding case. In the immediately

increased sales variant, the advertisement creative is selected to maximize clicks through to their

website, at which point the marketer must select an appropriate website design and sales text in

order to maximize sales or profit. In the third case, the advertiser pays only for clicks through to

their website, in which case only the last step, selecting the appropriate website design and sales

text is paramount.
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Chapter 3

Towards the Use of Multi-Armed

Bandits in Advertisement Testing

3.1 An Extensible Platform for Simulating Bandit Problems

We constructed a highly-extensible, multi-paradigm simulation and experimentation platform for

quantifying and comparing bandit strategies across a variety of contexts. The platform provides

an efficient way of running comparable controlled experiments for the purpose of learning about

policies or parameters in a risk-free environment. Fundamentally, the structure of the platform is

made up of three components: simulators, arms and policies. The platform is highly parallel in

both world variants, replicates and policy or parameter choices and is set up to immediately spawn

separate threads to maximally utilize available CPU hardware.

3.1.1 Implementation

Simulator

A simulator is a container that holds the current state of the world in terms of available arms and

maintains detailed statistics on the results throughout the simulation. The simulator is initialized

with the set of information the experimenter wishes to retain and a pointer to the instruction files

for the problem set (a collection of different world states, each made up of a number of arms) and

the policy set being experimented upon (a collection of policies and their configurations). In the

set of problems and policies, tags or shared identifiers are used to categorize worlds and policies in

arbitrary dimensions in an easily comparable way.

54



Arms

An arm is an object which contains its own state information (usually distributional parameters

such as mean and variance, but also state variables related to non-stationarity or contextual con-

founders), knows how to calculate its own expected value (if possible) and can produce a draw from

its result distribution. Arms within this context can have context (provided by the simulator at

each time step) at both an arm and world level, can drift or have change-points, and can generally

introduce any arm-level deviations of the problem desired via further extension of the prototypes.

Policies

A policy or “strategy” is a self-contained unit that interacts with the simulator to pull arms and

receive rewards. Policies are implemented by the experimenter, in their own class which receives

only the information necessary to inform the policy. We have included an implementation of many of

the policies explored in Chapter 2. This is important to produce reproducible real world applicable

understanding of policies and their parameters. In certain contexts, modifications to the simulator

are available (with appropriate selection at initialization) to allow policies the ability to observe

information that they would not normally be able to access. This is used in particular later when

we explore the prescient measures to elevate our understanding of how particular modelling errors

can effect the result.

A policy generally comes with an object which specifies its configuration. This allows different

parameters for a policy (such as ε in the ε-strategies, weight functions in the case of our own WLS

implementation or discount rates in strategies like POKER) to be explored in a way that allows

easy comparison in the simulation output.

Measurements

The simulator is capable of reporting a wide variety of desirable measurements including all the

computable definitions of regret given in Chapter 2 (weak and strong regret; stochastic and ex-

pected value; non-optimal play count) and a number of measures of “divergence” between the arms

(updated per pull, to handle cases of non-stationarity) including Kullback-Leibler (K-L) divergence

[98] (symmetrized [83]), resistor average [83] and the J-measure [81] computed distribution-wide

(across all arms), and in the maximizing, minimizing and closest-arm subcases.

Included with the simulator is a small set of visualization tools intended to transform the iterate-

and replicate- level variable outputs of the simulator into appropriate graphical representations for

understanding, analysis and publication. These tools allow categorization over any classification

variable available for the underlying problems or worlds examined, including assumption violations,

distribution choice or size/scale of the problem, as well as categorization over policy selection and

policy configuration.
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3.1.2 Problems

While many problems can be simulated, we argue that the multi-armed bandit problem is extremely

difficult to simulate in a way that generalizes to applied problems effectively. As such, one of

the simulators we have provided is the “Yahoo! News Click-Through” simulator, which uses the

technique of Li, Chu, Langford, Moon, and Wang [103] to allow the reconstruction of bandit state

from the wealth of real Yahoo! data and a simulator which uses live currency-pair data [109]

in a similar method to simulate forex trading with bandit algorithms. These produce real world

environments with which simulation-driven error can be detected by a cautious experimenter.

Additionally, we provide re-implementations of the PASCAL Exploration vs. Exploitation

(EvE) 2006 environments. PASCAL EvE was a competition to identify new and experimentally op-

timal non-stationary bandit algorithms. The challenge provided six artificial simulations: frequent

swap, where the best arm switches rapidly; long gaussians, where the payoff drifts in a gaussian

fashion over a long time period; weekly variation, in which two sinusoidal components vary the

payoff probability with the longer being dominant; daily variation, in which two sinusoidal compo-

nents vary the payoff probability with the shorter being dominant; weekly close variation, in which

response rates are very close together and constant, in which there is no non-stationarity.

Finally, we have a set of our own synthetic simulations, covering features including: drift (op-

tions including: linear, exponential (varying size), sinusoidal, random walk, none); change-points

(constant, poisson, none); arm class (binomial, Gaussian, contextual); mean and variance; num-

ber of arms. This set of base simulations can be extended to introduce further “world problems”

(deviations from the assumptions) by future authors to improve the quality of simulation results.

This platform drives most of the experimentation in the following sections. Where appropriate,

assumption violations and modifications to the problem have been implemented as novel problem

sets (and even novel arm classes) in the simulation framework to produce research which is both

reproducible and extensible to new, but related, questions.

3.2 Linear Model Thompson Sampling: LinTS

LinUCB [101] as discussed in Section 2.2.4 and most other regression-based UCB models can be

transformed to use Thompson sampling if one can get estimates of the higher (non-mean) moments

of the distribution. Indeed, one almost always has sufficient information to do this, as most UCB

mechanisms rely on a formulaic representation of variation to capture the definition of the upper

confidence bound. We extend the model only to the linear regression case similar to that of LinUCB.

At a high level, we extend the model of LinUCB, to fit a model of the form,

Y = α+ β0C + β1A+ γC ·A+ ε (3.1)

,

56



where Y is the expected reward for the given set of parameters, C = [Cn ∈ RK ]n={0,...,N} is the

set of contextual variables and A ∈ {0, 1}K is a set of arm dummy variables. The fitting technique

used is left to the implementer, however, it must provide an adequate estimate of the moments of

the (true) distribution. In the frequentist domain penalized least squares techniques such as ridge

regression show promise, especially in the case of uncertainty where the relevance of the contextual

variables is uncertain and some level of overspecification is likely.

Without loss of generality1, we assume the normally-distributed linear regression fit with a

coefficient (mean estimate) and standard error (variance estimate) provided for each contextual

variable, arm and interaction effect. This scheme is inherently Bayesian in nature, however, to

improve computability in a practical sense, we utilize a traditional linear regression model with pe-

nalized coefficients (ridge regression). Ridge regression can be represented as a Bayesian regression

technique with a fixed prior on the βs making some of the result interpretation more tractable.

The algorithm used is roughly as follows:

1. Fit the model. Using the fitting technique given, produce coefficients (µ) and standard

errors (σ2), generating normally distributed random variables ξ ∼ N(µ, σ2).

2. Calculate a summed distribution Ỹ for each arm. For each arm i, set Ai = 1, Aj = 0

where (j : {j 6= i}), sum the random variables multiplied by their observed context vector Cn

to get an estimate of Ỹi,C ∼ N(µ̃, σ̃2) for arm i and context C.

3. Apply Thompson Sampling. With each Ỹi in our given context, we now have a model

of the (current) distribution of expected reward for each arm given our current knowledge.

Using this, we sample according to the probability that reward is the maximizing reward in the

tradition of Thompson Sampling. We explore a few methods of doing this in a computationally

tractable and affordable way.

This provides a result that is similar to that of LinUCB, however utilizes the Thompson Sam-

pling strategy rather than the constrained upper confidence bound approach. In order to optimize

the outcome, we test a number of uncertain implementation details within our simulation architec-

ture, expecting that each question has a “correct” answer that can be generalized to all problems.

3.2.1 Optimistic Thompson Sampling in LinTS

We propose a technique that exploits the assumptions of the linear model and the probability

matching technique of Thompson sampling. Based on the assumption of normality, the regression

coefficients, β̂, are normal and hence the predictions ŷt are normal. We then optimistically sample

(drawing only values above the mean) from a normal distribution with mean
∑

i(β̂i · xi,t) and

variance
∑

i (V̂ar(β̂i) · x2
i,t) to approximate ŷt. A more general form of this fundamentally Bayesian

1As necessary, replace distributional assumptions in our algorithm with those of your fitting technique.
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algorithm can be constructed utilizing the techniques of Bayesian regression [111] at the cost of

generally higher computational complexity.

In this section, we have presented a computationally efficient, flexible model, linear regression-

based Thompson Sampling implementation, LinTS, which is easily extensible to any contextual

model, simple to implement and provides low regret and easily interpretable results in practical

experiments. Further research on LinTS is necessary to prove (theoretical) asymptotic bounds on

regret and to better understand how results from the linear regression model can be interpreted for

non-prediction type tasks2.

In the next section, we extend this model and explore the space of non-stationary regression

models and show how existing time series techniques can be extended to LinTS in order to efficiently

handle both slowly drifting and rapidly changing true world states.

3.3 Experiments in Thompson Sampling

In this section, we explore some of the considerations and questions that arise when implementing

an optimistic sampler in a parametric (specifically, model-fitting) context. These questions are

experimented within the context of the LinTS algorithm, but the experiments have been generalized

to other forms of Thompson sampling via the simulator. Each of these questions is explored in

more detail in the coming sections, but as a quick introduction and reference a summary is provided

here.

• Q1: How does the measure of centrality effect optimism? When computing an

optimistic sampler, we must choose a form of optimism. Indeed, optimism can take many

forms: one could drop the least favorable observations, sample only from the top 10% or

otherwise be optimistic. In general, optimism with regard to Thompson sampling is tested in

the context of mean-optimism, where the results from the portion of the distribution above

the mean are used. We explore using the median in certain contexts to modify the impact of

skewness and outliers and find that there is no significant effect here.

• Q2: How does the concept of estimative uncertainty differ from the standard

error for sampling? We test this question by using our within-simulator prescience to the

true underlying variance of an arm. We find two surprising results: (1) the effect size of

removing true (or even computed) underlying variation from the estimate under sampling is

large and (2) this effect appears to be shared with the effect of optimism – that is, the benefit

to removing estimative uncertainty is substantially smaller in optimistic sampling than it is in

2Specifically, to interpret linear regression coefficients as causal in the econometric sense or to derive many proofs
of unbiasedness and efficiency, one must assume the regression samples are drawn randomly. In the linear bandit
case, regression samples are drawn according to the Thompson Sampling process or UCB maximizing process on the
previous time world state. How this affects the model is an open research question which requires further exploration.
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non-optimistic sampling. This result provides a piece of evidence towards the understanding

of why optimism is beneficial to the exploratory process under uncertainty.

• Q3: How does k-sampling from Ỹi effect the distribution of regret? To compute the

likelihood of a given arm being the best, we can simply draw k times from each distribution

and combine the estimates in a variety of ways. We ex ante expect that higher k’s learn

faster, but have a marginally higher computation cost and are more likely to get stuck on

incorrect solutions.

We explore different values of k and different combination strategies and find some particu-

larly interesting results about the true nature of optimism: specifically, excessively optimistic

sampling (taking the most optimistic of the k samples per arm) seems to perform asymptoti-

cally better in k suggesting that the ratio of prospective best values is a determinant in bandit

performance. This is a surprising result as the surrogate (sampling) distribution is no longer

influenced strongly by the true underlying mean, but only the most optimistic forecast. A

thought experiment with k = ∞ provides an interesting but poorly understood look at this

result, showing that the result only holds if the ratio of two arms’ most optimistic forecasts

is well defined.

3.3.1 Measure of Centrality

The traditional implementation of optimistic Thompson sampling implements optimism as a sur-

rogate distribution bounded at the mean or expectation of the distribution. This is intuitive, as

our goal is to maximize total reward, however, in smaller samples drawn from distributions with

sufficient skew it is plausible that a different measure of centrality such as the median may be

preferred. In general, in our model of optimism, there are an infinite set of degrees of optimism,

each representing a portion of the distribution to be discarded. That is, a median optimism can be

treated as dropping exactly the lower 1
2 of the distribution.

We compared mean-optimism and median-optimism using the beta distribution as the estimator

for the binomial distribution. This gives us the cases of positively skewed, negatively skewed and

non-skewed parameterizations. We selected the beta distribution approximation solely for the ease

of varying the relevant shape parameters3. The results shown appear to generalize well to other

distributions along their relevant skewness.

After extensive experimentation, including experimentation with artificially introduced error,

we find the measure of centrality is not a significant factor in the performance of optimism, even

in highly skewed distributions, when measured by expectation regret, total reward or suboptimal

3Recall, the beta distribution is parameterized on α and β, shape parameters. Kerman [90]’s approximation to
the median is used and distributional parameters are selected such that the numerically computed relative error of
the approximation is < 10−6.
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plays. We do reproduce the small benefit accrued to optimism seen in prior work and explore that

in more depth going forward.

3.3.2 Estimative Uncertainty

When sampling with the goal of maximizing the expected return, it is (generally) functional but

not optimal to sample from the distribution denoted by the mean and the standard error of the

model’s estimate (for example, a LinTS [36] regression-based model or the similar Bayesian re-

gression technique described in Eckles and Kaptein [55]). The standard deviation of the estimate

can be decomposed into two components, estimative uncertainty, caused by sampling error and

underlying variance, which exists absolutely in the underlying distribution. The goal of Thompson

sampling is to exploit the estimative uncertainty where it could plausibly lead to higher rewards in

future iterates, but it is wasted effort to play suboptimal arms if the variance is provided solely by

underlying variance.

We attempt to remove the underlying variance in two methods. One method, where arms are of

known distribution with known standard deviation, simply subtracts the known standard deviation

from the estimated standard error, giving an accurate estimate of our estimative uncertainty4

and another where we empirically maintain an online estimate of the variance and subtract that

from the standard error of the model to produce our sampling distribution. Not surprisingly, in

non-optimistic (unbiased) sampling, the prescient technique outperforms the empirical technique,

however they both outperform using the raw standard error by a large margin. Table 3.1 presents

results which are an average across all our representative normal distribution worlds in each of

50, 100 and 1000 iterates each with 2,000 replicates demonstrate the benefit in the non-optimistic

sampling case.

The gains did not maintain their magnitude when (symmetric) optimism was invoked, as op-

timism accrues a fairly large benefit itself, but does not appear to accrue much additional benefit

for the uncertainty correction as later iterates’ variance goes to zero. This may suggest the opti-

mism result is from systematic early underexploration in the Thompson sampling strategy. Further

research is necessary to explain how optimism and the uncertainty correction interact to produce

similar scale results.

A further set of tests were conducted scaling the variance of the sampling process in arbitrary

ways (squaring, dividing by constants) with no lucrative benefits. The unscaled variance always

outperformed on average with or without estimative uncertainty adjustments.

4Note, we must floor this value at zero, as a negative variance does not have meaning, but could arise in this
model due to the statistical properties of the distribution.
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Table 3.1: Results from eliminating estimative uncertainty in the unbiased sampling case.
∗∗∗ denotes p < 0.01 (against the pairwise null hypothesis of no effect of changing from
raw standard error).

Average R̄E (SD) Improvement

Raw Standard Error 534 (23.47) –

Prescient Uncertainty Correction 371 (31.69) 43.9% ***

Empirical Uncertainty Correction 419 (27.92) 27.4% ***

Table 3.2: Results from eliminating estimative uncertainty in the optimistic sampling case.

Average R̄E (SD) Improvement

Raw Standard Error 404 (27.23) –

Prescient Uncertainty Correction 377 (31.99) 7.1%

Empirical Uncertainty Correction 395 (27.49) 2.3%
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3.3.3 Sampling Uncertainty

We can change the expected variance of the (optimistic or non-optimistic) sampler by sampling more

than once. The Thompson [144] strategy of drawing once from each positively biased distribution

is distinct from, say, drawing twice and using the mean of the samples. Here we experiment with

the variance of our sampler and its interaction with optimism. An initial intuition is to simply

compare optimistic sampling under the single sample case to a number of k (say, 2, 5, 10) sample

cases under different strategies to produce an action sample value. We experiment with a number

of replication strategies:

1. Sample means. In this strategy, the k samples are averaged to produce our action value.

This reduces the variance of the sampling strategy in both cases, around the mean in the

non-optimistic case and around the biased-mean in the optimistic case.

2. Most optimistic. In this strategy, the most optimistic element of the k samples is taken.

In the optimistic case, this serves to create a more optimistic sampler than pure 1-sample

optimism. In the non-optimistic case, this creates an optimistic sampler without the hard

constraint at the measure of centrality.

3. Least optimistic. In this strategy, the least optimistic element of the k samples is taken.

In the optimistic case, this serves to dampen optimism.

4. Least deviation. In this strategy, the sample which is closest to the measure of centrality is

taken. This is equivalent to least optimistic in the optimistic case, but in the non-optimistic

case, it is simply a conservative sampler.

Our results are presented in Table 3.3. We see convincing evidence in favor of optimism,

even excessive optimism, showing both the least regret and the lowest standard deviation of that

regret. When k = 1, we should be indifferent between replication strategies, as they will all simply

return their first sample. One can think of the Optimistic-Most Optimistic sampler as encouraging

excessive optimism by sampling optimistically, then taking the most optimistic of those samples.

We get a distribution that is on average further in the tail of the distribution (proportional to k).

Similarly, one can think of the Unbiased-Most Optimistic sampler as a simulation implementation

of optimistic sampling and would expect that as k → ∞ that sampler will perform more like the

Optimistic-Most Optimistic sampler (with more computation cost). It is interesting to note that

setting k (finitely) higher appears to improve the performance of the Most Optimistic replication

strategy asymptotically, suggesting that the increase in relative tail probabilities (across arms)

continues to improve the result. The Sampled Mean and Least Deviation strategies act to reduce

optimism (or possible pessimism, in the case of the unbiased sampler) by reverting samples towards

the mean.
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Table 3.3: Results of a selection of replication strategies.

# Sampling Policy Replication Strategy k Average R̄E SD
∑

t xSt,t SD

1 Optimistic Least Deviation 1 1.787940 2.812723 28.25736 6.919474
2 Optimistic Least Deviation 2 2.038760 3.147973 27.99885 7.006590
3 Optimistic Least Deviation 3 2.131280 3.288711 27.87352 7.077301
4 Optimistic Least Deviation 4 2.239480 3.419299 27.80768 7.107457
5 Optimistic Least Deviation 5 2.299420 3.503120 27.64148 7.135077
6 Optimistic Least Deviation 10 2.433740 3.657933 27.56664 7.260929

7 Optimistic Sampled Mean 1 1.794856 2.814387 28.22871 6.892612
8 Optimistic Sampled Mean 2 1.797440 2.831595 28.14065 6.899314
9 Optimistic Sampled Mean 3 1.774540 2.815696 28.20008 6.900778

10 Optimistic Sampled Mean 4 1.742480 2.808865 28.29840 6.892055
11 Optimistic Sampled Mean 5 1.782160 2.845401 28.22016 6.888765
12 Optimistic Sampled Mean 10 1.772120 2.842582 28.21684 6.874437

13 Optimistic Most Optimistic 1 1.782860 2.795673 28.23848 6.932394
14 Optimistic Most Optimistic 2 1.627420 2.594976 28.39532 6.841655
15 Optimistic Most Optimistic 3 1.539440 2.467145 28.42102 6.798019
16 Optimistic Most Optimistic 4 1.488580 2.410582 28.52400 6.769490
17 Optimistic Most Optimistic 5 1.454160 2.358807 28.52707 6.768880
18 Optimistic Most Optimistic 10 1.373060 2.249344 28.61777 6.743186

19 Optimistic Least Optimistic 1 1.801640 2.820853 28.19821 6.926717
20 Optimistic Least Optimistic 2 2.017980 3.129366 27.98708 6.994345
21 Optimistic Least Optimistic 3 2.133160 3.293516 27.91489 7.065552
22 Optimistic Least Optimistic 4 2.237860 3.415851 27.76209 7.112057
23 Optimistic Least Optimistic 5 2.303500 3.496363 27.65757 7.141841
24 Optimistic Least Optimistic 10 2.389940 3.633834 27.60138 7.230841

25 Unbiased Least Deviation 1 2.414180 3.317339 27.52917 7.156890
26 Unbiased Least Deviation 2 2.433260 3.483726 27.51896 7.196959
27 Unbiased Least Deviation 3 2.457000 3.575881 27.59020 7.233475
28 Unbiased Least Deviation 4 2.488600 3.635268 27.54201 7.226739
29 Unbiased Least Deviation 5 2.483780 3.664905 27.52593 7.264307
30 Unbiased Least Deviation 10 2.531200 3.758365 27.47851 7.351306

31 Unbiased Sampled Mean 1 2.419500 3.311818 27.62926 7.188822
32 Unbiased Sampled Mean 2 2.439500 3.445440 27.52135 7.195143
33 Unbiased Sampled Mean 3 2.428440 3.488071 27.59352 7.189119
34 Unbiased Sampled Mean 4 2.461000 3.550799 27.56638 7.213879
35 Unbiased Sampled Mean 5 2.444140 3.556658 27.54016 7.220508
36 Unbiased Sampled Mean 10 2.489640 3.653163 27.49565 7.206094

37 Unbiased Most Optimistic 1 2.408760 3.310960 27.61688 7.143456
38 Unbiased Most Optimistic 2 1.948180 2.920867 28.07839 6.966973
39 Unbiased Most Optimistic 3 1.797240 2.756331 28.16101 6.846418
40 Unbiased Most Optimistic 4 1.675020 2.627932 28.30523 6.862079
41 Unbiased Most Optimistic 5 1.596760 2.556773 28.41517 6.812572
42 Unbiased Most Optimistic 10 1.482580 2.393168 28.49253 6.744063

43 Unbiased Least Optimistic 1 2.429660 3.322913 27.54089 7.149666
44 Unbiased Least Optimistic 2 2.993740 3.845496 26.99108 7.440987
45 Unbiased Least Optimistic 3 3.332900 4.118677 26.63976 7.647496
46 Unbiased Least Optimistic 4 3.592980 4.287377 26.41372 7.746072
47 Unbiased Least Optimistic 5 3.745220 4.392518 26.23426 7.864180
48 Unbiased Least Optimistic 10 4.173680 4.586818 25.83976 8.000412
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3.4 Non-Stationary Time Series Techniques

Change-point analysis, also known as change detection or structural breakpoints modelling, is a

well-studied problem in the applied stochastic process literature. Intuitively, a change-point is a

sudden, discrete or “drastic” (non-continuous) change in the shape of the underlying distribution.

In an offline fashion, change-points may be detected efficiently and with an adequate set of tuneable

parameters with clustering algorithms. For bandits, the problem is necessarily an online problem

and offline algorithms for change point detection are not feasible. The basic idea of online change-

point bandits is to use a mechanism to detect change-points, generally parameterized for some

acceptable false alarm rate, and then utilizing some mechanism to “forget” learned information

after each change-point as necessary.

Hartland, Gelly, Baskiotis, Teytaud, and Sebag [73] propose an algorithm called Adapt-EvE

based on the UCB-Tuned algorithm [15]. Adapt-EvE uses the frequentist Page-Hinckley test to

identify change-points. Upon detection of a change-point, Adapt-EvE treats the problem as a

meta-bandit problem. That is, a second layer of bandit optimization is instituted with two arms:

(1) continues using the learned data and (2) restarts the UCB-Tuned algorithm from scratch.

This meta-bandit forms a hierarchical strategy that can be expected to efficiently evaluate the

cost in regret of each detected change. This technique was the winning technique in the PASCAL

Exploration vs. Exploitation challenge in 2006 [79] demonstrating its ability to handle both drifting

and change-point type bandits.

Kocsis and Szepesvári [95] present a variant of UCB-Tuned called DiscountedUCB which applies

a continuous discount factor to the estimates in time. Garivier and Moulines [63] introduce Sliding

Window UCB (SW-UCB) parameterized by a window length and show it performs similarly to

DiscountedUCB contingent on appropriately selected parameterizations.

Mellor and Shapiro [108] present an online Bayesian change-point detection process for switching

(discrete change) bandits with constant switching rate – the frequency with which the distributions

change – in the contexts where switching occurs globally or per-arm and when switching rates

are known or must be inferred. Their algorithm is probability matching based, but, as presented

does not support contextual variables. Further, their technique addresses a bandit with switching

behavior, rather than drifting behavior as explored in this work.

3.4.1 A Short Review of Stochastic Drift

In time-series analysis, stochastic drift is used to refer to two broad classes of non-stationarity in the

population parameter being estimated: (1) cyclical or model-able drift that arise because of model

misspecification and (2) the random component. Often it is possible to detrend non-stationary data

by fitting a model that includes time as a parameter. Where the function of time is well-formed and

appropriate for statistical modelling, a trend stationary model can be found with this detrending

process. For some models, detrending is not sufficient to make a process stationary, but, sometimes
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difference stationary models can be fit, where the differences between values in time Yt and Yt−n

can be represented as a well-formed function appropriate for statistical modelling.

Difference stationary models are represented with autoregressive models. The generalized rep-

resentation of the simple autoregressive model is referred to as AR(n) where n is the number of

time steps back the current value maintains a dependency upon,

AR(n) : Yt = α0 + α1Yt−1 + α2Yt−2 + · · ·+ αnYt−n + εt, (3.2)

where εt is the error term with the normal characteristics of zero mean (E[εt] = 0), variance σ2

and independence across times (E[εtεs] = 0, ∀t ∈ {t6=s}) after fitting the autoregressive correlations.

If these two detrending strategies are not sufficient to make a given process stationary, more complex

filters such as a band-pass or Hodrick-Prescott filter may be applied.

Generalized Linear Bandits

Filippi, Cappe, Garivier, and Szepesvári [61] use generalized linear models (GLMs) for bandit

analysis, extending the work of Dani et al. [51] and Rusmevichientong and Tsitsiklis [128] to utilize

the UCB strategy of Auer, Cesa-Bianchi, and Fischer [15] and proving (high-probability) pseudo-

regret bounds under certain assumptions about the link function and reward distributions. In

some sense, our work extends the Filippi et al. result to an experimental analysis within the non-

stationary case, as well as introducing a Thompson sampling based strategy for integrating GLMs,

rather than the UCB technique.

3.4.2 Overview of the Approach

The general technique we experiment with is to fit a regression model of varying form to the data

and then to utilize the technique of optimistic Thompson sampling to predict arm payoffs in the

next iteration of the algorithm. We explore and compare two primary models, the autoregressive,

time-detrended approach and the weighted least squares approach for handling non-stationarities

with a regression framework.

Autoregression and Detrending

Formally, we fit a model

Yt,i = αt + ARi(p) + Trendi(t) +At,i + εt,i, (3.3)

where Trend(t) is a function representing the expected time trend, AR(p) is the autoregressive

term of order p and Yt,i is the expected reward for arm i at time t. In general, trends and AR terms

must be considered on a per-arm basis (equivalently, as an interaction effect on the A matrix) as it

is the change between arms that determines a meaningful nonstationarity for the sake of decision

making. In practice, this model is generally fit as a model of Yt with binary (“dummy”) variables
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At,i and relevant interaction terms indicating which arm is detected. In our experimental results,

we explore how variations (especially overspecification of the functional form) in the “correctness”

of the selection of Trend(t) affect the overall results. This model, fit with the ordinary least squares

technique, the ridge regression technique [145] or the Bayesian conjugate prior technique, returns an

estimated set of time-detrended, plausibly stationary5 coefficients β̂ and estimates of their standard

errors ŜE(β̂). This model can be readily extended to contain any contextual variables, such as

demographic information about the user (in the web optimization context) or grouping criteria on

the arms to improve the learning rate.

Combined, we follow in standard experiment design terminology and call the terms in our model

α, ARi(p), Trendi(t), and At,i the design matrix and refer to it as X.

Penalized Weighted Least Squares

The weighted least squares (WLS) process introduces a multiplicative weighting of “reliability” for

each observation, resulting in a technique which minimizes the reliability-adjusted squared errors.

In the multi-armed bandit context with drifting arms (without any a priori knowledge of the

functional form of the drift), the weights are set to the inverse of their recency, indicating that at

each time step t, older data provides a less reliable estimate of the current state.

Intuitively, weighted least squares provides a simple, well-explored, highly tractable technique

to discount the confidence of old data, increasing predictive uncertainty as time progresses. This

is a desirable quality within the context of restless bandits as it appropriately accounts for the

growing predictive uncertainty of old observations.

Formally, the weighted least squares procedure picks β̂, coefficients on a set of variables, X,

called the independent variables (or regressors), according to the equation β̂ = (XTWX)−1(XTWy)

where W is the matrix of weights and y is the rewards as observed (or, in general, the regressand).

Standard errors of the coefficients are also computed, producing an estimate of the standard devi-

ation of our estimators.

To apply the weighted least squares procedure, we extend LinTS (presented in the prior section),

following in the work of Pavlidis, Tasoulis, and Hand [119] which uses a standard linear regression

to compute the estimates of each arm and the work of the LinUCB algorithm [101] which applies

a non-weighted penalized linear regression to compute estimates of the payoff for each arm. As

we are a priori uncertain about the functional form of the non-stationarity in our bandit arms,

we experiment with a variety of time weighting techniques – logarithmic, with varying scale and

base; linear, with varying polynomials; exponential, with varying coefficients; and sinusoidal –

demonstrating the generality of this technique. In all cases we strictly decrease the weight of a

sample as it becomes further in time from our current prediction time. When additional information

about the form of non-stationarity is available, weights can be specified appropriately to reduce the

5As long as the detrending process successfully removed the non-stationarity.
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predictive uncertainty.

3.4.3 Simulation Environment

To test our combined strategies and produce objective comparisons, we utilize the synthetic sim-

ulator described in Section 3.1 with a wide variety of “true worlds” (unobserved to the agent)

including arm distribution type and parameters, arm count, and drift type from a set of functional

forms including random walk, exponential random walk, logarithmic, linear (in varying degree),

exponential and periodic drift (sinusoidal over varying periods). Each form of drift is parameter-

ized by a randomly drawn real number constrained to be within the same order of magnitude as

the arm payoffs in its simulation world which determines the scale of the parameterization.

We present the combined algorithm, parameterized in degrees of autoregression, detrending and

functional form of our weighted least squares discounting process in pseudocode in Figure 3.1. The

first n, the number of model terms, iterations must be performed using another method (uniformly

at random, in our case) to provide enough degrees of freedom to fit the regression model.

3.4.4 Experimental Results

Specific details of the optimistic sampling procedure are shown in the next section when we discuss

techniques for sampling from an arbitrary distribution. In this case, as normality is assumed in the

model, we can sample very easily.

In the results presented, we omit ε-greedy, UCB1, DiscountedUCB and others as they were

strictly outperformed by UCB-Tuned or SW-UCB for all parameter choices tested. Across all true

worlds, we find in general that a detrending term congruent with the true drift form (e.g. linear

detrend in the linear drift quadrant of Figure ??) outperforms all other strategies in the long run,

producing a zero-regret strategy [152] for restless bandits where the functional form of restlessness

is known. Similarly, we find that utilizing a weighting function which closely approximates the

true drift performs well in most cases. Surprisingly, we find that linear detrending is an effective

technique for handling the random walk, a result that is robust to variations in the step type and

scale of the random walk. Unintuitively, WLS techniques also perform strongly even in the case

when there is no drift.

In these experiments, we find no convincing evidence for a general application for detrending in

polynomial degree greater than one or autoregression of any level in our model. Both autoregression

and higher degree polynomials strictly reduce regret if the true world trend is autoregressive or

determined, even partially, by the chosen form. We find the linear weighted least squares technique

(weights set to the inverse of t) to be the most robust technique over all experiments, suggesting

it is the strongest technique in the case of no a priori information on the form of drift: having

the lowest mean total regret (20.8), lowest standard deviation across all drift types (11.8) and the

lowest 75th (worst-) percentile regret (26.6).
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Data:
λ: the penalty/regularization factor for the ridge regression w(t): a function which
defines the weighting strategy
Ω: a function which determines whether we should play another round

Result: A discounted (in time) bandit algorithm proportional to the weighting strategy.

X ← y ←W ← [];
t← 0;
while Ω do

// Generate the weighting matrix according to our function w(t).
W [t]← w(t);

// Get the model from the penalized weighted least squares (WLS)

subroutine.

β̂ ← (XTWX + λI)−1(XTWy);

s2 ← (y − β̂X)2/n ;
// Compute the errors (estimated variance) necessary to perform the

sampling procedure.

V̂ar(β̂)← diag[s2(XTWX + λI)−1];
// End penalized WLS subroutine.

r̂∗ ← −∞;
St ← nil;
for each arm i do

// Draw from the estimated distribution for this arm.

r̂test ← draw optimistic(N(
∑

i(β̂i ·Xi,t),
∑

i (V̂ar(β̂i) ·X2
i,t)));

// Maintain a Thompson-like estimate of the best arm.

if r̂test > r̂∗ then
r̂∗ ← r̂test;
St ← i;

end

end
reward ← play(St);
extend X, the design (history) matrix;
append reward to rewards history y;
t← t+ 1;

end

Figure 3.1: Pseudocode of combined algorithm.
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Figure 3.2: Adjusted average cumulative regret of selected algorithms over 1,000 replicates
of all worlds and true drift forms.
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3.5 Statistical Regret for Applications

All definitions of regret given in Chapter 2 are dependent on access to an oracle which ex-ante both

knows the parameters of the underlying distributions (e.g., at a minimum, know the best mean)

and fully enumerates any non-stationarities or contextual factors. We propose an oracle-free regret

interval which can be used in real world applications to quantify differences in bandit policies a

posteriori.

Statistical regret is an important contribution in the case of real world computation. In applied

bandits, no oracle is available6, but there is still a need to compare policies. If an oracle were

available, a nontrivial bandit policy would be unnecessary, as the ideal arm would be fully known.

In the event all arms’ rewards are available after each play, the problem is better represented as

general reinforcement learning than a multi-armed bandit. A simpler technique where samples are

divided (equally, in a traditional experiment design) across multiple bandit algorithms is available

under certain distributional assumptions, however in the case of non-stationarity in time and per-

play regret reduction, this may not accurately capture the difference in policies.

Our measure, presented in the next subsection, is derived from intuitions of the γ-confidence

interval and the expected-expected and expected-payoff regrets described in the prior section, and

provides a meaningful applied measure to compare algorithms under certain assumptions. We fur-

ther suggest a plausible extension to statistical regret using the bootstrap [56] to compute confidence

bounds in effort to tighten the bounds for a given confidence level and produce a distribution-free

estimator.

3.5.1 Traditional Parametric Statistical Regret

To compute parametric statistical regret, begin by enumerating your set of predicted arm mean

distributions from observations up to time t, X̃i. Then, assume a confidence interval exists of the

form (Lt,γ(X̃i), Ut,γ(X̃i)) such that,

Pr(Lt,γ(X̃i) < X̃i < Ut,γ(X̃i)) = γ.

A confidence interval of the form above exists if and only if there were sufficient observations

to accurately fit the assumed parametric distribution. From these values, we can compute the

statistical best- and worst-case scenarios. Intuitively, for each play in our recorded history, we

look at the best upper and best lower bound and accrue regret accordingly. Formally, the total

stochastic statistical regret up to time t is an interval,

6It is conceivable that some non-simulation applications exist in which only regret is revealed after each round, in
which case traditional regret measures are well-defined without an out-of-band oracle.

70



R̃Pγ =

 t∑
j=0

(max
i
Lt,γ(X̃i)− xSj ),

t∑
j=0

(max
i
Ut,γ(X̃i)− xSj )

 . (3.4)

This produces a regret interval with properties similar to expected-payoff regret; it is possible

to accrue negative regret and the resulting output is a random variable in both Sj and the X

distributions’ parameters θ. We can eliminate the stochasticity on the parameters θ by eliminating

the actual received payoff from our consideration and instead using the empirical mean (computed

from all data available at the time we compute, t) on the chosen arm in iteration j, (X̄Sj ) with

R̃Eγ =

 t∑
j=0

(max
i
Lt,γ(X̃i)− X̄Sj )),

t∑
j=0

(max
i
Ut,γ(X̃i)− X̄Sj )

 . (3.5)

By utilizing the estimates at time t to evaluate the plays at times j = 0, ..., t we utilize the

best information available to judge actions chosen by the policy prior to that information being

available; by utilizing the bounds per-arm we acknowledge that there is an uncertainty (for many

bandit policies, a large uncertainty) to the knowledge we have. When considering statistical regret,

it is important to note that unlike in a traditional experiment, in a bandit experiment a tighter

bound on statistical regret (somewhat equivalently, a tighter bound on the confidence intervals) is

not the objective to be optimized.

We experiment extensively on varying world formats, horizon lengths and confidence bound

widths and find that stochastic statistical regret accurately tracks the true expected-payoff regret

with sufficiently tight bounds to enforce the γ confidence level. As γ → 1.0, the required sample

size per arm tends to ∞.

Statistical regret combines properties of the traditional experiment with the multi-armed bandit

to produce a powerful real world diagnostic and evaluation tool. Post-hoc analyses in an oracle-free,

multi-armed bandit context are made possible by such a tool. In particular, we conjecture that

statistical regret will be a useful diagnostic for aiding in the applied calibration of common bandit

policy parameters such as discount rate or egalitarianism.

3.6 Simple Efficient Sampling

When performing Thompson sampling, we always need a method to actually produce a sample from

a distribution. In this section, we deal with how to perform this sampling in a way that is efficient

in two dimensions: computationally efficient, as in, to not take more computational instructions (or

time) than necessary and statistically accurate, as in, to accurately capture the intended sampling

distribution.

There are two interacting rationales for this work observed in the literature. A number of papers

produce work which samples from an optimistic surrogate distribution in an iterated Monte Carlo-
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like strategy, sampling from the initial (non-optimistic) distribution until the intended results are

found, or sampling from a black box to produce an estimate of the underlying distribution. This

strategy is computationally inefficient, and we show that it can be done in a strictly more efficient

way for most distributions. The other reason is the statistical inaccuracy – optimism in (empirical)

sampling research is often left undefined or as an exercise to the implementer. This has resulted

in work which produces definitions of optimism with likely unintended behaviors, such as placing

half of the samples at exactly the mean.

3.6.1 Simple Efficient Symmetric Sampling (SESS)

For symmetric distributions, finding a technique for sampling from the optimistic distribution

efficiently (both in the sense of computational efficiency and statistical accuracy) is simple. The

process is: (1) center the distribution at zero, (2) get a sample, s, from the centered distribution,

(3) add the measure of centrality (e.g., mean or median) of the uncentered distribution to |s|.
For example, in the normal distribution, parameterized on µ and σ2, we can draw each sample

according to

sAi = µi + |N(0, σ2
i )|. (3.6)

3.6.2 Efficient Non-Symmetric Sampling (ENSS)

For a general distribution, Pi with expectation µi, (including non-symmetric distributions), at least

one paper presents a statistically inefficient technique (in the sense of not completely achieving the

optimistic sampling process we intended) which produces a sample,

sBi = max{µi, Pi(·)}. (3.7)

As an example of the inefficiency of this technique, we take the case of a symmetric distribution

in which this produces a sample that is 50% biased to the mean (every P (·) < µ is selected at exactly

µ). To perform (both statistically and computationally) efficient sampling in the non-symmetric

case, we require a quantile function Q(p) = inf{x ∈ R : p ≤ F (x)} where F is the cumulative

distribution function. When this is available, we can sample from the optimistic distribution in

three steps.

1. Find the quantile, v, of the measure used to bound optimism (for example, for median-

optimism, set v = 0.5).

2. Draw a random value from a uniform distribution t ∼ UNIF(v, 1) indicating the quantile of

the desired value.

3. Find the value in our original distribution at that point, sCi = Q(t), this is our sample.
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For the most common distributions used in multi-armed bandits, the quantile function required

to determine v and cumulative distribution function are readily available. For example, the normal,

Student, beta, and gamma distributions’ quantile functions are explored in Steinbrecher and Shaw

[138] and available to programmers in the R programming language as qnorm, qt, qbeta and qgamma

respectively.

3.6.3 A Short Background in Nonparametric Sampling

Bootstrap Thompson Sampling

Eckles and Kaptein [55] present an implementation of Bootstrap Thompson Sampling (BTS) which

produces a scalable, robust approach to Thompson sampling. We show in this section that their

implementation can be modified to support an arbitrarily scaled form of optimism and a completely

nonparametric approach at minimal cost, at least for some subset of the problem space. We

then show that the sampling strategies shown in the Sampling Uncertainty section can be applied

here to avoid a number of poor edge-case performances and essentially control the risk of such a

policy. Finally, we expand the implementation to a categorical-contextual policy which subsets the

sampling space into categories to implement a refinement of the model.

The Eckles and Kaptein (2014) Model

The initial implementation of BTS involves selecting a parameter J which simultaneously controls

the computational complexity and relative greediness of the model. Upon receipt of each reward ri,

BTS trains J parametric models on the assumed underlying distribution by considering the reward

in each model with probability one-half. To select the next arm to play, BTS, on a per arm basis,

chooses one of the J replicates and uses the expected value of that model to predict an empirical

mean payoff. In the Thompson sampling style, the highest of those estimated payoffs is selected

as the action for this iterate. As the empirical mean is deterministic across the replicates7, if J

is too small, the decision becomes fundamentally greedy, choosing to only play the best empirical

arm prematurely. This technique works well, showing performance competitive with the traditional

model and even exceeding it in the case of heteroskedastic errors.

3.6.4 A Simple Efficient Nonparametric Sampler

Our goal sets out to produce a nonparametric sampler and simultaneously maintain the benefit we

have seen thus far with respect to optimism in the face of uncertainty. To do so, we first propose

a simple non-optimistic sampler and then augment that sampler by adding optimism, producing

7Computing the expectation, rather than sampling from the subdistributions, gives us an efficient sampler in the
bootstrap sampling distribution θ, but does not maintain the “uncertainty awareness” property in the individual
distributions. A sufficiently large J returns the uncertainty awareness property of Thompson sampling.
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the simple optimistic sampler we call SOS. In the section that follows, we will present a simple

discretization observation that allows this model to be extended to a relatively small number of

categorical contextual variables easily.

Simple Sampler

In the simple sampler, we maintain a history of observed rewards per arm x̃i,t and sample one value

(r̂test ∈ R) uniformly from the history for each arm i at each iterate t as presented in Figure 3.3. This

r̂test value represents a single payoff from the history of the arm; of these samples, the maximum

value seen (from the K values, each representing a single arm) determines the arm to be played

in the next iterate with ties broken randomly. As the distribution of our observed history limits

to the true population distribution, this technique captures the true underlying distribution of the

arms rapidly at the cost of some low sample size misbehavior. In experimentation, if the assumed

parametric distribution is correct this model performs similarly to the standard unbiased Thompson

sampler fitted with either an assumed beta-binomial (true binomial) or the least squares procedure

(true normal). When modelling error is introduced to simulate real world misspecifications, we find

that this model greatly outperforms the standard Thompson sampler even in the early process.

Further, if the early sample size behavior is deemed high risk in the application, the replication

strategies described earlier can be applied to change the nature of the sampled distribution.

This technique draws from the same assumption that Thompson sampling itself draws from: the

concept that sampling a single time from each distribution is enough to approximate the probability

of optimality distribution. As such, it is expected to have similar considerations. We consider

first optimism, and then the replication strategy questions answered in the previous section for

traditional Thompson sampling.

Introducing Optimism to the Simple Sampler

Introducing optimism in the simple sampler requires maintaining a payoff-ordered list of historical

rewards. In order to produce a sampler that is both computationally reasonable and robust to the

binomial distribution (or any similar distribution where one distribution may be a clear winner

(or tied) in the top half but not in expectation), we propose 3 additional optional parameters: a

maximum sample size (B = 100), the optimism cutoff (γ = 0.5), indicating the percentile (fraction

of the observed results) that should be discarded to get our optimistic surrogate distribution and a

minimum sample size (κ = 20). Despite this larger parameterization, we show that even eliminating

these parameters (that is, setting B = ∞, κ = 0 and using the traditional mean cutoff for γ =

Q(F (µ)) where Q is the quantile function and F is the empirical CDF) we still have a sampler that

performs well in all but the most degenerate distributions, even in the large sample binomial case.

From the sorted list of historical payoffs, we sample uniformly from the top n = min(κ,N · γ)

observations. Upon receiving a reward, we append it to our list of rewards. If the total length of
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Data:
Si: the result of playing n > 1 purely random seed rounds for each arm i
Ω: a function which determines whether we should play another round

Result: A simple distribution-free bandit sampling strategy.

initialize ∀i x̃i ← Si ;
while (Ω) do

r̂∗ ← −∞;
St ← [];
// Draw once from each arm history and play the best draw, St.
for each arm i do

r̂test ← draw uniformly(x̃i);
if r̂test > r̂∗ then

r̂∗ ← r̂test;
St ← [i];

else if r̂test == r̂∗ then
St.append(i);

end

end
// Break ties randomly and play the selected arm.

S∗t ← draw uniformly(St);
reward ← play(S∗t );
(x̃S∗t ).append(reward);

end

Figure 3.3: The Simple Nonparametric Sampler

the list of rewards N is more than our maximum size B, we uniformly randomly select one to drop

from the sample. This can be trivially extended to the J-replicate system of the original Eckles

and Kaptein (2014) sampler but we find no benefit in doing so when B is sufficiently large.

This technique has a major advantage in that it is distribution-free. The standard opti-

mistic/nonoptimistic sampler performs very poorly in the case the model is misspecified. As an

example, we have computed comparisons for SOS, Simple Sampler and the traditional parametric

model computed with the normal distribution sampler and computed with a beta-binomial sampler

as described in Chapelle and Li [42]. As expected, in the event the rewards are congruent with the

selected sampler, the performance is not much different (although the implementation is arguably

simpler under SOS) but in the event the rewards are incongruent with the selected sampler (that

is, a beta-binomial to approximate a normal reward, or a normal to predict a beta-binomial) we

find that the SOS and Simple Sampler performance is significantly improved. This is essential for

applications where the true payoff distribution may not be generated from a known distribution.
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Data:
Si: the result of playing n > 1 purely random seed rounds for each arm i
Ω: a function which determines whether we should play another round

B: the maximum size of our sample history (positive integer or infinity)
γ: the degree of optimism in [0, 1), γ = 0 is non-optimistic, γ = 0.5 provides an approximation to
median-optimism
κ: the minimum size of our sample below which we retain the whole sample

Result: A simple distribution-free optimistic bandit sampling strategy.

initialize ∀i x̃i ← sort(Si) ;
initialize ∀i Ni ← count(Si) ;
while (Ω) do

r̂∗ ← −∞;
St ← [];
for each arm i do

// Sample from a γ-optimistic surrogate distribution that is at least κ in size (if κ
samples exist).

if (Ni − γNi) < κ then

x̃optimistic
i ← subset(x̃i, Ni − κ, Ni);

else

x̃optimistic
i ← subset(x̃i, γNi, Ni) ;

end

r̂test ← draw uniformly(x̃optimistic
i ) ;

if r̂test > r̂∗ then
r̂∗ ← r̂test;
St ← [i];

else if r̂test == r̂∗ then
St.append(i);

end

end
S∗t = draw uniformly(St);
reward ← play(S∗t );
(x̃S∗t ).insert sorted(reward);

NS∗t ← NS∗t + 1;

if NS∗t > B then
// Randomly remove a reward above B from the samples.

x̃S∗t ← delete(draw uniformly(x̃S∗t ));

NS∗t ← NS∗t − 1;

end

end

Figure 3.4: The Fully Parameterized Simple Optimistic Sampler (SOS)
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Table 3.4: The robustness and performance of the distribution-free sampler compared to the
traditional parametric sampler.

Sampling Policy Distribution Average R̄E

Traditional Unbiased Incorrect 0.500

Traditional Unbiased Correct 0.391

Traditional Optimistic Incorrect 0.498

Traditional Optimistic Correct 0.341

Simple Sampler – 0.368

Simple Optimistic Sampler – 0.323

We see in Table 3.4 the simple samplers produce results comparable to the traditional paramet-

ric sampler in the case of correct specification without any knowledge of the underlying distribution,

producing a performant real-world sampling technique for arbitrary applications. Further, we see

that the traditional technique can perform very poorly (approximately 30% worse) under misspec-

ification providing more evidence for using the robust sampling technique.

Experiments in Replication Strategies with SOS

We reproduce the multiple-sampling replication experiments from Section 3.3 here in the context

of SOS. This is significant, as the small sample performance of unreplicated SOS is not obviously

performant and there are plausible concerns of managing the distribution around optimism in

certain degenerate cases. We find that neither of these concerns are a problem in expected regret

or cumulative reward. For comparison, we provide the results from the traditional and traditional

optimistic Thompson sampler in both matching (correct) and non-matching (incorrect) parametric

models. We present the results of the replication strategy experiments in Table 3.5.

3.6.5 Using Categorical Contextual Variables in SOS

In many contexts, contextual variables are fundamental to the application of bandit methods.

Historically, methods for computing contextual bandits have been computationally expensive. The

independence of the sampling process in SOS allows us to produce a contextual bandit method

for cases of a small number of independent categorical variables by subsetting the data to those

records which belong to the appropriate subset. This method has the advantage of being easily

and efficiently implemented within a relational database context but suffers from the curse of

dimensionality; there are two distinct considerations in handling that concern: (1) for a small

number of classes (even misspecified classes), it performs well while remaining easily scalable and

(2) we can introduce a new parameter κ which sets a minimum size within a class. If the minimum

size is not reached, a random class is dropped from the subset until the size is met. Our fully

parameterized algorithm for categorical contextual bandits with SOS is detailed in Figure 3.5.
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Table 3.5: Replication strategy experiments for SOS and Simple Sampler

# Sampling Policy Replication Strategy k Average R̄E SD
∑

t xSt,t SD

49 Correct OTS None - 0.341200 0.474160 2.683923 2.051690
50 Incorrect OTS None - 0.492600 0.499995 2.512447 2.060076
51 SOS None - 0.326600 0.469016 2.650144 2.042715

52 SOS Least Deviation 2 0.337000 0.472732 2.678071 2.049964
53 SOS Least Deviation 3 0.338000 0.473076 2.629016 2.069614
54 SOS Least Deviation 4 0.347000 0.476063 2.662008 2.058679
55 SOS Least Deviation 5 0.328800 0.469824 2.662791 2.034599
56 SOS Least Deviation 10 0.331200 0.470692 2.636481 2.027811
57 SOS Least Deviation 30 0.331000 0.470620 2.667166 2.028424

58 SOS Sampled Mean 2 0.330600 0.470476 2.711309 2.067525
59 SOS Sampled Mean 3 0.336600 0.472594 2.699488 2.047436
60 SOS Sampled Mean 4 0.324600 0.468272 2.656813 2.039116
61 SOS Sampled Mean 5 0.335800 0.472317 2.702142 2.101192
62 SOS Sampled Mean 10 0.332200 0.471049 2.711977 2.042467
63 SOS Sampled Mean 30 0.330600 0.470476 2.685058 2.043417

64 SOS Most Optimistic 2 0.341800 0.474360 2.653896 2.089214
65 SOS Most Optimistic 3 0.331200 0.470692 2.676421 2.095322
66 SOS Most Optimistic 4 0.327800 0.469458 2.646591 2.080160
67 SOS Most Optimistic 5 0.330200 0.470332 2.698665 2.042973
68 SOS Most Optimistic 10 0.336400 0.472525 2.695991 2.025342
69 SOS Most Optimistic 30 0.336800 0.472663 2.715561 2.063079

70 SOS Least Optimistic 2 0.343400 0.474891 2.617706 2.048963
71 SOS Least Optimistic 3 0.332800 0.471263 2.722110 2.055616
72 SOS Least Optimistic 4 0.338800 0.473349 2.665208 2.036815
73 SOS Least Optimistic 5 0.337800 0.473007 2.672261 2.055658
74 SOS Least Optimistic 10 0.347800 0.476320 2.644284 2.037160
75 SOS Least Optimistic 30 0.327800 0.469458 2.699044 2.043100

76 Correct TS None - 0.391200 0.488068 2.640098 2.100612
77 Incorrect TS None - 0.496200 0.500036 2.497952 2.074799
78 Simple Sampler None - 0.368600 0.482473 2.643983 2.046037

79 Simple Sampler Least Deviation 2 0.362800 0.480856 2.644576 2.042220
80 Simple Sampler Least Deviation 3 0.358000 0.479460 2.622352 2.047739
81 Simple Sampler Least Deviation 4 0.361600 0.480512 2.675990 2.048984
82 Simple Sampler Least Deviation 5 0.362000 0.480627 2.634314 2.061458
83 Simple Sampler Least Deviation 10 0.365600 0.481646 2.601818 2.054081
84 Simple Sampler Least Deviation 30 0.367200 0.482090 2.620877 2.029750

85 Simple Sampler Sampled Mean 2 0.345800 0.475676 2.696116 2.055796
86 Simple Sampler Sampled Mean 3 0.327400 0.469312 2.675551 2.019245
87 Simple Sampler Sampled Mean 4 0.334800 0.471968 2.647391 2.050078
88 Simple Sampler Sampled Mean 5 0.324800 0.468347 2.671250 2.076719
89 Simple Sampler Sampled Mean 10 0.320600 0.466754 2.680171 2.044166
90 Simple Sampler Sampled Mean 30 0.314200 0.464243 2.663312 2.066480

91 Simple Sampler Most Optimistic 2 0.358600 0.479637 2.649196 2.061342
92 Simple Sampler Most Optimistic 3 0.355400 0.478682 2.637505 2.011785
93 Simple Sampler Most Optimistic 4 0.340000 0.473756 2.664240 2.059272
94 Simple Sampler Most Optimistic 5 0.330400 0.470404 2.619605 2.030020
95 Simple Sampler Most Optimistic 10 0.343200 0.474825 2.652753 2.070380
96 Simple Sampler Most Optimistic 30 0.325400 0.468571 2.657045 2.025362

97 Simple Sampler Least Optimistic 2 0.363400 0.481027 2.684557 2.068898
98 Simple Sampler Least Optimistic 3 0.344000 0.475089 2.619288 2.052010
99 Simple Sampler Least Optimistic 4 0.337200 0.472801 2.683669 2.053468

100 Simple Sampler Least Optimistic 5 0.334000 0.471687 2.681712 2.062158
101 Simple Sampler Least Optimistic 10 0.337600 0.472939 2.672240 2.037189
102 Simple Sampler Least Optimistic 30 0.341600 0.474294 2.672088 2.063609
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Data:
Si: the result of playing n ≥ κ > 1 purely random seed rounds for each arm i
Ω: a function which determines whether we should play another round

B: the maximum size of our sample history
γ: the degree of optimism in [0, 1)
κ: the minimum size of our sample below which we retain the whole sample
κ: the minimum size within a class below which we will collapse the class

Result: A distribution-free categorical-contextual optimistic bandit sampling strategy.

initialize ∀i x̃i ← sort(Si) ;
initialize ∀i Ni ← count(Si) ;
while (Ω) do

r̂∗ ← −∞;
St ← [];
C0
t ← Ct ← get full context vector;

for each arm i do
repeat

// Subset observed rewards to only the matching context category. If insufficient

values are available, remove a context category randomly and repeat (minimum

κ).

x̃match
i ← subset(x̃i, Ct ∈ context(x̃i));
Ct ← delete(draw uniformly(Ct)) ;

until count(x̃match
i ) > κ;

Nmatch
i ← count(x̃match

i );

if (Nmatch
i − γNmatch

i ) < κ then

x̃matching optimistic
i ← subset(x̃match

i , Nmatch
i − κ, Nmatch

i );
else

x̃matching optimistic
i ← subset(x̃match

i , γNmatch
i , Nmatch

i ) ;
end

r̂test ← draw uniformly(x̃matching optimistic
i ) ;

if r̂test > r̂∗ then
r̂∗ ← r̂test;
St ← [i];

end
else if r̂test == r̂∗ then

St.append(i);
end

end
S∗t ← draw uniformly(St);
reward ← play(S∗t , C

0
t );

(x̃S∗t ).insert sorted by reward(reward, C0
t );

NS∗t ← NS∗t + 1;

if NS∗t > B then
x̃S∗t ← delete(draw uniformly(x̃S∗t ));

NS∗t ← NS∗t − 1;

end

end

Figure 3.5: The Categorical-Contextual Simple Optimistic Bootstrap Sampler (SOS)
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3.7 Summary

Our research presented in this section draws a unifying story on the nature of optimism and

contextual sampling strategies – answering a set of questions which arise in the implementation of

an advertising system driven by a simple linear model Thompson sampler. In particular, we have

presented a simulation platform which provides the infrastructure we use to run tests, compare

algorithms across a wealth of dimensions and assumptions in a repeatable and tractable way and

answer questions as they arise. Then, we provided a definition of a new technique called LinTS

which provides a linear model-driven Thompson sampler, then we both answer implementation

questions and show how it can be extended to the non-stationary (drifting) case in a reliable

way. In this process, we identify a number of interesting observations on the nature of optimism

itself - providing evidence for an open question regarding the reason for the effectiveness and

choice of specific type of optimism in the face of uncertainty in exploratory problems. Finally,

we present a set of considerations related to the nature of performing the sampling: efficient

implementations and a nonparametric, distribution-free model of a Thompson sampler which can

support categorical covariates and performs similarly to the traditional parametric sampler while

being robust to misspecification across model selection (in fact, requiring no model selection) in a

way the traditional sampler is not.
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Chapter 4

Conclusions

4.1 Summary

In this work we have explored some of the factors necessary to produce an efficient toolkit for

online experiment design, especially with regard to application to the web optimization problem

presented in the introduction. Our work takes a statistically-motivated perspective, relying on

the fundamental tools of statistical analysis, from confidence intervals to regression analysis, while

both explicitly and implicitly acknowledging the differences of the exploratory tradeoff inherent in

bandits from traditional experiments. This perspective deviates slightly from some of the other

perspectives presented in the literature, in a way which motivates the novelty of many of our results,

especially with regard to the taxonomy of regret presented in the background.

We first presented an exploration of the type of problems and confounding factors typically

considered in multi-armed bandits, an exploratory look at the work that has preceeded this and the

first in-depth discussion of the considerations, especially the many definitions of regret, necessary

to be understood when analyzing bandit problems. Our background presentation focused heavily

on breadth and understanding for the sake of implementation, while still providing knowledge of

the existing bounds and understanding the positional “efficiency,” in the considerations for which

efficiency applies, for each algorithm within the literature.

We have considered a number of theoretical and implementation questions and provided evi-

dence to the interpretation of concepts such as regret and optimism. More so, we presented efficient

algorithms for both parametric and nonparametric sampling and the simultaneous handling of the

contextual and non-stationarity problems which are so fundamental to the problem of advertising

and marketing decision theory.

Further, the presentation of the new metric of statistical regret creates the possibility of com-

paring algorithms ex-post in a real-world applied environment where there is no a priori oracle

with which the experimenter can determine the correct answer. By treating the learning process

as producing its own interval of correctness and confidence, we are able to compute measures in
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all environments which compare to the traditional measures that were only available in simulation.

This allows a diagnostic and evaluative view of policy behavior in the real world to be taken, in a

way not previously available, with an eye on tweaking and calibrating parameters for better results.

Especially interesting in our results are the outcomes with respect to the nature of empirically

effective optimism, both with regard to how the prescient elimination of underlying variation in

the arm distribution interacts with optimism to produce a similar benefit, and with regard to

the excessively optimistic nature of optimism. This is likely to be an area where further research

will provide a more in-depth understanding, especially with regard to the differences and relative

merits between probability matching strategies and upper-confidence bound strategies in general.

The surprising result with regard to the exponential discounting strategy for non-stationary bandits

itself is interesting even for applications outside of the multi-armed bandit: anywhere where the

tracking of an uncertain estimate of a moving variable is a requirement, this result should be

considered and tested for application, indeed even if the nature of the path or functional form of

the drift is unknown, it seems the exponential discounting process works well and fits cleanly within

a regression-oriented framework.

4.2 Future Work

4.2.1 Theoretical Bounds in Low Sample Size Scenarios

In terms of the immediate application in a marketing and web optimization context, it is often the

case that researchers will want to apply an optimization technique where the search space greatly

exceeds the available trials in terms of power. One such example is the case of headline analysis for

advertisements, where a researcher may wish to test hundreds of distinct headlines in a diverse set

of locations where the total traffic that will observe each headline is relatively small. Techniques

from the natural language processing literature and other pre-heuristics may be applied at this

level to attempt to provide context (side-information) to accelerate the learning process, however,

the theoretical work in low sample size cases currently leaves much to be desired.

4.2.2 Prior Elicitation

In most models, some concept of prior knowledge is available. This is, in fact, nearly the whole

purpose of the multi-armed bandit: at each step, utilizing (and balancing) the knowledge which is

accrued with the knowledge which is available to be accrued for future benefit. Capturing early

prior knowledge effectively is a clear path to improving the results of these methods.

...from Experts

It is often the case that a priori ignorance is not the correct assumption for the type of variables

we are optimizing. The enormous literature existent on the topic of eliciting priors from expert
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opinions and the inclusion of domain-expert knowledge in the described techniques remains an open

problem.

...from Prior Experiments

While the contextual variable method of shared parameters across experiments may allow much

of this prior elicitation to take place, a simple and coherent system for modifying and extending

prior experiments to new variants, while retaining the valuable component of the prior data is itself

an area ripe for contribution. Such a result may allow a crowd-motivated transformation of how

these experiments are conducted, with shared quantified knowledge across all experiment types

(especially those from the medical or academic domain) becoming the norm.

4.2.3 Risk-Aware Analysis

Risk aware methods for bandit optimization are essential to use in financial and medical domains.

This comes in a multitude of forms from model and specification error (especially in the likelihood of

tail events, as seen extensively in financial analysis) to the ability for the process to absorb negative

results earned through exploration. In the medical domain, a negative result may represent the

unsuccessful treatment or even death of a patient and depending on the stakes, these results may be

entirely unacceptable. Risk aware bandits are conjectured [11] to be a substantially harder problem

than the traditional models explored here, but some recent work has shown promise in this space.

The application of models from financial analysis, especially with regard to maximal draw-

down and spectral measures of risk may prove promising sources of interdisciplinary integration of

knowledge for the multi-armed bandit.

4.2.4 Feedback Delay

When a user accesses a website, traditionally, his request is logged in an access log for the purpose

of compiling statistics. These statistics could be cross-referenced with sales or other action data

to inform the multi-armed bandit process. A model of this variety is how we expect many web

optimization implementations to be implemented. Unfortunately, the time gap between the first

access and the point where the action such as a signup or purchase is recorded could be on the

order of minutes, hours or even days, during which time more users (and as such, more experimental

subjects) are processed through the system.

This feedback delay, the gap between when the user is presented the arm and the reward is

observed, can be a source of many errors, as well as can be expected to increase regret. In the worst

case, where the stream of rewards occurs after all available users have passed through the system,

there is no learning taking place whatsoever. The interaction of feedback delay in reasonable cases

and the policy selected can be large – for instance, we conjecture that a sampling-based technique

will outperform any static technique (such as UCB variants) in the case of high feedback delay as
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they are able to consider the current uncertainty in a way that does not overtrain an individual

arm. This is an area that necessitates further exploration both in quantifying the effects of feedback

delay and prescribing appropriate treatments for the problem.

4.2.5 Contextual Variables

While we have presented two solutions (the simple categorical sampler and the LinTS techniques)

which support contextual covariates, the contextual problem is so fundamental to rapid learning in

the exploratory problem that it warrants additional attention.

Costs of Misspecification

In particular, because of small sample size effects in both the categorical sampler and the LinTS

technique, it can be very expensive (in regret) to perform a kitchen sink regression, where all plausi-

bly relevant variables are treated within the model. Quantifying the cost of different specifications

to provide guidance to practitioners in how to select appropriate models for balancing forecasting

error and model-associated fixed costs remains an important open question.

Clustering and PCA

Along the same line, where it is solely the fixed cost of early regression fits and the inability to

appropriately group samples together that creates a resistance to adding model variables, it may

be of value to explore clustering and the use of dimensionality reduction techniques like principle

component analysis. These techniques will earlier sample fitting on small sample trials via the

reduction of the feature space in a way that reduces the regret accrued in the small trial context

and in the way of reducing the feedback delay associated with model computation time. Further,

it is suspected that at least in some contexts, it may be possible to outperform the unclustered or

high dimensional model in general, even without consideration of the fixed cost improvements.

4.2.6 Speed and Computational Complexity

In the online advertising context, millisecond-scale response times are essential for user satisfaction.

Research from Google [106] finds that total load time cannot exceed 400 milliseconds before having

an effect on users’ well-being and positive perception of the website. Google further found that a

half second increase in load time could result in a loss of up to 20% of their users for a particular

request. Research from Amazon finds that every 100 milliseconds additional load time reduces sales

by 1% [96]. Hundreds of other research projects both in-house and public have found many related

results: response speed is an essential factor of user perception and behavior on the web; the CEO

of Yahoo, Marissa Mayer is quoted as reaffirming this point “Users really respond to speed.”

It is generally the case where a bandit model can be “frozen” in time for some number of

iterations, and updated only when computational resources are available. The problem with this
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strategy is that it interacts tightly with the problems of feedback delay: in the early (smaller)

sample sizes, where the model is still highly uncertain, regret may accrue very rapidly from a non-

updated model. Further complicating the issue, the nature of the Internet is such that many service

providers receive non-uniform flows of users, where spikes (often referred to as the Slashdot effect

or a flash crowd) occur when a larger site links to the vendor, and the nature of these users is likely

to be much different than the prior users. These factors complicate the adjustment in terms of the

non-stationarity we have considered and require computationally efficient techniques for updating

the model.

In particular, the utilization of an early-exit policy and continuous tracking type models for

fitting the regression coefficients in LinTS or similar will prove invaluable in controlling the ratio

between recomputation cost and the negative effects of feedback/update delay.
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