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Abstract

As the need for processing large amounts of data grows, software de-
velopers and researchers work with new ways to accelerate how this data
is processed. The Graphics Processing Unit (GPU) was originally designed
for the purpose of allowing video games to render graphics more efficiently
while freeing resources on the CPU. It was realized that the massively paral-
lel properties of these devices naturally lend themselves to processing large
amounts of data when provided with a way to write applications which used
GPUs as general compute devices rather than dedicated graphics processors.
This thesis sought to continue the work of other researchers in applying these
general purpose computing capabilities of GPUs to cryptographic systems,
specifically the Advanced Encryption Standard (AES) cryptosystem, which
is the current standard. It was hypothesized that by offloading the oper-
ations of the cryptosystem to the GPU that large gains in performance to
the whole system could be made. Specifically, the goal was to show the ben-
efit of utilizing the GPU for AES operations performed by an open source
database such as Postgres. However, experimental results demonstrate that
there are only very minor performance gains for GPU-based AES encryption
for databases, and the technique is not applicable to many workloads. While
previous papers have stated that GPUs are excellent devices for accelerating
encryption, these papers have largely ignored how their AES implementa-
tions for the GPU compare in various workloads to hardware accelerated
alternatives. Modern Intel and AMD CPUs provide developers with the
AES-NI hardware accelerated instruction set for performing AES, which is
utilized in libraries such as OpenSSL to provide higher performance than an
implementation done in software. This paper demonstrates that when an
AES implementation utilizes AES-NI, it is far more performant to utilize the
CPU than it is to offload the processing to the GPU for typical workloads.
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Terms and Definitions

AES

Advanced Encryption Standard

AES-NI

AES New Instructions aim to improve the speed of encryption as per-
formed by the CPU by providing hardware accelerated instructions.

CPU

Central Processing Unit

CUDA

Nvidia’s Compute Unified Device Architecture. This is a set of libraries
and a runtime for massively parallel computations performed on a GPU.

Device

In the context of this report, Device is interchangeable with GPU.

FIPS

Federal Information Processing Standards are standards developed or
adopted by the United States federal government for computer systems,
government agencies, and contractors.
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Galois Field

Otherwise known as a finite field, this is the mathematical basis for the
AES cryptosystem.

GPU

Graphics Processing Unit. This term is used loosely to describe a pro-
cessor and related architecture which operates as a co-processor to the CPU
in a massively parallel fashion.

GPGPU

General Purpose GPU

GPU Memory/Device Memory

This refers to the memory physically located on the GPU device, similar
to RAM on the host.

Kernel

In this context, refers to the threads, memory, and runtime used by an
application which launches and processes data on a GPU.

Modes of Operation

Block cipher algorithms can be modified to provide protections from
various different classes of attacks and attempts at profiling the encrypted
data. The mode of operation indicates which of these changes are being
used with the AES cryptosystem.

Electronic Code Book - ECB

The most basic mode of operation; This mode encrypts each block sep-
arately.
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Cipher Block Chaining - CBC

This mode of operation utilizes previously encrypted blocks to further
obfuscate the encrypted data.

Counter - CTR

This mode of operation utilizes a counter, or a nonce, XORed with the
plaintext or cipher text to produce output.

NIST

The National Institute of Standards and Technology is a United States
government agency tasked with soliciting, verifying, and approving technol-
ogy, measurement, and standards.

Rijndael

Commonly known as AES, this is the symmetric block cipher algorithm
submitted to NIST by Joan Daemen and Vincent Rijmen in consideration
for the Advanced Encryption Standard.

Streaming Multiprocessor

This is the physical processor which CUDA schedules threads to run on.
GPUs have many of these.

S-box

Otherwise known as a substitution box. This is a lookup table of pre-
computed values. The values of a plaintext input are substituted with the
values found in this lookup table based on a pre-determined algorithm.
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Chapter 1

Introduction

Graphics Processing Units are quickly becoming commonplace in numer-
ous areas of computing sciences due to their ability to accelerate processing
of data in a highly parallelizable fashion. Both Nvidia and AMD man-
ufacture GPUs specifically for use in high performance workloads, which
can include numerous applications, from Computer Aided Design and 3D
modeling, to Deep Learning, to Video Processing, to Virtual Desktops, and
many others. Both of these manufacturers support the OpenCL computing
language; However for the applications of this paper, the system explored
shall be Nvidia’s Compute Unified Device Architecture parallel comput-
ing runtime and programming model. Similar to the PG-Strom extension
to the PostgreSQL database [7] which is designed to off-load parallelizable
database operations, this research aimed to explore the benefits to utilizing
GPUs with databases, for the purposes of accelerating the encryption and
decryption of retrieved and stored data, specifically the Advanced Encryp-
tion Standard cryptosystem. Additionally, this research seeks to compare
the performance benefits of offloading data to the GPU versus utilizing the
CPU by comparing benchmarks against the highly performant OpenSSL
crypto library, which utilizes the hardware accelerated AES-NI instruction
set present on all modern CPUs.

Building off of papers published by previous researchers[8][10][11][12][14]
[15][16][18], the goal was to implement and benchmark a custom AES imple-
mentation which utilized CUDA, and to investigate its benefits when applied
to the data formatting and pipeline of a database. Working from the data
published in the aforementioned papers, the implementation would utilize
optimizations selected to allow the implementation to realize the greatest
gains in performance. Additionally, there is a desire to provide an open
source library so that others could take advantage of the cryptographic ac-
celeration. Lastly, while an initial goal, the task of integrating this cryp-
tographic library with the Postgres open source database was not realized.
The implementation presented, however, should serve as an excellent start-
ing point for others to utilize in this endeavor.
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Chapter 1. Introduction

Over the course of this paper, the different components of GPUs and
the CUDA runtime will be explored in depth, and what features and opti-
mizations must be utilized to achieve the highest performance possible for
the CUDA implementation of AES. Also covered will be an introduction to
the AES cryptosystem and its major components, as well as optimizations
which can be applied to it, and different modes of operation which aid in
serving different purposes and protecting from different kinds of attacks and
cryptanalysis. OpenSSL and its use of hardware acceleration through the
x86 AES-NI instruction set will be discussed in detail as well. How the
implementation can apply AES to databases and other data models will be
covered. Lastly, this paper will cover the topic of why previous researchers
in the field of GPU accelerated AES have come to incorrect conclusions
about its usefulness, and why ignoring AES-NI is an issue for benchmarking
different implementations of AES.
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Chapter 2

Compute Unified Device
Architecture

2.1 Overview

The first GPUs were designed as graphics accelerators, but it took re-
searchers and developers very little time to start leveraging GPUs thanks to
their impressive floating point performance, and the term General Purpose
GPU (GPGPU) programming became more prevalent. Originally, utilizing
GPUs for the purposes of general purpose computing required an intimate
knowledge of the hardware as well as the APIs provided to utilize it, such
as OpenGL or Direct3D [13]. However in 2006, Nvidia introduced CUDA
as a way for developers to be able to leverage GPUs for general purpose
uses with a purpose built API. CUDA is a platform, runtime, and program-
ming model designed for the purpose of accelerating the processing of data
which can exploit the massive parallelism of GPUs. CUDA allows C, C++,
and Fortran code to be executed directly on the GPU, and as such, any
language which can utilize bindings into these languages can by extension
leverage CUDA as well, allowing for others such as Python, R, Matlab and
C# to leverage GPGPU programming.

While it is common for traditional CPUs to have anywhere from a single
processing core to thirty-six in the high end server market, GPUs utilize
a very different architecture. The Nvidia Tesla M2050, launched in 2010,
contains 448 processor cores, and the GTX 780 launched in 2013 with 2304
processor cores. These cores are spread out on the GPU amongst a number
of isolated chips, called streaming multiprocessors. These hundreds or thou-
sands of GPU cores are utilized far differently from CPU cores, making up
for their significantly lower performance through sheer numbers. As such,
utilizing a GPU for computations which are not highly parallel in nature will
result in significant performance degradation when compared to performing
the same computations on a CPU.
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2.2. Threads

With this increase in available processing pipelines, comes a number of
trade-offs however. These GPU processors have a significantly lower core
clock speed, and contain limitations on some programming methods such as
recursion. Programming on a GPU forces the developer to solve problems
in a much more narrowly defined paradigm as compared to CPUs, and as
such, it is important to understand the problem that needs to be solved
intimately before attempting to leverage CUDA to solve it. Parallelism is
not defined by processes or traditional working threads, and this must be
taken into account when designing a device kernel. It is also important to
understand the limitations of GPUs which are inherent to their design as
an external compute device. Not only is there overhead incurred in initial-
izing a GPU Kernel, but the programmer must also account for the time it
takes to transfer data between the host memory and GPU memory. CUDA
allows the programmer fine tuned control over most of these aspects, but
understanding how the underlying runtime works is key to producing the
most efficient algorithms.

2.2 Threads

Conventional threads which run on a CPU are typically divergent in be-
havior, and allow for many different operations to occur simultaneously in
each individual thread. These threads which are scheduled by the operat-
ing system share the same memory space, but each have their own stack
and state. Threads are commonly scheduled by the operating system by
utilizing context switching, where each thread gets a certain amount of pro-
cessing time, and then its state and CPU registers are saved, and the next
thread is loaded. As such, a typical thread is free to process what it wants
when it is scheduled, and performance should not be affected. Threads often
work together and share data by making use of locking mechanisms such as
semaphores and mutexes in shared data structures. Rob Pike explains that
concurrency is not the same as parallelism [3], and while CPU threads can
be parallel, they lack certain properties that make CUDA truly massively
parallel. Likewise, CUDA threads can be concurrent, but at the expense
of almost any previously held performance benefits, making CPUs far more
suited to the task of concurrency.

CUDA threads run on the GPU are by their nature highly parallel, and
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2.2. Threads

as such have a number of differences to CPU threads. Threads are not sin-
gularly scheduled, but rather are scheduled in thread groups, called warps.
Each warp is made up of 32 threads which are executed at the same time
on the streaming multiprocessor of the GPU [13]. While a programmer can
schedule single threads, it is not advised as without the benefits of paral-
lelism, GPUs are actually quite slow. Each warp is non-divergent, and as
such, should some threads be required to branch and some not, each separate
divergence shall be executed serially, one after another. In the simple case of
the if−else construct, should threads 0-15 branch on if , and threads 16-31
on else, the CUDA runtime will run the instructions of 0-15 in parallel, and
then reschedule threads 16-31 and run them after the first 16 threads, also
in parallel. This serialization of parallelism is expensive, and as such it is
wise to design an algorithm so that should one thread branch then they all
branch, to avoid these performance penalties.

This method of scheduling warps also allows for the GPU to take full
advantage of the caching of instructions in the streaming multiprocessors
registers, as well as data caching based on locality. When an access in GPU
memory is made, its surrounding elements are cached as well. This way,
kernels which access many data elements from common regions of device
memory avoid the latency of retrieving them, and instead receive a boost in
fetch speed by retrieving them from streaming multiprocessor cache. This
ties into coalesced memory accesses, where half-warps accessing consecutive
data aligned to 128 bytes incur only a single L1 cache transaction to fetch
data. If the data is not aligned or consecutive, then this will take multiple
access transactions [4].

While warps describe how threads are actually scheduled on the stream-
ing multiprocessor, they are too small of a unit to describe how groups of
threads work together as part of a larger computation. This requires the
introduction of the concept of a grid and a thread block. A grid consists of
one or more thread blocks, and each thread block contains of one or more
threads. All threads within the grid execute the same kernel on the device.
The programmer can specify the dimensions of both the grid and the blocks
within it. The dimensions dictate how many blocks per grid, and how many
threads per block. These dimensions are specified with x, y, z variables,
although these values cannot be arbitrary. All CUDA compatible devices
have a maximum of 1024 threads per block, so it is up to the programmer
to form the dimensions of the thread block to best suite the problem. Grids
themselves also have limits to their dimensions as well, although on newer

5



2.2. Threads

Figure 2.1: The thread layout of a standard CUDA kernel launch [5].

devices this limit is 231-1 x 65535 thread blocks and therefore can largely
be ignored. Thread blocks are what get scheduled to run on the streaming
multiprocessor, not individual threads or warps, and the number of thread
blocks which can execute on a given multiprocessor is also limited to 16 or
32 blocks on newer architectures, and 8 on older devices. Figure 2.1 demon-
strates the layout of a typical device kernel launch, with a number of blocks
being launched within a grid, and each block with a number of threads.
Notice that the logical layout of the blocks and threads allows for unique
indexing of individual threads, which is utilized extensively in any CUDA
application to designate chunks of data to threads.

Memory Accesses

When programming with CUDA, the programmer must also consider
memory access patterns and their effect on the run time of the CUDA ker-
nel. CUDA performs what is called memory coalescing, which packages as
many global memory reads or writes as possible into a single memory trans-
action. To reap the full benefits of coalesced memory, the application must
access contiguous regions of memory from the warp or half warp, aligned to

6



2.2. Threads

(a) (b)

Figure 2.2: A fully coalesced memory access (a) and a sequential but mis-
aligned memory access (b) [4].

128 bytes. This can be seen in Figure 2.2(a), where threads from a warp
access a single 128 byte section of global memory which occurs in a single
memory transaction. Figure 2.2(b) demonstrates why coalesced memory ac-
cesses are so important, as it is clearly shown that an unaligned memory
access has the unfortunate consequence of producing two memory transac-
tions to access a similar amount of memory. By using a non-optimal memory
access pattern, the application has effectively doubled the time required to
access memory. While the effects of this are minimal for small warps with
limited memory accesses, it is quite clear how failing to access memory in
a sequential and byte aligned fashion can quickly amount to large delays in
the GPU processing pipeline. It is also a common pattern for a kernel to
access multiple sequential regions of memory, or the regions of memory at
every n-th position, from a single thread, which is referred to as a strided
access pattern, seen in Figure 2.3. This type of access pattern is incredibly
expensive as it severely degraded the global memory bandwidth, and as such
should be avoided unless absolutely necessary. This type of access pattern
is much more suited to shared memory, which is covered next.

Figure 2.3: A strided memory access, where each thread will seek to access
every second block in global memory, otherwise known as a stride of two [4].

7



2.3. Shared Memory

2.3 Shared Memory

Shared memory is an important mechanism for achieving the most from
a CUDA application by means of allowing data to be exchanged and shared
between CUDA threads with much less overhead than global GPU mem-
ory. Shared memory is physically located on each streaming multiprocessor
which allows for much higher throughput than global memory, with lower
latency (Nvidia claims 100x lower), and reduces utilization of global memory
bandwidth. These three key benefits help to increase overall performance
of CUDA kernels [17], and as such makes it an attractive option to utilize
for strided memory access cases, or as a scratch-pad for frequently altered
data to prevent global memory accesses. Shared memory is not a solution
to all problems though, as it is a limited resource on each streaming mul-
tiprocessor, and increased utilization can reduce the performance of other
thread blocks running on the multiprocessor, as well as reduce the number
of thread blocks being executed at any given time. Shared memory also
forces the programmer to understand exactly how they intend to use the
memory, and how much, as the shared memory allocation must be specified
at kernel launch time. Modern CUDA enabled devices have between 64KB
and 112KB of shared memory available on each multiprocessor, with a max-
imum of 48KB allocated to a single thread block.

1 s h a r e d u i n t 8 t Rks s [ 2 5 6 ] ;
2

3 i f ( threadIdx . x <= 256) {
4 u in t 32 t i = c e i l (256 . 0 / blockDim . x ) ;
5 f o r ( u i n t 32 t j = 0 ; j < i ; j++) {
6 u in t 32 t idx = threadIdx . x ∗ i + j ;
7 Rks s [ idx ] = ctx−>Rks d [ idx ] ;
8 }
9 }

10 sync th r ead s ( ) ;

Figure 2.4: An excerpt of code which shows how the application loads AES
round keys into shared memory.

Figure 2.4 contains an example of how a programmer might utilize shared
memory in their application, such as an implementation of the AES cryp-
tosystem. Rks s defines a fixed array of shared memory with type uint8 t
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2.3. Shared Memory

(unsigned 8-bit data type) which will hold all of the encryption or decryption
keys needed for the kernel to operate on the input data. The kernel utilizes
threads running on the multiprocessor to load the data from global memory
(Rks d) into the shared memory buffer (Rks s). Once this is completed, the
application synchronizes all the threads to ensure that all memory loads are
completed before the application proceeds.

Figure 2.4 is a common utilization of shared memory. The data stored
in Rks s will be accessed frequently by each thread which is executing in the
CUDA kernel, and therefore the global memory bandwidth usage will be
decreased, and memory accesses to this data will be significantly faster than
if accessed in global memory. Additionally, this shared memory allocation is
not so large as to be an inhibiting factor to the performance of other thread
blocks which may simultaneously be executing on the streaming multipro-
cessor.

9



Chapter 3

Advanced Encryption
Standard

3.1 Overview

AES, or the Advanced Encryption Standard, is a symmetric block cipher
chosen in 2000 by NIST and specified in FIPS publication 197 [1] to serve as
a standard cryptosystem, with submissions being judged based on security,
both current and expected future, ease of implementation, performance and
ability to be implemented on low end devices with limited resources, as well
as strength against cryptanalysis, and several others. Rijndael is the algo-
rithm submitted by Joan Daemen and Vincent Rijmen which was approved
for AES. It supports key sizes of 128, 192, and 256 bits with a block size
of 128 bits, and performs 10, 12, or 14 rounds of the cipher depending on
key size. While not implemented or standardized, it is possible for Rijndael
to be expanded both to larger block and key sizes. As such, the AES ci-
pher encrypts or decrypts 128 bits of data at a time, to produce ciphertext
and plaintext respectfully. The 128, 192, or 256 bit key is not used for ev-
ery round of the block cipher, but instead is expanded into what is called
a key schedule. The key expansion generates a schedule of bytes equal to
Nb(Nr+1) where Nb is the size of the key in bytes, and Nr is the number of
rounds the algorithm performs. The generation utilizes substitution tables
(S-box) and a cyclic byte rotation XORed with the previously generated
key to fill the key schedule [1].

3.2 Modes of Operation

Despite the high security nature of AES, it is not immune to all types
of attacks, such as the classic attack shown in Figure 4.2 which allows for
Tux the penguin to remain visible when rendered as an image even after
being encrypted. This is a common weakness in any cryptosystem which
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3.2. Modes of Operation

(a) (b)

Figure 3.1: The standard AES mode of operation (Electronic Code Book
mode (ECB)) for encryption (a) and decryption (b)

utilizes the same key for any given input. To counteract this, variations to
the standard Rijndael algorithm are created which add additional sources
of entropy to the encryption process. One such example is Cipher Block
Chaining (CBC) mode, which XORs the first block with an Initialization
Vector (IV) and subsequent blocks with the previously generated ciphertext
block, as shown in Figure 3.2 (c). Additional modes of operation for AES
are defined in NIST 800-38A [2], which outlines several others including Ci-
pher Feedback (CFB) mode, Output Feedback (OFB) mode, and Counter
(CTR) mode. AES can also be implemented with a Hash-based Message
Authentication Code (HMAC) in the Galois Counter Mode (GCM) which
provides the encrypted data with integrity in addition to security.

By examining ECB mode in Figure 3.1, it quickly becomes clear how
this mode of operation can be parallelized. In both the encryption and de-
cryption diagrams, it is shown that each block is isolated and is not reliant
on the surrounding blocks. This means that a GPU implementation can
perform encryption or decryption on any block, in any order, on as grand a
scale of parallelism as desired. However, in Figure 3.3 it can be seen that
parallelism is not quite as simple as previously. For encryption (a), each
block requires the ciphertext output of the previous block of data as input.
This serializes the algorithm, and removes any capabilities for parallelism.
Upon examination of the decryption process though, parallelism is revealed
to be possible. The decryption of each block requires the ciphertext of the
previous block, which does not need to be generated. Therefore, paralleliza-
tion of the CBC decryption process can take place, and this paper will see
how this is achieved in a later chapter.
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3.3. T-Box Optimization

(a) Original Image (b) ECB Encryption (c) CBC Encryption

Figure 3.2: A classic demonstration of different modes of operation on the
Tux image. This shows how encrypting every block of a data set still leaves
patterns exposed.

3.3 T-Box Optimization

The Rijndael cipher relies on a number of operations in each round to
produce its ciphertext, and the same holds true for decrypting the cipher-
text back into plaintext. This includes, for each round, performing a byte
substitution with the S-Box, a cyclic row shift on a 4x4 matrix of the 16
byte block, and a polynomial transformation in the Galois Field 28. At the
end of each round, the result of these operations is XORed with the round
key, and the next round commences. All these operations, while constant in
running time, are expensive to compute. Originally proposed in the Rijndael

(a) (b)

Figure 3.3: The modified algorithm for Cipher Block Chaining (CBC) mode
for encryption (a) and decryption (b)
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submission to NIST is the replacement of a number of these operations with
a set of four pre-computed lookup tables for both encryption and decryp-
tion, called T − tables, or T −Boxes [9], the basis for which can be found in
Section 5.2.1 of the Rijndael proposal. These lookup operations replace the
computations required for each round of AES, at the expense of needing to
load and store an additional 4096 bytes for either encryption or decryption in
memory. For modern computing systems, these resource requirements are
trivial, and therefore most non-embedded systems can receive significant
performance gains by implementing a T-Box solution. Smaller embedded
systems with less available resources can also benefit from this concept, by
instead storing a single 1024 byte table. This table is a stand-in for the other
3 tables, at the cost of an additional 3 per round of the cipher, for every
4 bytes in the block. This method drastically decreases memory usage, a
very finite resource in embedded systems, while still helping to improve the
efficiency of Rijndael.

3.4 AES-NI and OpenSSL

In 2008 Intel and AMD proposed an extension to the x86 instruction
set architecture, known as the Advanced Encryption Standard New Instruc-
tions, or AES-NI. This instruction set aimed to increase the throughput on
modern CPUs of the encryption and decryption of data with the Rijndael
cipher by providing hardware acceleration for AES and exposing this func-
tionality to the programmer by way of the new assembly instructions. The
prevalence of AES utilization in applications for both desktop and server
is incredibly high. It is utilized in full disk encryption applications such as
FileVault, Bitlocker and TrueCrypt for many users of Mac OSX and Win-
dows operating systems and in web browsers such as Firefox and Chrome
for secure internet sessions over SSL and TLS. AES is utilized further in the
enterprise and server space by way of encrypted databases, secure Virtual
Private Networks, traffic inspection tools, HTTPS enabled web servers and
API endpoints, and numerous other applications which provide high volume
services. Intel claims that the AES-NI hardware acceleration increases per-
formance of the AES algorithm by 3 to 10x that of a purely software imple-
mentation, increasing not only throughput and therefore reducing latency,
but also freeing processing cycles for usage by more complex algorithms,
more clients, or more featureful applications. Adding to the throughput
potential, Intel supports instruction pipelining for the core instructions of
the AES algorithm, allowing for parallel execution of block encryption or
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decryption when multiple blocks are present.

This paper shall be focusing on the OpenSSL cryptographic library and
its usage of AES-NI. OpenSSL is one of, if not the most used cryptographic
libraries in the world, and can be considered a de facto industry standard.
It is almost universally installed on Mac OSX and Linux systems, and is uti-
lized by countless desktop, server, and embedded systems across all major
operating systems. As demonstrated with the recent Heartbleed vulnera-
bility, security flaws in OpenSSL affect huge swathes of internet connected
computers due to the number of deployments. OpenSSL utilizes AES-NI
for hardware acceleration of the AES cryptosystem on supported platforms,
which includes most CPU’s from AMD and Intel since 2010, with a few
exceptions on lower end offerings. Therefore, to compare the performance
of the AES implementation in CUDA with the optimized implementation
found in OpenSSL which leverages AES-NI is a reasonable benchmark for
the performance benefits of the implementation. Any system which pro-
cesses large amounts of data is surely utilizing newer CPU architectures
to leverage increases in instruction per clock performance, core count and
clock speeds, improvements in memory bandwidth, and other technological
progressions as well as AES-NI.
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Chapter 4

CUDA Implementation of
AES and Optimizations

4.1 Overview

At the core of this project is the implementation of Rijndael, the cryp-
tosystem more commonly referred to as AES. This section will take a high
level look at how an AES implementation generates the set of keys, known
as a key schedule, from the initial 128, 192, or 256 bit key, as well as how it is
utilized to encrypt and decrypt data. Also covered will be the various modes
of operation of AES, which aim to provide security again different kinds of
attacks. Lastly, this chapter will cover a number of optimizations in which
the standard layout of AES is altered to fully harness the computational
power of CUDA and GPUs.

4.2 The Rijndael Algorithm

The first step to encrypting information with AES is to generate a key
schedule from the initial key using a key expansion routine. Key genera-
tion techniques are beyond the scope of this research, and as such are not
covered. When appropriate, pre-generated keys are used from FIPS-197 or
NIST-800-38A, or have been generated using the OpenSSL library. The size
of the key schedule is dependent on the size of the initial key, with each key
in the key schedule being used in a given round of the AES algorithm. Fig-
ure 4.1 shows the number of 4-byte words associated with each key length,
and the number of rounds that correspond to it. The block size is constant
for all key sizes.

After the key schedule is generated, the cipher, or encryption, function
can be executed on a 16 byte block of input. Figure 4.3 contains pseudocode
for the process which encrypts a block of input. First the application de-
clares a 16 byte buffer called the ‘state’, which will then have a copy of the
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Key Length Block Size Number of Rounds
(Nk words) (Nb words) (Nr)

AES-128 4 4 10

AES-192 6 4 12

AES-256 8 4 14

Figure 4.1: Key-Block-Round Combinations [1].

input block placed in it. The state, and in fact all blocks in Rijndael, are rep-
resented as a 4× 4 column-major matrix. Next the AddRoundKey function
is performed on the state with the 0th round key, found in Rks, which is ac-
tually just the original encryption key, from which the rest of the keys in the
schedule are derived. AddRoundKey XORs each column of the state matrix
with the corresponding columns in a matrix representation of the round key.

(a) (b) (c)

Figure 4.2: The SubBytes, ShiftRows, and MixColumns operations of the
AES algorithm.

A series of four operations takes places for each of the Nr − 1 rounds
in the Rijndael algorithm. First, the algorithm performs a non-linear byte
substitution utilizing the substitution box, or sbox, which is a pre-computed
lookup table, demonstrated in Figure 4.2(a). Next, the ShiftRows operation
is applied, which performs a cyclic shift of each row of the state matrix, as
seen in Figure 4.2(b). Following this the mix columns operation takes place,
shown in Figure 4.2(c), which multiplies each column of the state matrix
with a polynomial, which is then reduced modulus x4 + 1. All operations
on columns are treated as polynomials in the Galois Field GF (28). These
4 steps are repeated for Nr − 1 rounds, at which point the final round is
performed in identical fashion, except for the MixColumns transformation
which is omitted. To perform decryption, otherwise known as the inverse
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1 void Cipher (Rks , input , output , sbox )
2 {
3 u i n t 8 t s t a t e [BLOCK SIZE ] ;
4 s t a t e = input ;
5 AddRoundKey( s tate , Rks , 0) ;
6 f o r ( i = 1 ; i < Nr ; i++) {
7 SubBytes ( s ta te , sbox ) ;
8 ShiftRows ( s t a t e ) ;
9 MixColumns ( s t a t e ) ;

10 AddRoundKey( s tate , Rks , i ) ;
11 }
12 SubBytes ( s ta te , sbox ) ;
13 ShiftRows ( s t a t e ) ;
14 AddRoundKey( s tate , Rks , i ) ;
15 output = s t a t e ;
16 }

Figure 4.3: The Rijndael Cipher Function written in C pseudocode.

cipher, the algorithms implement the inverses of the four core Rijndael oper-
ations. Algorithmically, the decryption function is similar, with a few mod-
ifications to the order of operations as well as the inverse of MixColumns
requiring a different set of polynomial operations.

As covered in Section 3.3, this implementation is, while correct, not
incredibly performant nor efficient. Instead, the algorithm replaces the Sub-
Bytes, ShiftRows, and MixColumns operations with a series of lookup tables,
contextually referred to as t−boxes or t−tables. These lookup tables greatly
increase the performance of the Rijndael cipher at the expense of memory.
Briefly covered were two possible implementations of the t-box optimization,
either by utilizing four tables, or utilizing a single table which requires the
application to cyclically rotate the values of each location upon retrieval.
While the latter is incredibly useful for use in smaller embedded systems,
the size of a GPUs available global memory is simply so large that these
tables do not have an impact on device performance or memory availability.
Thus, the highest performance algorithm for t-table lookups can be imple-
mented. However, for the absolute best performance, the t-boxes must be
loaded into memory which performs even better than global memory, at the
expense of it being a limited resource. This is covered later in Section 4.4.
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4.3 Parallelization

In Section 2.2 the paper investigated just how CUDA exposes concur-
rency to the developer. How these concepts are applied to AES are now
going to be covered, and how the massive parallelism of GPUs can be ex-
ploited through CUDA for a very performant implementation. AES is, at
its core a block cipher, which means that it operates on data of a fixed size,
in this case 16 bytes. While data may occasionally come in single blocks,
it is far more common to be operating on data in the kilo, mega, or giga-
byte realms. This is good, because CUDA excels at running hundreds of
thousands or millions of threads concurrently while operating on or utilizing
large data sets. As discussed in Section 3.2, the ECB mode of AES lends
itself well to parallelization, as each 16 byte block is self contained and relies
on no other blocks. This means that for any input data, the implementation
can launch the encryption or decryption operation on the GPU, with a sin-
gle AES block assigned to each thread. It really is that simple, and with the
incredibly high thread limit of the CUDA runtime, it can be assured that
the implementation will run out of GPU memory long before ever reaching
the limit on the number of launched CUDA threads. This processing model
is most recently laid out by Patchappen et al. [16], and the earlier works of
Iwai et al. [11] confirm that this is indeed the most efficient way of utilizing
the GPU as opposed to 8 bytes per thread, or 1 byte per thread in each
AES block.

Complications arise when trying to implement cipher block chaining, or
CBC mode, for AES. As shown earlier in Figure 3.3(a), the encryption op-
erations actually require that the ciphertext of the previous AES block be
XORed with the plaintext of current block before it is encrypted. This
means that each block has a dependence on the previous block, and by
extension ensures that the encryption process is in no way parallelizable.
Decryption on the other hand, is still parallelizable. Figure 3.3(b) shows
that the output of the decryption processes must be XORed with the ci-
phertext input of the previous block. Since this is data that is available,
decryption of data encrypted in CBC mode is perfectly viable, and is imple-
mented identically to ECB mode, one block per thread. It should be noted
that to utilize the GPU for this purpose, the implementation requires twice
the space that would be utilized for ECB mode. Because no block in ECB
mode relies on another, the global memory used to store the plaintext or
ciphertext can also be used as an equivalent output buffer. CBC mode does
not allow for this because all of the input data must be accessible, and as
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1 // Cast the g l oba l memory to an array o f 32 b i t in t s , t h i s w i l l
he lp with coa l e s c ed a c c e s s e s

2 u in t 32 t ∗ s t a t e = ( u in t 32 t ∗)&ctx−>Output d [ aesBlockIdx ] ;
3

4 s0 = byteswap ( s t a t e [ 0 ] ) ;
5 s1 = byteswap ( s t a t e [ 1 ] ) ;
6 s2 = byteswap ( s t a t e [ 2 ] ) ;
7 s3 = byteswap ( s t a t e [ 3 ] ) ;

Figure 4.4: By treating the 16 byte blocks of data as 32 bit unsigned integers,
the application can achieve properly coalesced memory accesses.

such the application must allocate an output buffer of identical size to that
of the input memory.

There is another consideration to take into account when parallelizing
AES, and that is the size of the ciphertext or plaintext and the context in
which this size applies. Specifically, databases store data not in long con-
tinuous chunks, but rather they store data in pages of a fixed size, which
allows for easier selective retrieval of data. When dealing with data which
is encrypted with CBC mode, this changes the paradigm of what is consid-
ered parallelism. Our implementation still cannot parallelize encrypting a
single page of data, as there still exists the block level dependence on pre-
vious blocks which must first be encrypted. However, this does not mean
that the algorithm cannot parallelize decrypting multiple pages at the same
time. Instead, the application assigns a single CUDA thread to the task of
encrypting a page of data, which is not performant for a single page, but
on the order of thousands or hundreds of thousands of pages scales much
better. This model of working with pages of data also scales well to decryp-
tion, which can already be parallelized, so the model of one thread per block
can be followed with some additional logic added into the implementation
to handle the page format.

To maximize the performance of this AES implementation, the appli-
cation should also utilize coalesced memory accesses whenever possible(the
concept of which was introduced in Section 2.2). To do this requires working
around some limitations of this particular implementation of AES. Specifi-
cally, the implementation utilizes byte arrays to store and retrieve the data.
This representation is incredibly easy to work with and is intuitive as AES
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1 #de f i n e byteswap (x )
2 ( ( ( x >> 24) & 0 x000000 f f ) | ( ( x >> 8) & 0 x0000 f f00 ) |
3 ( ( x << 8) & 0 x00 f f0000 ) | ( ( x << 24) & 0 xf f000000 ) )

Figure 4.5: Macro used to change the endianness of data being retrieved
from global memory.

utilizes the notion of a 16 byte block. It is, however, somewhat troublesome
for achieving optimum memory throughput, as CUDA does not perform
coalesced accesses for any data type which is less than 32 bits [17]. This
causes an issue, as it means that all 16 bytes in each thread must be ac-
cessed individually in their own memory transaction. This is very expensive,
and creates a bottleneck in the application, with the Nvidia Visual Profiler
reporting only a 36.5% efficiency when loading each block from global mem-
ory onto the streaming multiprocessor. This issue is solved by casting the
block of data from a byte array to an integer array, and then accessing the
data as 32 bit unsigned integers, as seen in Figure 4.4. This works very well
because there are exactly four 32 bit unsigned integers out of 16 bytes. Our
CUDA implementation not only utilizes the optimization for loading data
from global memory, but also to improve copy times from the streaming
multiprocessor to global memory when the encryption or decryption for a
given block is done.

When implementing this optimization it is required to understand en-
dianness and handle it appropriately, especially for this application which
casts arrays of bytes into integers. Assume there is a byte array containing
the values [0x00, 0x01, 0x02, 0x03] in hexadecimal. When this is casted to an
unsigned integer, the integer becomes the hexadecimal value of 0x03020100.
The first memory location in the byte array, which stores hex value 0x00,
has gone from being the most significant byte to the least significant byte.
This shows that the data representation of the machine is litte-endian. This
is the opposite of what the T-box implementation of AES expects, which
expects the most significant byte of the byte array to correspond to the most
significant byte of the unsigned integer. Therefore the ordering of the bytes
stored in the integers must be swapped. This can be done by utilizing a
simple macro, shown in Figure 4.5 to swap the byte order around in the
variable. As such, in the Figure 4.4 example, it can be seen that the bytes
of each 32 bit unsigned integer from the byte array are swapped to create an
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unsigned integer which is then assigned to a state variable, stored in s0-3.
Similarly, it is necessary to run the same macro on the unsigned integers
representing the state when utilizing the same concept to cast the integers
into a byte array representation to store in global memory.

This creative use of the type system that C exposes allows the implemen-
tation to completely remove the reported bottlenecks caused by inefficient
global memory loads, and fully harness the memory bandwidth of the GPU.
Overall, the speed-up when implementing this was observed to be anywhere
from 15-25% for the actual GPU data processing, as this does not effect
memory copy times. This shows how very important it is to consider all
possible bottle necks in a system and how they can best be accounted for
and worked around if necessary. This speed-up is realized even though there
is added execution time overhead due to the byte-swap operations.

4.4 T-Table Lookups in Shared Memory

As mentioned in Section 2.3, this CUDA implementation of AES utilizes
shared memory, located on the streaming multiprocessor executing a given
thread block. It aids in reducing global memory accesses to smaller amounts
of commonly used data, leaving more available bandwidth for accessing seg-
ments of memory which are too large to load into shared memory. This is
utilized primarily for lookup tables and round keys. Below it is shown how
the implementation utilizes shared memory in the encryption function of the
CBC mode of operation. The algorithm allocates a 256 byte element buffer
sbox s for storing the sbox, as well as four 1024KB buffers for the T-Box
lookup tables. This utilizes 4352KB per thread block for the various lookup
tables, with an additional an additional 256 bytes for round keys (shown
in Section 2.3), for a total of 4608KB per thread block of shared memory
utilization.

This certainly adds some complexity to the application, as not only does
the kernel have to allocate this memory and load data into it, but it must
add checks to ensure that the bounds of the shared memory region are not
exceeded (line 5) as well as accounting for the situation where there are not
enough threads for each of them to load a single chunk of memory (line 7 and
the proceeding for-loop). However, this added complexity is highly reward-
ing due to the sheer number of memory accesses performed on these regions.
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1 s h a r e d u i n t 8 t sbox s [ SBOX SIZE ] ;
2 s h a r e d u in t 32 t t e 0 s [ SBOX SIZE ] , t e 1 s [ SBOX SIZE ] ,
3 t e 2 s [ SBOX SIZE ] , t e 3 s [ SBOX SIZE ] ;
4

5 i f ( threadIdx . x < SBOX SIZE) {
6 u i n t 8 t i = c e i l ( ( f l o a t )SBOX SIZE / blockDim . x ) ;
7 f o r ( u i n t 8 t j = 0 ; j < i ; j++) {
8 u i n t 8 t idx = threadIdx . x ∗ i + j ;
9 sbox s [ idx ] = ctx−>sbox d [ idx ] ;

10 t e 0 s [ idx ] = ctx−>t e0 d [ idx ] ;
11 t e 1 s [ idx ] = ctx−>t e1 d [ idx ] ;
12 t e 2 s [ idx ] = ctx−>t e2 d [ idx ] ;
13 t e 3 s [ idx ] = ctx−>t e3 d [ idx ] ;
14 }
15 }
16 sync th r ead s ( ) ;

Figure 4.6: An excerpt of code which shows how the application loads lookup
tables into shared memory.

1 t0 = k0 ˆ t e 0 s [ ( u i n t 8 t ) ( s0 >> 24) ]
2 ˆ t e 1 s [ ( u i n t 8 t ) ( s1 >> 16) ]
3 ˆ t e 2 s [ ( u i n t 8 t ) ( s2 >> 8) ]
4 ˆ t e 3 s [ ( u i n t 8 t ) ( s3 ) ] ;

Figure 4.7: An example of the frequent usage of t-tables, used to justify
storing them in shared memory.

Figure 4.7 is an example of the table lookups which replace the standard
AES round operations, which performs an XOR of part of the round key, k0,
with values extracted from the lookup table based on input data found in the
variables s0-3. This example operation is performed four times, once for each
4 byte segment of data in the 16 byte AES block, and that set of operations is
then performed either 10, 12, or 14 times per 16 byte block of data depending
on key size. The data stored in s0-3 will change for every thread, and
therefore it is not an ideal candidate for loading into shared memory. The
data found in te0-3 s shared memory buffers however is accessed often but
is static and as such is an excellent usage of the limited shared memory. The
importance of shared memory is extensively covered in numerous previous
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Figure 4.8: A demonstration of how to reduce runtime by overlapping copies
and kernel executions [6].

papers on CUDA AES implementation, as it plays an important part not
just in the AES algorithm, but in any GPU implementation [8][12][16].

4.5 Asynchronous Memory Copies and Kernel
Launches

CUDA provides the developer with a number of functions so as to allow
for concurrent execution of memory transfers to and from the GPU, and ker-
nel executions on the GPU. These concurrent operations operate over what
are known as streams, which are asynchronous channels for pipelining these
concurrent operations in a particular order. Think of each stream as a first-
in-first-out queue. When an operation is added to a particular stream, the
CUDA runtime guarantees that the operations will be run in order, however
it does not guarantee the order of operations between streams automatically,
the programmer must utilize stream synchronization methods themselves.

For the purposes of this research, the choice was made to split the input
plaintext or ciphertext into their own self contained entities for the purposes
of utilizing CUDA Streams. The data is divided into programmer specified
chunk sizes, and for each chunk the memory copies and kernel launch opera-
tions are placed into a different stream. The number of available streams is
also chosen by the programmer, with the application choosing the streams
from a set of streams in a round robin fashion. As a result of having mul-
tiple streams through which data can be copied to and from the GPU, the
implementation can start to leverage and benefit from significant time sav-
ing features by way of overlapping data transfers with kernel executions.
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The CUDA runtime allows for data to be copied to and from the GPU at
the same time as a kernel is running on the GPU. Additionally, memory
copies are full duplex, meaning that data can be copied bi-directionally to
and from the GPU simultaneously. This is an excellent property of the
PCIe bus which is exposed by CUDA, and as shown in Figure 4.9 allows for
significant overlap of operations.

Figure 4.9: A visualization of overlapping memory copies and kernel execu-
tions, generated with the Nvidia Visual Profiler (NVVP).

This demonstrates how CUDA streams can be used to overlap copies to
and from the device with data processing to reduce overall runtime. Figure
4.9 clearly shows the “Memcpy HtoD” and “Memcpy DtoH” (host to device

24



4.5. Asynchronous Memory Copies and Kernel Launches

and device to host respectively) executing at the same time as the KERNEL
function calls. More importantly, the overlap of significant data transfer
begins to hide the runtime cost of copying data to or from the GPU by way
of performing it at the same time as the kernel execution. This is a case
of utilizing all available resources at all available times. When the kernel is
running on the GPU, it is processing data that must already be on the GPU.
This leaves the mechanisms for copying data to or from the GPU unused.
This idea is used to produce empirical data which shows the sizes of data
chunks that are most optimal for ensuring that the GPU multiprocessors
are operating as often as possible, and that the PCIe bus is being saturated
with data copies as often as possible.
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Chapter 5

Benchmarking and Results
Analysis

5.1 Test Machine and Environment

This chapter is an analysis and examination of the experimental results of
comparing the GPU implementation with OpenSSL running on the CPU. As
mentioned in Section 3.4, the CUDA AES solution is benchmarked against
the OpenSSL cryptographic library, on computer systems which support
the AES-NI hardware accelerated instruction set. OpenSSL is the definitive
standard for an open source, commonly utilized and widely accepted library
for cryptographic operations and as such is the best comparison for deter-
mining whether the implementation is capable of comparable performance.
The implementation is tested using the computer system outlined in Table
5.1, which is a respectable, multi-core workstation computer with a high
performance Nvidia gaming GPU running Debian Sid and utilizing CUDA
7.0, the latest available in the Debian repositories.

Components Test Machine

CPU AMD FX 8350 (8 Cores)

RAM 16GB DDR3 @ 1600Mhz

GPU Nvidia GTX 780 3GB
(2304 CUDA Cores)

Operating System Debian Sid

CUDA Version 7.0

Table 5.1: System specifications for the test platform.

For the testing, the benchmarks collect a number of data points for a
range of page sizes, and utilizing a number of different runtime configura-
tions for the number of streams available and the number of pages copies in
each stream. The OpenSSL benchmarks are also performed in a multi-core
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environment, as it could be argued that utilizing more cores of a CPU is far
easier to do that installing a GPU in a server, and using custom software
to achieve the performance gains. All throughput results are the average
of 20 runs of identical configuration at a given amount of paged data. The
tests run in groups of 1-10, 10-100, 100-1000, 1000-10000 and 10000-50000
pages, and the number of data pages after 20 iterations is increased by 1,
5, 50, 500 and 5000 for each range respectively. Each page is a fixed 8192
byte page, although this library supports larger page sizes which could be
tested in the future. Additionally the overhead for memory allocations is
largely excluded from these benchmarks because in a production setting,
this library would need to be modified to utilize manually managed pools of
memory rather than allocating memory on each run, as allocations especially
on the GPU can take very long amounts of time. It must also be noted that
the data which is used for the testing is generated from the /dev/urandom
pseudorandom generator from the Linux kernel. This ensures that all of
the benchmarks are outputting results given the absolute worst case input
data, as random data is much less likely to contain patterns which could be
exploited by various caching schemes at the L1, L2, or L3 cache levels of the
GPU.

5.2 AES CBC Mode of Operation with Paged
Data

Paged data is one of the core ideas of this paper, and specifically how it
can be applied so the encryption of data utilizing the CBC mode of opera-
tion can be parallelized. Seen in Section 3.2, CBC mode is inherently not
parallelizable, as each block relies on the output ciphertext of the previous
block. But with paged data this possible by parallelizing not the block level
decryption, but the page level decryption.

Observe in Figure 5.1(b), that the highly optimized AES implementation
in CUDA arriving at the equivalent performance of 2 and 4 CPU Cores by
about 50MBs worth of paged data, and well over one thousand megabytes
per second faster than an implementation which does not utilize streams.
Figure 5.1(a) paints an even more impressive picture, with the AES im-
plementation holding its own against OpenSSL utilizing 8 CPU cores. It
is however quite interesting to see that it is not performing exceptionally
higher than the AES implementation which does not utilize data streams.
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(a)

(b)

Figure 5.1: AES CBC Encryption(a) and Decryption(b) with Paged Data
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(a)

(b)

Figure 5.2: AES CBC Encryption(a) and Decryption(b) with Paged Data
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Figure 5.2 clearly shows what a number of other researchers have missed
in the past, which is that utilizing the GPU for small amounts of data
encryption is not, in fact, faster in any way than utilizing the CPU hard-
ware acceleration. The GPU has a “warm-up” to its performance benefits.
This makes sense due to the additional overhead of copying data to the
device, even if it utilizes overlapping data transfers, along with overhead
that comes from synchronization of threads while loading data into shared
memory, and the time it takes to launch and terminate the kernel on the
device itself. Recalling back to Section 2.2, it was also mentioned that GPU
threads, individually, are much slower than a CPU and therefore utilize
massive parallelization to overcome this. This concept holds true, because
when dealing with smaller amounts of paged data, there is less data to par-
allelize, and therefore the effects of it will be lessened. It is also important
to once again bring up the topic of CPU pipelining, as it ties in very nicely
to the comparison between CPU and GPU implementation. For encryp-
tion with AES-NI, like the CUDA implementation, is going to inherently
be serial for a given block, whereas the CPU can parallelize the launching
of decryption AES-NI instructions at a low level. What this means is that
with encryption, the CUDA implementation is matched with OpenSSL for
parallelization limitations, whereas with decryption the GPU is competing
with not only multi-core processing, but with parallelization in instruction
pipelining with the AES-NI instructions.

Filesize (Bytes) GPU (Mbps) CPU w/ 1 Core 2 Cores 8 Cores

8192 3 421 402 5
16384 7 229 378 13
24576 10 229 323 717
122880 38 233 1186 1241
163840 46 699 460 1723
1228800 278 661 1370 2677
1638400 360 668 1077 747
12288000 1576 660 1294 4509
16384000 1846 694 1269 4370
327680000 2660 372 846 3167
368640000 2673 363 854 3283
409600000 2689 339 782 3114

Table 5.2: GPU Implementation with Streams vs OpenSSL performing En-
cryption. All speeds are in MBps.
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(a)

(b)

Figure 5.3: The standard deviation of throughput for the AES CBC imple-
mentation and OpenSSL with Paged Data
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It is also necessary to address what appears in the results to be wild
thrashing from the multi-core OpenSSL benchmarks. From Figure 5.1 it
should be very clear that the average runtime fluctuates greatly between
the various amounts of data processed at a time. This is made explicitly
clear in Figure 5.3, which charts the standard deviation of encryption and
decryption time in both the GPU and OpenSSL tests. Our GPU imple-
mentation clearly has much lower variance in throughput between each run,
whereas the CPU is highly erratic, due to the fact that despite the assistance
of hardware acceleration from the CPU, scheduling of the low level instruc-
tion execution is subject to being suspended and resumed by the operation
system kernel through context switching and other scheduling operations
which produce non-deterministic fluctuations. This is an incredibly impor-
tant property that very much needs to be highlighted, because this could
be received very well in environments which demand low and consistent
latency for their operations; Communications, financial systems, and real-
time operating system applications immediately come to mind, but would
necessitate being explored further. Table 5.2 contains a sampling of data
from the output data set of the CBC paged data testing, and numerically
shows the erratic nature of utilizing AES on the CPU. Table 5.3 Contains
a sampling of data from the same data sizes, but for the decryption. This
clearly shows how even with even a single CPU core, the CPU decryption
runs considerably faster than the encryption, thanks to CPU pipelining of
the AES-NI instructions.
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Filesize (Bytes) GPU (Mbps) CPU w/ 1 Core 2 Cores 8 Cores

8192 80 2159 2234 6
16384 157 1338 2776 1418
24576 224 1428 2669 2293
122880 701 1599 4328 4468
163840 869 4635 5523 5626
1228800 1574 4382 7507 693
1638400 1925 4299 7449 12335
12288000 2779 3409 4562 4959
16384000 2843 3346 4447 4204
327680000 3071 1443 2553 4486
368640000 3071 1381 2548 4480
409600000 3074 1390 2690 4647

Table 5.3: GPU Implementation with Streams vs OpenSSL performing De-
cryption. All speeds are in MBps.

5.3 AES CBC Mode of Operation

Our library also implements AES CBC mode for arbitrary files which do
not follow a paged data format. Encryption cannot be implemented at all,
as it is completely single threaded, and as such is not only abysmally slow
when running on a GPU, but for any data larger than about 8KB can actu-
ally cause the process to become uninterruptible by the operating system’s
scheduler, which can lock the entire system until the kernel watchdog termi-
nates the process. Investigation was performed for this, and the issue seems
to stems from the Nvidia graphics driver, but no acceptable fix was found
outside of simply not running an application in such a serialized fashion.
Decryption can be implemented however, as that is a very well understood
parallelization. For the sake of continuity, the results are included here as
Figure 5.4, which compares OpenSSL on a single core to the optimized im-
plementation. Note that the application does not implement CUDA streams
for overlapping data transfer, but it would be possible to implement with-
out much additional effort. It also compares to the naive implementation
of AES which does not include the t-box lookup table optimization, as an
example of just how much more performant AES is when fully optimized.
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Figure 5.4: The standard deviation of throughput for the AES CBC imple-
mentation and OpenSSL with Paged Data

5.4 AES CTR Mode of Operation

While the Counter mode of operation (CTR) for AES was not covered
earlier, it was none the less implemented as part of this research, although
it was not a cornerstone. To briefly cover CTR mode, CTR utilizes an
initialization vector called a nonce. A nonce is a starting value which is
encrypted with the AES block cipher algorithm identically to ECB mode
of operation. The output of this is then XORed with a block of plaintext
to retrieve the ciphertext, and similarly XORed with a block of ciphertext
to retrieve plaintext. However, the same nonce is not used continually, but
is only used as a starting point. For each block after the initial block, the
nonce is incremented by 1, and then encrypted and XORed with the next
block of plaintext or ciphertext. This is demonstrated in Figure 5.5, which
depicts both encryption and decryption of plaintext and ciphertext utilizing
CTR mode. Notice that both encryption and decryption use the encryption
algorithm. Figure 5.6 demonstrates a basic implementation of CTR which
operates on arbitrary block sizes, while Figure 5.7 demonstrates the possi-
bilities for a paged data system. CTR mode is, alongside CBC, considered a
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(a) (b)

Figure 5.5: The Counter (CTR) mode for encryption (a) and decryption (b)

fairly resilient cipher system, and because of this “Counter” property, is very
commonly in use as a stream cipher, which allows for the nonce to be trans-
mitted along with the connection establishment handshake, at which point
both the sender and receiver simply increment it for every block worth of
data received. This makes CTR an excellent choice for encrypting network
traffic and other communications. CTR mode is inherently parallelizable at
all levels, because each block is operated on independently, sharing a com-
mon starting nonce.

Similar to CBC mode, Figure 5.7 shows that the AES-NI enabled OpenSSL
takes an early lead, with CTR mode eventually settling in between 2 and
4 core OpenSSL performance at about 40MBs of paged data, both for en-
cryption and decryption. This is expected as they are essentially identical
algorithms just being called on different data. Also seen is the same er-
ratic throughput from OpenSSL at the smaller data sizes, thanks to the
operating system scheduler, and it is observed that the GPU maintains its
consistency with incredibly low variance in throughput between runs. Once
again however, the GPU is competing with not only multi-core parallelism
but instruction level parallelism via pipelining.

Overall, what is presented in this section is quite clear. AES on the
GPU is simply not viable in a data processing environment which uses small
amounts of data, because OpenSSL’s hardware acceleration through AES-
NI is simply too fast for the highly optimized CUDA implementation to
compete. The overhead of copying memory and launching the GPU kernel
is too great to overcome with smaller data sizes. However, in scenarios
where a processing node must deal with large amounts of data which can be
processed in batches, where this implementation excels, then GPUs are an
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(a)

(b)

Figure 5.6: AES CTR Encryption(a) and Decryption(b) 36
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(a)

(b)

Figure 5.7: AES CTR Encryption(a) and Decryption(b) with Paged Data
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(a)

(b)

Figure 5.8: The standard deviation of throughput for the AES CTR imple-
mentation and OpenSSL with Paged Data
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incredibly viable solution for performance gains.

5.5 Applications Analysis and Further
Optimizations

This section of the paper serves the purpose of expanding on some in-
teresting points which were found in the data collected which are not nec-
essarily obvious or intuitive at first glance. GPUs are complex devices, and
their strengths and weaknesses are highly dependent on the data involved,
what guarantees are needed by the programmer, the algorithms required
to achieve goals, and so on. A programmer needs to “massage” an appli-
cation into the most efficient and performant configuration. Expanding on
what has been observed and researched is an important part of learning and
looking to the future for new possibilities.

Data Processing without Copy-To-Device Penalty

The current set of benchmarks look at the time to copy data to the GPU,
process it, and copy it back to the host as one complete system. The data
resides on the host, and it needs to move to and from the GPU so that it can
to do work on it, which incurs significant amounts of delay. In fact, in most
cases the data is in transit for anywhere up to double the actual processing
time. Instead of treating this as a problem that is inherent to the fact that
the GPU is a co-processor attached to a computer, the programmer should
treat the GPU as a computer itself. Direct Memory Access, or DMA, allows
the programmer to treat the GPU in this way. DMA is an incredibly useful
feature which allows for any device connected over PCIe, to directly copy
data to another PCIe attached device by circumventing the CPU and di-
rectly accessing the memory controller. This reduces latency and increases
memory throughput considerably. By utilizing such a mechanism, a few
different goals can be achieved.

First, the application can now copy data directly from disk to the GPU.
Instead of reading pages of data from a database, or indeed any arbitrary
data from disk, into host memory and then to the device, the application
can copy it straight to the GPU without incurring extra CPU load or delay.
With the advent of NVMe storage devices, it is in fact not uncommon for a
single flash storage device to be able to read at speeds of 4GB per second,
with higher speeds possible with various striped storage configurations. An
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application can also write back to disk at these speeds, as the CUDA run-
time can copy data straight from GPU memory directly to disk via DMA
as well. This concept and its benefits would be a very interesting research
topic to pursue.

DMA is not restricted to data storage devices, as there are many uses
for high speed devices which attach via PCIe. Infiniband high speed net-
work interconnects are incredibly common in environments which require
high speed and/or low latency connections for data communications. These
cards attach to a computer or server via PCIe, and these are actually well
understood and commonly implemented with CUDA by way of Nvidia’s
GPUDirect RDMA, which allows for direct communication between two PCI
devices. This opens up a myriad of possible uses for the CUDA AES imple-
mentation which can bypass a significant amount of copy expenses. Assume
there is a server which connects to a network over infiniband, which acts to
proxy data, and at the same time encrypts or decrypts traffic depending on
the direction it flows in the network, similar to how a VPN operates, but
for the sake of simplicity assume arbitrary data. When that data arrives at
the server, it must be copied from the PCI infiniband card to host memory,
where it is processed with a highly variable amount of latency, and then
copied from host memory onto either the same or another interconnect de-
vice to be passed on to its final destination or another hop in the data flow.
Whether this data is processed by the CPU, or the GPU, it must be copied
both onto and off of the intermediate node. Therefore, data can be copied
directly to the GPU, the data operated on, and then copied from the GPU
to another PCI device without any need for the CPU besides scheduling
kernel launches. It can be confidently assumed that the time taken to copy
from the network device to host memory is the same to copy to the GPU
device, and similarly it can be assume the time to copy from the CPU to
the network device is similar to copying from the GPU to the network device.
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Figure 5.9: AES CBC Decryption with Copy Time Excluded

By using this assumption, it is logical to start thinking about what the
processing throughput possibilities are if the cost of copying data to and
from the GPU was completely eliminated. It is not necessarily a completely
fair comparison to compare the CPU to the GPU when the GPU is, in the
test case, inherently at a disadvantage because it must wait the time re-
quired for the data itself to arrive on the device, while the CPU can begin
working immediately to process the data stored in host memory. In the
world of high speed data accesses, the time to copy from a high speed device
to GPU memory will be about the same as the time taken to copy to host
memory, and the opposite is true as well. Therefore, the throughput that
can be achieved with the CUDA GPU implementation when it does not
have to make up for data copy times when compared to the CPU should be
examined.

When actually comparing like systems, it shows that the GPU solution is
a lot more attractive for high performance systems. Figure 5.9 shows clearly
how large the difference in throughput is between the CPU and GPU even
with smaller input data sizes, with the GPU overtaking the CPU at around
5MBs, and holding its own from quite early on. Additionally, the data shows
that there is a linear increase in throughput as data sizes increase, so this
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(a)

(b)

Figure 5.10: AES CBC Encryption(a) and Decryption(b) with Paged Data
and Copy Time Excluded
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(b)

Figure 5.11: AES CTR Encryption(a) and Decryption(b) with Paged Data
and Copy Time Excluded
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solution scales well. Figure 5.10 shows a picture similar to what has been
seen before, except in this case the GPU surpasses the 8 core CPU running
OpenSSL with AES-NI instructions in CBC mode, and even with smaller
data sizes it performs remarkably. CTR mode is even better, as is expected
from a highly parallelizable algorithm. Figure 5.11 shows the implementa-
tion far surpassing the 8 core CPU in both encryption and decryption.

Incredibly interesting to note, although not entirely unexpected, is that
these latest charts shows that the implementation which uses streams is far
slower than the implementation which does not. Streams are an effective
way of hiding the run time expense of copying data to and from the GPU,
but when that data already resides on the GPU, utilizing streams is ac-
tually quite slow and not particularly performant, as the application then
has a large number of small kernels launched, running, and exiting instead
of scheduling a single monolithic kernel. It should however be noted that
the currently displayed charts are not a perfect representation of the perfor-
mance of streams without a data copy expense, as Nvidia provides no way
to measure the length of time it takes for operations in a stream to com-
plete. This is none the less understandable as the entire point of streams is
to be asynchronous. Therefore, in this case it is essentially comparing the
previous data to only the non-stream AES CUDA implementation, but with
the copy times removed for the non-stream version.
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Filesize (Bytes) GPU Encrypt (Mbps) GPU Decrypt (Mbps)

8192 3 234
16384 7 458
24576 10 685
32768 13 920
122880 39 2499
163840 47 2837
1228800 313 4943
1638400 409 5177
12288000 2852 5290
16384000 3361 5668
122880000 6704 5751
163840000 5146 4892
204800000 6006 5756
245760000 6718 5757
286720000 6345 5757
327680000 6345 5759
368640000 6727 5756
409600000 6434 5757

Table 5.4: Table of raw processor throughput for the GPU implementation
of AES CBC mode with paged data and data copy time excluded.

Another unexpected finding is found by examining the raw data which
constructed Figure 5.9. Previous to this, the data was being analyzed with
the Python aggregation tool Pandas, and a failure to manually inspect the
data would have meant a loss of interesting data. Table 5.4 clearly shows
that the GPU Encryption in CBC mode for paged data hits a wall around
6700MBps, whereas the Decryption maxes out at 5700MBps. Both algo-
rithms are processing the same amount of data, and in the same paged
format, but the encryption operates with one page per thread, and the
decryption operates on one block per thread. Therefore, there needs to
be additional investigation into why this is, and perhaps even implement-
ing the decryption algorithm as one page per thread as well to conclude
whether launching one thread per block of data at that scale is simply too
many threads to effectively schedule, giving the one thread per page scheme
a computational edge. Decryption launches one thread per block, meaning
that for every page the implementation launches 512 threads (8192 bytes ÷
16 byte blocks) rather than one block per page. The possibility may then
exist that each thread processing multiple pages may be even faster than a
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single thread per page given that some additional work is done to spread
out the thread blocks across as many streaming multiprocessors as possible.
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Chapter 6

Conclusion

In summary, what has been implemented is a very important step for-
ward in the utilization of GPUs and CUDA in AES and perhaps possibly
other cryptographic systems in the future as well, and provides excellent
evidence to substantiate claims made in this paper. It is a very important
step to realize that except for very large bulk data processing situations
the GPU solution is not nearly as viable as simply utilizing the CPU for
encryption or decryption. The run time penalty incurred by needing to
move data to and from the GPU device is very costly, and while it is not
so costly that some workloads would not still benefit from it, this fact also
allows examination to take place from a step back, and to think about what
sort of benefits could be realized if the architecture of the application were
changed to remove some of these performance costs, by for example copying
data straight to the GPU via DMA access. By changing the focus from
traditional computing architecture to treating the GPU as a device which
requires only minimal kernel scheduling from the CPU, it is possible to in-
crease the performance gains, although perhaps at the expense of narrowing
the possible fields which the implementation is applicable. This research has
answered a number of important questions, as well as addresses a number of
glaring issues in previous researchers efforts, which completely ignored the
abundance and almost standard availability of hardware acceleration at the
CPU level, even in most cheap consumer CPUs.

6.1 Future Work

There are a number of interesting concepts which were not explored or
are only partially looked at for this research, but should perhaps be inves-
tigated in the future. At the forefront of these is utilizing the possibilities
for DMA access to the GPUs global memory to build a service which does
not utilize main memory at all, but instead copies data directly to and from
the GPU memory from some external source. One such case would be hav-
ing encrypted data stored on a high speed storage solution which directly
copies memory from disk to the GPU, either utilizing local storage in the
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form of PCIe connected NVMe solid state storage disks, or over high speed
PCIe network interconnects such as Infiniband. NVMe storage is somewhat
uncharted territory for GPU DMA uses, but Infiniband is fairly commonly
adopted among libraries and applications which seek to utilize GPUs in
high speed networked applications. The output data from the encryption
or decryption routine could then be copied directly to the same source, or a
different high speed data storage or transmission endpoint on the GPU host,
effectively using the GPU as a middle point between two points which store
and require two different states of the data, either encrypted or decrypted.

Similar to implementations found on the CPU, it may also be more
performant to implement AES entirely in assembly language. While the
CUDA libraries and parts of the runtime may be closed source, the assem-
bly language utilized by CUDA enabled GPUs, known as the Parallel Thread
Execution (PTX) instruction set, may be an even more optimal way to im-
plement AES as described in this paper. This was not explored at all in this
research, but may prove to be an interesting task for a future researcher who
is inclined to utilize PTX. Analysis of the PTX assembly output, available
from the Nvidia CUDA C Compiler, could be analyzed to determine if there
could be a performance benefit to writing the PTX manually.

Also shown was the incredibly consistent throughput of GPU kernels,
with low to non-existent variance in runtime given a particular input size
and algorithm. Low variance means that the throughput for a given data
size can be predicted to within a small margin of error, and then planned
for accordingly. Financial systems, networks and communications, and real-
time operating systems all rely to some degree on such properties, and it
would be a very interesting endeavor to explore applications for GPUs in
general, not just AES, in these fields, and others.

Lastly, while not strictly a research problem, a robust system for error
checking the status of kernel launches and memory copies would be a wel-
come addition to this application code base. For the purposes of research,
a system with no error checking has been sufficient due to the completely
deterministic and preplanned input sizes. However, in the real world this
cannot always be assumed, and as such methods to ensure that the library
alerts the developer when an error has occurred is an important addition.
One such example is that the current implementation, when the kernel is
run, makes heavy usage of GPU registers on the streaming multiprocessor.
As a result of this, kernels which are launched with too many threads in a
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block, even if they are within the CUDA runtime and hardware limits, can
fail to execute. Issues such as that need a more robust way to be recovered
from on the fly, and then logged for the developer or system administrator
to address.
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