
AES Cryptosystem Acceleration
Using

Graphics Processing Units
Ethan Willoner

Supervisors: Dr. Ramon Lawrence, Scott Fazackerley

Overview
● Introduction

● Compute Unified Device Architecture (CUDA)

○ Hardware Capabilities

○ Threads

○ Memory Models

● Advanced Encryption Standard (AES)

○ Rijndael Algorithm

○ Hardware Acceleration and AES-NI

● CUDA Implementation of AES

● Applications to Databases

● Results

● Conclusion

Introduction
● Digital security is important

○ Big data and large volumes of data means a lot of data to secure

● Graphics Processing Units are a worthwhile solution for processing large

data sets

● Research has shown that utilizing Graphics Processing Units to encrypt

and decrypt data is faster than traditional Central Processing Units

○ But previous analysis has been lacking, they don’t compare to real

world CPU implementations

● Database applications

● We need to consider Parallelism vs Concurrency

Visual Example
Gophers destroy old computer manuals

Parallelism!

● Each gopher independently

performs the same task

Concurrency!

● Gophers performing one of the

tasks A, B, C or D

Source: Rob Pike, https://talks.golang.org/2012/waza.slide

Compute Unified Device Architecture (CUDA)
● Invented by NVIDIA and was released in 2006

● Parallel computing runtime and programming

model which leverages Graphics Processing

Units (GPUs) for massively parallel data

processing

● Researchers were drawn to them because of

excellent floating point performance in a

parallel manner (Lots of Gophers! 1000’s!)

● CUDA has become incredibly important for

CAD, Deep Learning, Medical Research and

Imaging, and many other applications

CUDA Threads
● Similar to CPU threads, CUDA threads are the

smallest unit of execution which happens on the

GPU.

● Groups of Threads run in Thread Blocks, and

Thread Blocks run in Grids

● Thread blocks are scheduled across numerous

streaming multiprocessors located on the GPU

○ Each processor may have 8, 16, or 32 blocks executing

● CUDA threads are only effective when

executing identical operations on a set of data

○ GPUs are parallel but not concurrent

CUDA Memory Models
● GPUs utilize their own DRAM on the device itself, separate from

the host system’s RAM, for mass data storage, called Global

Memory

● Sharing data between the GPU and host can either be managed by

the programmer, or managed by CUDA using unified memory

○ Manually managed: explicitly copy memory between CPU

DRAM and GPU DRAM

○ Unified Memory: CUDA runtime worries about copying

memory as it is needed. Simpler, but slower.

By NVIDIA (NVIDIA CUDA Programming Guide version 3.0) [CC BY 3.0 (http://creativecommons.

org/licenses/by/3.0)], via Wikimedia Commons

Putting it together
1. Input data is copied to

Global Memory

2. Launch the GPU

Kernel

3. Kernel processes data

in parallel

4. Output data is copied

to Main Memory

By Tosaka - Own work, CC BY 3.0, https://commons.wikimedia.org/w/index.
php?curid=5140417

Advanced Encryption Standard (AES)
● AES is a symmetric block cipher chosen by the National Institute for Standards

and Technology to serve as a standard encryption system for the US government

● The Rijndael algorithm was submitted by Joan Daemen and Vincent Rijmen

● Chosen based on features such as estimated security, performance, and

cryptanalysis resistance

○ Supports variable key sizes for security/performance trade-offs

● AES is heavily used in all areas of computing, including secure web browsing

(HTTPS), Disk Encryption (Bitlocker, FileVault), Databases, and protects data

stored by hospitals, governments, universities, etc.

Rijndael Algorithm
● Every block of 16 bytes is treated as a 4x4 matrix in

the Rijndael algorithm

● Encryption:

○ AddRoundKey

■ Combine (XOR) our secret key with the data block

○ SubBytes

■ Substitute every byte with a value from a lookup table

○ ShiftRows

■ Each row of our matrix is cyclically shifted

○ MixColumns

■ Each column of our matrix is transformed with an

invertible linear transformation

● For decryption, each operation has an applicable

inverse function

Rijndael Algorithm cont.
● Rijndael encrypts one block at a time

(ECB), which poses some issues for

identifying patterns in data

● By utilizing a method such as Cipher

Block Chaining (CBC), we can

eliminate pattern based analysis of our

data

Tux the Penguin, the Linux mascot. Created in 1996 by
Larry Ewing with The GIMP.

Hardware Acceleration and AES-NI
● Ubiquity of AES led Intel and AMD to implement it with hardware acceleration

in many of their CPUs starting in 2010

○ Originally only available for server CPUs

○ Quickly became common in consumer CPUs as well

○ Limited uptake on mobile CPUs

● This hardware acceleration is exposed through an x86 instruction set called AES-

NI, or Advanced Encryption Standard New Instructions

○ Intel claims up to 10x faster than software implementations

● Why do we care? Because of OpenSSL

○ OpenSSL of Heartbleed infamy

○ OpenSSL is one of the most common cryptographic libraries

○ OpenSSL is commonly utilized by databases, web servers, and high performance applications

○ OpenSSL supports AES-NI and hardware acceleration

CUDA Implementation of AES
● The implementation is massively parallel, and incredibly high performance

○ Each block of data is assigned to its own thread.

○ This gives us the best parallelism possible as there is no thread divergence

● Shared memory it heavily utilized

○ Our lookup tables and encryption/decryption keys are read often

○ Lookup tables are especially low performance because they are based on the data, so locality cannot

be reliably exploited by multiprocessor cache.

○ Shared memory helps lessen these effects

● Utilization of CUDA Streams

○ This overlaps data transfer and kernel execution

○ Copy large data set in smaller pieces

○ Launch shorter running kernels more often

○ We “hide” some of the copy time in kernel execution

http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/#asynchronous-transfers-and-overlapping-transfers-with-computation

Database Applications
● Recall Cipher Block Chaining mode of AES

○ More secure, resistant to pattern analysis

○ Notice the encryption algorithm, each block relies

on the previous block’s output

○ This makes parallelization impossible

○ Decryption is fully parallelizable, as there is no

dependency on the output of a previous block

● Databases do not store tables in singular

large files

○ Chunks of data, called Pages, are encrypted

separately

○ We can parallelize the encryption of page sets by

assigning each page of data to a CUDA thread

Hardware and Testing
● Test machine:

○ AMD 8350 8 Core CPU

○ 16GB DDR3 RAM

○ Nvidia GTX 780 w/ 3GB VRAM

● We aim to test the following:

○ CPU throughput processing small to large numbers of data pages

○ CPU throughput when parallelized across up to 8 cores using OpenMP

○ GPU throughput both with and without utilizing streams

○ GPU throughput when utilized with a “Copyless” architecture

Results

Results - Throughput

Results

Results - Throughput

Results

Recall back to our
Memory Layout
diagram...
● The GPU is an an inherent disadvantage because we must copy

data to it before processing

○ CPU can start working immediately

● High speed PCI links such as storage or network devices allow

us to copy the data straight to the GPU memory

○ Bypass the CPU DRAM totally

● This is now a more accurate comparison of systems,

○ CPU is only needed to launch a GPU application, not

actually do the data copies

● Data starts off on the GPU, eliminating the data copy expenses

○ Now the GPU is in the same position as the CPU

● Helps to offload parallelizable tasks from the CPU and leave it

to perform concurrent tasks

Results - Throughput

Results - Throughput

Conclusion
● Previous researchers have concluded that GPUs are better at AES than CPUs

○ Many of the papers I found ignored AES-NI completely

○ This research has shown that in fact, GPUs are not applicable to many workloads

■ Workloads with “small” data are not as performant as previously claimed

● OpenSSL with hardware support provides competition to CUDA

implementations

○ Picking the correct tool for the correct workload is incredibly important

● There is definitely a place for this in environments which deal with large amounts

of encrypted data

○ But we need to modify how we think about the problem and aim to remove memory copy costs

totally

Questions?

