
Construction of a Data Collection
Network using RF95 Radio Modules

by

Ethan Godden

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

B.SC. COMPUTER SCIENCE HONOURS

in

The Irving K. Barber School of Arts and Sciences

(Computer Science)

THE UNIVERSITY OF BRITISH COLUMBIA

(Okanagan)

May 2020

c© Ethan Godden, 2020

Abstract

IonDB is a system designed to collect and manage data on embedded
devices. It is intended to be used within a network of micro-controllers
distributed in an environmental setting where memory and power resources
are scarce. The goal of this project was to implement a system that can
efficiently and reliably transport data from sensor nodes to Raspberry Pi
server nodes. This paper describes the structure of this implementation, the
technology behind it, and how this implementation could be improved in
the future.

ii

Table of Contents

Abstract . ii

Table of Contents . iii

List of Figures . v

Acknowledgements . vi

Chapter 1: Introduction . 1
1.1 Overview . 1
1.2 Embedded Devices . 2
1.3 Motivations . 2
1.4 Contributions . 2

Chapter 2: Background . 3
2.1 SPI . 3
2.2 LoRa . 4

2.2.1 Description . 4
2.2.2 Performance . 4

Chapter 3: Implementation . 7
3.1 RF95 Network Design . 7

3.1.1 RF95 Driver . 7
3.1.2 Sample Manager . 8
3.1.3 Buffer . 8
3.1.4 Dependencies . 8

3.2 Database Design . 8
3.2.1 Setting Requests . 8
3.2.2 Boards . 8
3.2.3 Setting Config . 8
3.2.4 Node . 9

iii

TABLE OF CONTENTS

3.2.5 Samples . 9
3.2.6 Collector . 9

Chapter 4: Results . 15

Chapter 5: Conclusion . 17
5.1 Future Work . 17

5.1.1 Completion . 17
5.1.2 Application . 17
5.1.3 Users . 17
5.1.4 Versioning . 18
5.1.5 Security . 18
5.1.6 Serial Numbers . 18
5.1.7 Parallelism . 18
5.1.8 Node Coordinates . 18
5.1.9 Alternative Implementation 18

Bibliography . 20

iv

List of Figures

Figure 1.1 Level 1 DFD . 1

Figure 2.1 A typical SPI system. [Spi05] 3
Figure 2.2 LoRa compared to other technologies[LoR] 4
Figure 2.3 Link Budget for any radio 5
Figure 2.4 Fresnel Zone . 5

Figure 3.1 DFD Level 2 . 10
Figure 3.2 RF95 Driver . 11
Figure 3.3 Sample Manager . 12
Figure 3.4 Buffer Implementation 13
Figure 3.5 Database UML . 14

Figure 4.1 Distance Testing . 16

v

Acknowledgements

Thank you to Dr. Ramon Lawrence who guided me through this project.
Without his weekly guidance, this project would have either failed or be far
from completed.

Thank you to Dr. Scott Fazackerley who helped me with environment
setup issues as well as describing the overall goal of the project. In particu-
lar, he helped me with setting up RadioHead on a Raspberry Pi board after
weeks of me trying to get it to work.

Thank you to Jon Gresl for helping me get started in the project and
for the starter code that he contributed. Much of the final code is just
compartmentalized versions of Jon’s original code.

vi

Chapter 1

Introduction

Embedded devices are everywhere. They are in everyday devices such
as lights, phones, cars, and many other devices. Because they are in many
devices, there needs to be a way to store data efficiently on them.

IonDB is a system that manages data collection on small embedded
devices with fixed memory and power constraints. This project aims to
implement the component that transports data from sensors to server nodes
and uploads the data to the database.

RF95 Sensor Buffer

Database RF95 Server

Take Sample

Transmit

Store

Figure 1.1: Level 1 DFD

1.1 Overview

The system consists of many sensors distributed in an environmental
setting and possibly many server nodes. Every so often, each sensor takes a
sample and stores the sample in a buffer within the sensor. When possible,
the sensor nodes transmit the data within its buffer to server nodes, and the
server nodes upload the data to a database.

When and where the sensor nodes take and transmit the samples are
dependant configuration of the system. The frequency of samples and the
types of samples are customizable at runtime. When each sensor transmits
its data is dependant on how many sensors are connected to the same server

1

1.2. Embedded Devices

node and could auto-adjust by listening to network traffic.

1.2 Embedded Devices

This project is heavily based around embedded devices. These are small,
low powered, computer systems.

Any device that can take samples and has a RF95 module can be used
as a sensor node. The device used in this project for sensor is the Adafruit
Feather M0 with RF95 module [Hop18]. This device uses the popular Ar-
duino framework.

For server nodes, any device with internet access and an Rf95 module
can be used. The devices used for this project is the Raspberry Pi 3b and
the Rasberry Pi 1b together with the Dragino Pi Hat [Dra19]. This device
uses the pigpio framework.

1.3 Motivations

The focus is to have data processing on devices with limited compu-
tational abilities. In particular, devices with limited memory and limited
power capabilities. The Adafruit Feather [Hop18] used in this project has
the additional limitation of having only one thread, but this could be re-
placed by another device.

1.4 Contributions

This project was built on top of the work of Jon Gresl from Summer
2019. [Gre19]

2

Chapter 2

Background

Every node in this system has an RF95 radio module. To understand
the configuration of this system, one needs a basic understanding of how an
RF95 radio module works. The two main technologies involved in an RF95
module are SPI and LoRa

2.1 SPI

SPI, which stands for Serial Peripheral Interface, is a synchronous com-
munication protocol for systems with a single master device connected to
many slave devices.

Figure 2.1: A typical SPI system. [Spi05]

3

2.2. LoRa

There are four main components to every SPI system: a serial clock
line, a MISO line, a MOSI line, and many SS lines. The serial clock is a
signal generated by the master device to keep data synchronous between all
devices in the system. The MISO, which stands for master-in-slave-out, is
the line for receiving data from slave devices. Similarly, MOSI, which stands
for master-out-slave-in, is for sending out data to slaves. Lastly, every slave
device has a SS, which stands for slave select, line. This line is to allow the
master device to choose which device to talk to.

In order to configure any device with an RF95 module, you need to
know the SS pin number for that RF95 module as well as the interrupt pin
number.

2.2 LoRa

2.2.1 Description

LoRa is a layer 1 WAN communication protocol. It is used for long range
communication that requires little power. There are a number of techniqu

Figure 2.2: LoRa compared to other technologies[LoR]

2.2.2 Performance

For any device using radio communication, the signal strength is pro-
portional to the square of the disance; it is defined by the following formula
for free space loss:

FSPL =

(
4πdf

c

)2

4

2.2. LoRa

where FSPL if is the frequency of the radio, c is the speed of light, and d
is the distance.[Tel16] The way to picture this formula consider the sphere
centered at the radio. As the sphere gets larger, the signal is spread out
over a larger area. Since the surface area of a sphere is proportional to the
square of the radius, it follows that signal strength is also proportional to
the distance.

It should also be known that the distance a signal can be acknowledged
from is dependent upon the power it is transmitted at. [Tel16]

Figure 2.3: Link Budget for any radio

If the signal strength is still above a certain threshold, it can be received.
The special thing about LoRa radios is that they can receive packets that
have very low signal strength.[Tel16]

The last thing to consider when measuring performance of a radio-based
network is the noise that results from signals reflecting off surfaces. In a vac-

Figure 2.4: Fresnel Zone

5

2.2. LoRa

uum with no obstacles, a LoRa radio could transmit packets to destinations
hundreds of kilometers away. However, because of obstacles, this distance
is reduced to, at best, around 30 kilometers. [Tel16].

The performance can be improved if all obstacles in a Fresnel zone are
removed.[Tel16]. Because of this, the higher the device is from the group,
the longer the distance it can transmit on average.

6

Chapter 3

Implementation

The current implementation has two main component: the RF95 network
manager and the database.

The system consists of many sensor nodes connected to a server node.
Every so often, each sensor node takes a sample and stores it in its buffer.
The amount of sample and the types of samples are customizable. Based one
the size of the network and the types of RF95 clients, the system will decide
how often to transmit. However, the transmissions will following something
similar to the layer 2 Aloha algorithm.

Once the data reaches the RF95 Server, the data is uploaded to the
database. Once there, any application can retrieve it and update the display
if it exists.

Along with this, the application can decide to change settings such as
the frequency of the radio or the types of samples being taken. This is done
by having the application update the database. The RF95 server will then
notice the changes in the database and send the changes to the nodes that
need to know the changes.

Note that this system had two main goals outside of the IonDB goals.
For one, it should be easy to add additional boards to this system. This
is done by defining clearly marked APIs. The other is to make it easy to
switch to a pure C implementation. This is done using a system’s function
struction.

3.1 RF95 Network Design

There are three main components in the network design: the RF95
driver, the client API, and the buffer.

3.1.1 RF95 Driver

This code is responsible for interfacing with the RF95 driver. If any
other boards are added to this system, they need to implement this driver.

7

3.2. Database Design

If the new board uses Arduino, this is already covered. This code current
interfaces with the RadioHead RF95 driver.

3.1.2 Sample Manager

This code is the main API for any sensor nodes attached to the network.

3.1.3 Buffer

This is an implementation of a regular queue using an array. There are
four important properties with this implementation. The head property
points to the next element in the queue, the size property is the number of
elements in the queue, the capacity property is the maximum number of
elements in the queue, and data is the actual data.

3.1.4 Dependencies

Currently, the only dependencies are RadioHead and the Ardunio Time
library. There are files that interface with these dependencies so as to make
it easier to change the dependencies later on.

3.2 Database Design

The database is where all data collected is stored. It serves as the in-
terfaces for which applications can display data collected as well as change
settings of the network

3.2.1 Setting Requests

Whenever the application wasnts to change settings, it inserts rows into
this table

3.2.2 Boards

All supported boards are inserted here. This is a largely static table

3.2.3 Setting Config

This contains the current settings for any nodes in the network

8

3.2. Database Design

3.2.4 Node

This contains all nodes that have been or are currently active in the
network

3.2.5 Samples

This table contains all data collected

3.2.6 Collector

This table contains information on which nodes can take which samples

9

3.2. Database Design

Application

Setting Change Update Data

Database

RF95 Server

Update Settings Transmit Timeout

RF95 Sensor Node Buffer

Sample Timeout

Setting Data in Database

Data in DatabaseSetting

Upload Data

Transmit

Transmit

Take Sample Store Sample

Update

Settings Updated

Figure 3.1: DFD Level 2

10

3.2. Database Design

bool rf95_init(uint8_t slave_select, uint8_t interrupt_pin);

void set_rf95_address(uint8_t address);

bool channel_active(void);

bool rf95_send(uint8_t address, uint8_t *data, uint8_t dataLength);

uint8_t rf95_recieve(uint8_t *buffer, uint8_t bufferSize);

void set_cad_timeout(uint64_t timeout);

void set_frequency(float frequency);

void set_signal_bandwidth(long bandwidth);

void set_spreading_factor(uint8_t sf);

void set_coding_rate_4(uint8_t denominator);

void set_transmitign_power(int8_t power);

Figure 3.2: RF95 Driver

11

3.2. Database Design

struct lorax_buffer

{

uint8_t *__data;

uint8_t __element_size; //Size of each element in bytes

uint16_t __head; // Index of next element. The address of

this element is __data + (__head * element_size)

uint16_t __size; //Number of elements currently in the

buffer. The number of bytes in the buffer is (__size *

element_size)

uint16_t __capacity; //Max number of elements that can be

stored in the buffer

};

lorax_buffer *create_buffer(uint8_t element_size, uint16_t

capacity);

bool store_sample(lorax_buffer *buffer, uint8_t *sample);

bool remove_sample(lorax_buffer *buffer, uint8_t *removed_element);

uint8_t* peek_next_sample(lorax_buffer *buffer);

bool is_full(lorax_buffer *buffer);

bool resize(lorax_buffer *buffer, uint16_t new_size);

void print_buffer(lorax_buffer *buffer, char printf_arg);

void free_buffer(lorax_buffer *buffer);

Figure 3.3: Sample Manager

12

3.2. Database Design

bool init_client(void);

void set_time(uint64_t);

bool add_sample_collector(sample_t type, SAMPLE_VAR_TYPE

(*sample_collecting_function)(void));

void run(void);

void deinit_client(void);

Figure 3.4: Buffer Implementation

13

3.2. Database Design

rf95 setting change request

node id {PK}
time of request {PK}
rf95 setting
new value

rf95 board

id {PK}
name
slave select pin
interrupt pin

rf95 setting config

id {PK}
frequency
bandwidth
cad timeout
coding rate4
tx power
spreading factor

rf95 node

id {PK}
name
board id
settings id

sample

node id {PK}
collector id {PK}
sample time start {PK}
sample time end
average value
transmission attempts
num samples

collector

node id {PK}
name
is active

Figure 3.5: Database UML

14

Chapter 4

Results

Two Adafruit Feather board were tested using the full RadioHead net-
work, and it was found that they could communicate around five kilometers
apart

There are number of things to note about this measurement. For one, the
devices where on the medium setting. Because RadioHead has a long-range
setting, this distance could probably be improved further.

Another thing to note is the devices were connected to an LCD display
while communicating here, and the antennas were crammed into a little
space, so there is a possibility that antenna placement could improve the
distance here.

The testing was done near a lot of trees and very close to the ground, so
this could also be improved if the height was changed, or a more open field
was used.

Lastly, there may have been some noise created by my car running the
background together with its Bluetooth system.

15

Chapter 4. Results

Figure 4.1: Distance Testing

16

Chapter 5

Conclusion

Though the system is not finished, the overall design of the system pro-
vides technique for communicate with sensor nodes. It uses RF95 modules to
communicate with, possibly many, server nodes. Even so, there are number
of things that could be changed with this system.

5.1 Future Work

5.1.1 Completion

The current system is not fully implemented yet; communication between
a Raspberry Pi and an Adafruit Feather M0 is not consistent, and it has a
decent amount of corruption. This still needs to be figured out in order to
continue.

5.1.2 Application

An application could be created that allows users to interface with the
current system. One of the main design goals was to allow this system to
be used with many types of applications such as a desktop application or a
website. None of these things are implemented yet and should be if this is
to be used.

5.1.3 Users

The database schema could be changed to account for data for a specific
user. Currently, all data collected is stored in one table, data is only associ-
ated with a specific device; there is no way to determine whether one device
belongs to a specific person. This could be changed by possibly creating a
table per user or adding a field that associated data with a user

17

5.1. Future Work

5.1.4 Versioning

There is currently no way to associate data collected to a specific version
of the project. If this project is changed in the future, it might be important
to know which version was used when collecting data because of changed to
efficiency, accuracy, or precision.

5.1.5 Security

All data transmitted across the network is in plain-text. Further, there
is no verification that data received by a server node actually came from one
of the sensors in the network. This could be improved by using some form
of encryption together with hashing.

5.1.6 Serial Numbers

Currently, the system manually assigns an address to every node, and
this address has no relation to the specific device before it is assigned. That
is, it is possible to permute the addresses in the network and have the same
result. This could cause problems in the future because if the system is
updated, it will be hard to remember which device has which address. If
serial numbers could be used with the currently implementation, this would
not be a problem.

5.1.7 Parallelism

The Adafruit Feathers used in this project are single-threaded devices.
Further, no parallelism was used with any of the Raspberry Pi devices.
Efficiency could possibly be improved if parallelism was used, but this would
require different sensor boards.

5.1.8 Node Coordinates

If the RF95 sensors and servers had the ability to determine GPS co-
ordinates, it would give any user the ability to use maps when interfacing
with this system. There is also the possibility of letting the user choose the
coordinates beforehand and then storing those coordinates in the database.

5.1.9 Alternative Implementation

The current system uses a algorithm similar to the layer 2 Aloha protocol;
sensor nodes transmit data every so often. If the transmission fails, the

18

5.1. Future Work

sensor node attempts to transmit again after a specific amount of time.
This is not the only approach to this problem. One could use a more

round-robin style approach. A server node could broadcast to every sensor
node information that would communicate the current stage in the round.
This would prevent any two sensor nodes from transmitting at the same
time, and possibly increase the number of packets received over time.

There are a number of possibly problems with this approach. For one,
it would increase the number of packets travelling accros the network. If a
sensor node continually fails to transmit data, the server node would contin-
ually send out broadcasts saying that its on the current sensor node. These
packets are not present in our current approach.

Another possible problem is that it will make increasing the number of
server nodes a challenge. Because the server nodes would manage every-
thing, more server nodes makes this solution more complex.

If only one server node is present, this solution may be worth testing.
However, because of these downsizes, it is most likely an inferior algorithm.

19

Bibliography

[Dra19] LoRa GPS HAT Single Channel LoRa GPS module User Manual,
mar 2019. → pages 2

[Gre19] Jon Gresl. Improving Sustainability in Agriculture Using Sensor
Networks. 2019. → pages 2

[Hop18] RFM95/96/97/98(W) - Low Power Long Range Transceiver Mod-
ule V1.0, aug 2018. → pages 2

[LoR] Technical report. [link]. → pages v, 4

[Spi05] SPI Interface Specification, mar 2005. → pages v, 3

[Tel16] Thomas Telkamp. Lora crash course. VLDB ’80, pages 212–223.
The Things Network, 2016. → pages 5, 6

20

http://www.dragino.com/downloads/downloads/LoRa-GPS-HAT/LoRa_GPS_HAT_UserManual_v1.0.pdf
https://cdn.sparkfun.com/assets/learn_tutorials/8/0/4/RFM95_96_97_98W.pdf
https://cdn.sparkfun.com/assets/learn_tutorials/8/0/4/RFM95_96_97_98W.pdf
https://www.semtech.com/lora
https://www.mouser.com/pdfdocs/tn15_spi_interface_specification.PDF
https://www.youtube.com/watch?v=T3dGLqZrjIQ&t=552s

	Abstract
	Table of Contents
	List of Figures
	Acknowledgements
	1 Introduction
	1.1 Overview
	1.2 Embedded Devices
	1.3 Motivations
	1.4 Contributions

	2 Background
	2.1 SPI
	2.2 LoRa
	2.2.1 Description
	2.2.2 Performance

	3 Implementation
	3.1 RF95 Network Design
	3.1.1 RF95 Driver
	3.1.2 Sample Manager
	3.1.3 Buffer
	3.1.4 Dependencies

	3.2 Database Design
	3.2.1 Setting Requests
	3.2.2 Boards
	3.2.3 Setting Config
	3.2.4 Node
	3.2.5 Samples
	3.2.6 Collector

	4 Results
	5 Conclusion
	5.1 Future Work
	5.1.1 Completion
	5.1.2 Application
	5.1.3 Users
	5.1.4 Versioning
	5.1.5 Security
	5.1.6 Serial Numbers
	5.1.7 Parallelism
	5.1.8 Node Coordinates
	5.1.9 Alternative Implementation

	Bibliography

