
Kelowna Irrigation Parks Management System

UBCO - Derrick Pelletier - 1

Kelowna Irrigation Parks Management System

By Derrick Pelletier

Honours Thesis Submitted in Partial Fulfillment of

the Requirements for the Degree of

Bachelor of Arts in Computer Science, Honours

University of British Columbia - Okanagan

April 2013

Supervised by Dr. Ramon Lawrence

Kelowna Irrigation Parks Management System

UBCO - Derrick Pelletier - 2

Abstract

Kelowna is a fast growing city, with a large number of parks of varying size and maintenance

requirements. The City of Kelowna Parks Department’s current data solutions are inefficient,

become outdated quickly, and are difficult to utilize. The focus of this project is to provide the

City of Kelowna Parks Department with an application to augment their current systems,

allowing them to better manage their data, visualize water usage trends, and manage resources.

Their rich dataset contains detailed GPS data coordinates, water usage over time, detailed

equipment information, and irrigation scheduling. This new application will provide the

department with tools to visualize their parks on interactive maps, monitor usage trends and

efficiency through interactive charts, manage their internal resources and employees, and

generate reporting information for better budgeting. By facilitating greater accessibility to their

current data infrastructure, the department can work towards a more sustainable future and have

a positive impact on our city.

Kelowna Irrigation Parks Management System

UBCO - Derrick Pelletier - 3

Table of Contents

1 Introduction .. 3

1.1 Motivation .. 3

1.2 Thesis Statement .. 3

1.3 Definitions ... 3

2 Background .. 3

3 System Overview ... 3

3.1 Backend ... 3

3.2 Front-end ... 3

3.3 Hosting .. 3

3.4 Visual Walkthrough .. 3

4 User Manual ... 3

4.1 Sign in.. 3

4.2 Main screen - listing ... 3

4.3 Park Details ... 3

4.4 Maps .. 3

4.5 Reports .. 3

4.6 Alerts ... 3

4.7 Employees ... 3

4.8 Tools .. 3

4.9 Mobile List ... 3

4.10 Mobile Maps .. 3

4.11 Mobile Alerts and Employees .. 3

5 Code Elaboration and Explanation .. 3

5.1 Database .. 3

Kelowna Irrigation Parks Management System

UBCO - Derrick Pelletier - 4

5.2 Backend ... 4

5.2.1 Models .. 4

5.2.2 Controllers ... 4

5.2.3 Views .. 4

5.2.4 Mobile detection .. 4

5.3 Frontend .. 4

5.3.1 Application ... 4

5.3.2 Modules .. 4

5.3.3 Templates ... 4

6 Feedback .. 4

7 Conclusions ... 4

8 Future Work ... 4

9 Acknowledgements ... 4

10 References .. 4

1 Introduction

1.1 Motivation

Kelowna Parks Department monitors several hundred parks throughout the Kelowna area and

they inherently track a very rich dataset that is, unfortunately, underutilized and undervalued.

Having this information organized effectively, automated where necessary, and accessible to all

employees, will provide a great opportunity to effectively utilize their vast data resources.

By providing the department with the tools to organize, visualize, and analyze this data, it opens

up opportunity to reduce water usage, better allocate resources, personnel, and ultimately

Kelowna Irrigation Parks Management System

UBCO - Derrick Pelletier - 5

facilitates a more sustainable future for the Parks Department. Furthermore, should the

application prove a viable solution to the growing needs of the irrigation department, the system

will be developed with location-flexibility in mind, so that it can be adapted to the needs of other

markets beyond the Kelowna Parks Department. Not only can we help make an impact on

sustainability in our city, but we can facilitate the same goals in other cities as well.

1.2 Thesis Statement

My thesis is that this system will improve the sustainability of the Kelowna Irrigation systems.

Our system is a robust and modular tool that allows the city to adapt it to their needs efficiently

as they discover new ways to utilize their data. My goal is to develop a system that not only

meets their needs in the current state of data understanding, but also allows them to maintain

their trend of further technological advancement by not limiting their possibilities.

1.3 Definitions

Users are parks employees and can consist of managers, on-site workers, and administrative staff

members.

The Application is generally used to reference the primary web application developed for this

honours thesis. This is an abbreviated form of “Kelowna Irrigation parks and water management

application.”

View is typically used to define each different section of the application. In traditional websites,

this would be considered a page, but within the context of an application, it will be called a view.

View may also be used in the context of a class of object found in Backbone.js.

2 Background

UBCO has worked with the City of Kelowna for the past several years. In 2011, UBCO

computer science graduate students developed and installed moisture sensor nodes in a park in

order to track irrigation patterns with the goal to reduce water usage. The cost of installation and

Kelowna Irrigation Parks Management System

UBCO - Derrick Pelletier - 6

maintenance proved too high for the payoff of this technology. The City of Kelowna opted to

pursue an alternate means of technology advancements that could have a more immediate impact

on the members and resources of the parks department. In 2012, work began on approaching

their existing, and outdated, data collection system with the hopes of developing an application

that could be used both in-office and in the field and provide immediate efficiency payoffs, as

well as long-term payoffs as water usage analysis and resource management was made more

approachable. In the summer of 2012, graduate students collected sample data on some parks,

including mapping GPS coordinates, and prototyped interfaces for this project.

3 System Overview

3.1 Backend

MySQL – All data is now stored and managed in a MySQL database. MySQL is an open-source,

relational database system that provides the city with the ability to store varying types of

interrelated data in a logical manner. MySQL is tightly integrated with PHP and CodeIgniter.

PHP - The backend of the Application is entirely developed in PHP 5.x. This is a fully featured

open-source, server-side language with an extensive developer community, stability, and

maturity. This language was chosen over other, modern, and perhaps more cutting-edge, server-

side languages due to the ease of use for all developers. Selecting a language which future

developers can easily carry on developing without having to learn a new, difficult, and perhaps

under-documented system in order to make future maintenance modifications or develop new

features, increases the potential for this application to remain in active development and

eventually succeed in the goal of providing the city with the tools to see long-term change in

their department systems.

CodeIgniter - A lean MVC application framework designed to be flexible to and provide a very

lightweight structure to applications. The simplicity CodeIgniter provides compared to more

rigid systems, allows new users to adapt quickly without being forced to learn a robust and strict

Kelowna Irrigation Parks Management System

UBCO - Derrick Pelletier - 7

framework before being productive. We initially started with Symfony2, a mature, Java inspired

framework. However, it proved too heavy to support multiple developers of varying skillsets.

3.2 Front-end

HTML5 - Rather than develop a native application for a particular mobile application

ecosystem, or develop a mobile application dependent on a pre/cross compiler, we chose to

develop the Application as a mobile, HTML based application which only depends upon having

a browser available and is thereby capable of being used on any number of devices.

Bootstrap - This library is developed by Twitter and provided as open-source. It provides

numerous style provisions to give developers the ability to style web applications quickly and

easily. This allowed us to prototype at a quick pace while simultaneously styling the application

cleanly and effectively as to convey the goals and intentions of the software efficiently.

Backbone and Marionette - This JavaScript application framework combination allows

developers to build rich, HTML based applications with data persistence, and native-application

feel on both desktop and mobile browsers.

3.3 Hosting

The web technology stack chosen for the Application has very few requirements in hosting

dependencies and therefore is flexible in both the chosen development and production

environments. City regulations call for specific details of the host’s operation (for example, it

must be Canadian) so keeping the stack simple and mostly dependency-free affords the ability to

keep the Application nearly server-agnostic.

Kelowna Irrigation Parks Management System

UBCO - Derrick Pelletier - 8

Figure 3.a - Application request/response flow

3.4 Visual Walkthrough

Step 1 - User clicks to view the details view of a park. This causes Backbone to initiate a request

to the server for the park data to display. This request, in this case, the URL

http://domain.com/api/parks/14, goes to the CodeIgniter Router.

Step 2 - The Router parses the URL to determine which Controller to use. Normally this URL

would map to an Api.php controller with a parks() method. However, due to the size of the

API, we have overridden this behavior, and it would check the controllers/api directory

for a Parks.php file, and call the byId(14) method.

Step 3 - byId() will then determine that it requires a set of site data from Model:

sitesmodel.php. This model contains a similar method, byId()

Step 4 - SitesModel::byId() generates an SQL query through the ActiveRecord class,

queries the database, and then returns the data result back to the model. The model then validates

the returned data is correct, and returns either the data or false to the Controller.

Step 5 - The Controller formats the returned data as a JSON-encoded object and generates a

response which is sent to Backbone.

Kelowna Irrigation Parks Management System

UBCO - Derrick Pelletier - 9

Step 6 - Backbone parses this data, inserts it into the appropriate frontend models, generates

some HTML templates based on the data, and finally shows them to the user.

4 User Manual

The following steps will walk through the core aspects of the application, providing a quick

understanding of the available features. Implementation details are discussed in Section 5.

4.1 Sign in

The Application may contain sensitive employee information or incorrect data, and as such exists

entirely behind an authentication wall. Employees sign in with their department email address

and password.

Figure 4.a - Application Sign-in view

Kelowna Irrigation Parks Management System

UBCO - Derrick Pelletier - 10

4.2 Main screen - listing

Upon signing in, the first screen is the main listing. This view lists all parks currently in the

database. We determined that this listing is the most commonly accessed information by parks

staff, and therefore should be accessible the quickest. The listing provides some core details,

such as the location, the irrigated area, the type of park, supplier information, number of

outstanding alerts, and the year to date usage.

Figure 4.b - Main Sites listing view

Above the listing is the filter bar. Clicking “display filters” will expose a panel with several

filtering options. On the right end of the filter bar is a live query box. Typing in this box triggers

a filtering option that reduces the dataset by comparing the site names against the search text.

Kelowna Irrigation Parks Management System

UBCO - Derrick Pelletier - 11

Manipulating these options will reduce the list view in order to navigate to desired results

quickly. Additionally, this reduced dataset can be used to create custom water usage charts

simply by clicking “chart” in the filter bar.

Figure 4.c - Closeup of main listing filtering options

4.3 Park Details

Clicking a row in the main listing will bring up the Site Detail view. This view is essentially an

aggregation of all data relating to a particular site, split into four categories (as represented by the

tabs along the top): site details, alerts, maintenance logs, and reporting charts. The first row

consists of a small map of the location, dynamically generated by GPS coordinates, as well as a

listing of the core details of the site. These can be edited directly in place by clicking the edit

details button. Following this is a list of the employees responsible for this site, as well as a

listing of controllers, meters, and points of connection with details for each item. Clicking edit on

a piece of equipment brings up a modal window in which the equipment can be edited instantly.

Kelowna Irrigation Parks Management System

UBCO - Derrick Pelletier - 12

Figure 4.d - Site expanded detail view

The alerts tab brings up a view of all of the alerts currently outstanding for the chosen site, as

well as details for those alerts and which employee they are assigned to.

The maintenance tab is intended to contain a record of maintenance for the particular site. This

section is currently unimplemented and is placed here as concept only.

The reporting charts tab initializes an interactive charting tool. By default it will display all

water usage for the park currently in the database. Users have the ability to filter the results

according to various options to generate appropriate visualizations for their needs.

Kelowna Irrigation Parks Management System

UBCO - Derrick Pelletier - 13

Figure 4.e - Site Detail water usage chart

4.4 Maps

The Maps view of the application displays the exact dataset as the main listing view, albeit in a

map format. The filters from the main listing persist across to the map view as well, allowing the

user to toggle between views in order to best meet their needs. Each park is represented by a pin

with the park’s unique ID as well as a polygon representing park’s boundaries.

Kelowna Irrigation Parks Management System

UBCO - Derrick Pelletier - 14

Figure 4.f - Site Map view

Clicking on a pin or park boundary will zoom in on that park, slide open a details panel, and

display associated equipment on the map. The details panel contains only the core information

that is required most often, including: location information, essential site details, recent park

alerts, and assigned employees. Clicking the title in this panel takes the user to the extended

detail view previously discussed.

Kelowna Irrigation Parks Management System

UBCO - Derrick Pelletier - 15

Figure 4.g - Site Map view with expanded site details panel

4.5 Reports

The reports view of the application is intended to give managers a quick overview of the parks

system. Different visualizations of data can be accessed through a tab system. The charts are

completely independent from one another, and as such, intractability will vary. This view is

currently primarily in conceptual phase, and is only listing the Top Ten Water Users. As the

Parks Department discovers analytical needs, this space will be adapted and expanded to meet

them.

4.6 Alerts

The alerts view is the central location where the current user can view all alerts assigned to them.

Alerts are formatted in a standard email style arrangement, with a listing and truncated body in

the left column, and the expanded click-through view in the right panel.

Kelowna Irrigation Parks Management System

UBCO - Derrick Pelletier - 16

Each alert can have any of the following properties: a title; an assignee; an associated park; an

alert type, such as warning or info; and a message body. Users have the ability to complete or

delete an alert in the detailed panel. Completed alerts remain accessible via the archive button in

the main toolbar for this view. The alerts system was an exploratory attempt to remedy a

management system that relied on a single employee to manage all communications. Each

employee is tasked to deal with these communications in their own manner, which often involves

note taking and little archival attention.

Figure 4.h - Main Alerts view

Clicking New Alert will bring up a form where a user can submit an alert to other users. This

form has the ability to quickly select a site to associate, as well as to assign the alert to multiple

users in one message.

4.7 Employees

The employees view is a listing of all employees registered in the system. Administrators can

assign employees to sites and edit general employee information. Standard users can utilize this

view as a lookup for contact information. Currently this page is undeveloped due to the exact

requirements still being determined.

Kelowna Irrigation Parks Management System

UBCO - Derrick Pelletier - 17

4.8 Tools

From the tools view, employees and administrators can manage application-wide data.

Application settings can be accessed, new sites can be added, and minor options such as

employee types and alert types can be modified here. The majority of this system is undeveloped

due to the application not being finalized

Figure 4.i - Tools options

The readings tool is currently the only one in active development. Here an employee can import

new water meter usage data in CSV format into the database, as well as access previous imports

in order to edit inconsistencies or incorrect readings.

Figure 4.j - Past Imports listing view

Once a user imports a new CSV or selects a previous import, they are presented with a view that

includes details as to the employee who imported, the filename of the CSV, and two tabs which

house both clean rows and flagged rows. Flagged rows are those that, on import, were

dynamically flagged with various messages based on rules in our import system. If a reading

fails to pass these tests, it remains inaccessible to usage data queries in the main application. A

Kelowna Irrigation Parks Management System

UBCO - Derrick Pelletier - 18

user can view these flagged rows, and edit them in place or remove them. Once edited, these

rows are tested again, and if passed will be considered clean and appear in the standard usage

results.

Figure 4.k - Usage Import details view of flagged alerts, with first entry being edited

4.9 Mobile List

The mobile version of the Application runs on a shared codebase with the main application.

There are some minor tweaks to functionality in various instances, but primarily relies on

utilizing mobile friendly templates in order to style the application for a mobile, tablet-friendly

application experience.

Kelowna Irrigation Parks Management System

UBCO - Derrick Pelletier - 19

The main site list, for example, has stripped away many of the extra detail columns in order to

reduce clutter and increase text and tap-size. This allows employees in the field to quickly scan

and filter the list without worrying about extraneous information. By tapping a row, the

application will load a similar detail view as that in the desktop application, albeit without

editing functionality.

Figure 4.l - Mobile Application main site listing

4.10 Mobile Maps

The mobile map view functions identically to the desktop map view. This view was initially

developed for speed and ease of use on mobile, and this functionality was ported to the desktop

version in order to maintain consistency and deliver the same benefits of brevity and

browsability. By providing field employees with quick access to the core details of a park, as-

builts overlays, and equipment locations, they can be much more efficient and knowledgeable in

the field rather than relying on outdated and unreliable datasets.

4.11 Mobile Alerts and Employees

The mobile alerts and employees views function identically to the desktop counterparts with

some minor style variations to better suit touch interfaces.

Kelowna Irrigation Parks Management System

UBCO - Derrick Pelletier - 20

Figure 4.m - Mobile Application Alerts view

5 Code Elaboration and Explanation

5.1 Database

The Application utilizes a MySQL 5.x relational database. MySQL was selected due to its

maturity, stability, and easy entry point for new developers. MySQL is a de facto component of

the standard web application LAMP (Linux, Apache, MySQL, PHP) architecture, and as such,

system configuration and hosting becomes a trivial issue in the development process. The

database structure is in the second iteration since having been derived from a collection of flat

CSV files.

Kelowna Irrigation Parks Management System

UBCO - Derrick Pelletier - 21

Figure 5.a - Current iteration of database schema

5.2 Backend

The backend portion of the Application functions mainly as the interface between the MySQL

database and the frontend, as well as to deliver the application files to the user.

The backend utilizes and MVC (model, view, controller) framework, a design pattern aimed at

isolating application logic into core behaviours. The models act as data interfaces, in that all data

is queried or inserted through a model. Controllers handle all business logic, performing tasks

like data manipulations,

Kelowna Irrigation Parks Management System

UBCO - Derrick Pelletier - 22

The Application is running on a PHP application framework called CodeIgniter. Initial versions

of the application were developed on the more rigid Symfony2 framework, but the steep learning

curve was a large barrier to developer collaboration and continuity of the project beyond this

thesis. CodeIgniter offers a very lean structure while still providing the flexibility benefits of

PHP.

5.2.1 Models

Models are located in the application/models directory. Each file in this directory is a

PHP class that interacts primarily with one table and any number of joined tables in the database.

Each method in a model is logically named according to the request from the database it

performs. For example, sitemodel.php currently has four methods: all(), which returns

an array of all sites; byId(), which returns a single site referenced by its unique id; types(),

which returns a list of all site-types; and suppliers(), which returns a list of all water

suppliers for sites. These files currently use the CodeIgniter ActiveRecord class, which handles

database interactions providing numerous features, including: database independence, easier

query-building, and auto-escaped queries. However, because the only expected return value from

these models is an associative array, the developer may use any method they are comfortable

with to request data.

5.2.2 Controllers

Controllers are located in the application/controllers directory. Controllers can serve

various purposes. The controllers in the Application perform three primary tasks: the first is the

aforementioned API, used to relay JSON-formatted data to and from the frontend; second,

authenticating users through session analyses and form submission; and third, rendering of

HTML views to the browser.

CodeIgniter uses an automatic routing system, wherein URLS are parsed to load specific

controllers and methods according to the default pattern:

domain.com/<controller>/<method>/[parameters...].

Kelowna Irrigation Parks Management System

UBCO - Derrick Pelletier - 23

All controllers within the Application that require authentication extend the MY_Controller

class located in application/core. This class ensures that every attempt to load a page is

first authenticated against a user in the database. Adding a subdirectory to controllers lengthens

the routing pattern by adding a directory segment before the controller. Because the frontend

portion of the Application makes numerous data requests, these have all be subdirectoried under

api, creating url patterns such as: /api/sites/get_all, which will map the the

get_all() method of the Sites.php file under controllers/api/. This allows for a

very logically organized API, rather than collecting dozens of methods with elaborate method

signatures under one API file.

5.2.3 Views

Views are located in the application/views directory. When a controller method is run

that is expected to return a page, the application will utilize a view load to return HTML to the

browser. These views take an associative array of data as an object, from which they parse and

generate the final HTML. This behaviour is utilized heavily in more static, traditional request

and response type web applications. In the Application, views are only used to render the

authentication forms and the core application files delivery.

While static applications typically split views into modular chunks, the simplicity of the static

portion of our application did not warrant this. Instead, we only have two views,

application.php and signin.php which contain full HTML documents.

5.2.4 Mobile detection

The Application required a method of detecting whether the user was accessing the site via

mobile or desktop in order to choose the corresponding display logic. In order to accomplish this,

the Application utilizes Serban Ghita’s PHP Mobile-Detect library. Mobile detection happens

server-side, in the application.php view, setting an in-page boolean JavaScript variable:

is_mobile. The frontend portion of the application uses the value of this variable to determine

which templates it should load. Loading of the mobile version for development purposes can be

done by either manually spoofing the browser UserAgent or by appending ?m to the URL.

Kelowna Irrigation Parks Management System

UBCO - Derrick Pelletier - 24

5.3 Frontend

The Application frontend is comprised of a JavaScript application with HTML views and relies

primarily on the Backbone.js application framework and several other minor dependencies.

Backbone provides a robust application architecture on top of what is considered a very loose

language. The library divides the application logic in a similar fashion as CodeIgniter, but uses a

model-template-view-router framework. The addition of Marionette.js simplifies this pattern by

providing a stronger event framework and module-based organization. All frontend application

logic is stored in assets/js/m.

5.3.1 Application

The Application is the core of the Backbone/Marionette structure and handles all of the

initialization, routing, and global logic. The Application class and global logic is found in

assets/js/m/main.js:

 Line 1 to 70 - This is custom loader that lets the developer store the templates in

individual files during the development phase, rather than all in the HTML, which can be

hard to manage and slow to edit. Once all of the templates have been loaded, the callback

initializes an asynchronous request to api/payload which returns all of the core data

needed to run the Application effectively, including: a barebones listing of all sites, site

types, suppliers, controller types, alert types, and a list of users. Once these payload items

have been initialized as Backbone Collections, the App object is started on line 64.

 Line 73 - loadTemplate() is the method Marionette uses to find templates. By

default, templates are located on the HTML document and this method would find them

with a DOM selection engine. However, to speed development, we load them

individually, as mentioned above, and store them in an array and therefore we require that

loadTemplate() is overwritten to pull them from this array.

 Line 79 - instantiates a Marionette Application object.

Kelowna Irrigation Parks Management System

UBCO - Derrick Pelletier - 25

 Line 81 to 123 - routeController is a hash array of methods that the application

calls depending on the route accessed by the application. Each of these methods loads

and starts a particular Module.

 Line 125 to 141 - MyRouter defines a listing of routes accessible by the application and

maps them to the aforementioned routeController methods. This hash map defines

all URL patterns that the application will recognize as valid and allows for dynamic

elements in the URL such as site ids, which are passed into the controller to load and

render the proper details.

 Line 144 to 149 - a callback to the initialization of the Application object. When the

Application is started, this method will run and will initialize the router class and start the

history tracker. Here emulateHTTP and emulateJSON are both set to true, due to the

fact we are using a legacy server technology which does not support modern REST

headers like PUT and DELETE and can’t accept POST data in JSON encoding. Modern

servers, such as Node.js, support this functionality by default.

 Line 152 to 155 - adds two available display regions for use by the application. These

elements, menu and main, exist in the initial HTML document and are used to render

the core frame of the Application.

 Line 160 to 215 - MenuModule - modules will be explained in more detail below, but it

should be noted that this module was included with the main.js logic because of its

inherent global behaviour.

 Line 218 to 243 - SiteModel defines the Model class that will represent an instance of

site-specific data. Two custom methods have been added to this model: elaborate()

and getCenter(). Elaborate will check to see if this is a barebones representation

of the site, as used by the main listing, and if it is, it will query the API to receive a full

data object which includes all of the equipment, alerts, and joined data associated with

Kelowna Irrigation Parks Management System

UBCO - Derrick Pelletier - 26

the site for use in the more detailed view renderings. GetCenter is used to retrieve the

center point of the site by first checking the center attribute, and if that is empty, then by

determining the central point of the site based on the geographic coordinates used to draw

its boundaries.

 Line 261 - _isAdmin() is a method used to check if the current user is an admin, and

is used for various rendering options as to not provide visibility to portions of the

Application that are intended for only administrators.

 Line 267 to 277 - IrrigationCollection defines a collection object used to store

special data collections that are intended to be rendered as select-box lists. This is used in

such storage instances as sites, site types, and controller types.

5.3.2 Modules

Modules are self-contained MCV entities that contain all models, views, and controllers relating

to a specific, potentially modular, portion of the application. In the Application, modules are

used to contain each individual view of the application. SitesListModule, found at

assets/js/m/modules/list.js, will serve as an example for how modules function

within Backbone:

 Line 1 - This line is the initialization for the containment of the module.

 Line 3 - this.startWithParent = false ensures that the application will not

attempt to run this module when the application itself starts up. Because the Application

shares data between views, this ensures that the module is only active and in memory

during use.

 Line 7 - ListItemView represents the view logic for an individual row in the main

listing table. The events hash specifies events that will automatically be attached to the

view when shown, in this case a click event that triggers the rowClicked() method.

Kelowna Irrigation Parks Management System

UBCO - Derrick Pelletier - 27

template specifies the loaded template file to be used to render the view.

rowClicked() simply informs the router that it should navigate to a new page, in this

case the site detail page, which will contains further information on the site clicked.

 Line 21 - MainView represents the view logic for the primary view of this module

which is the table element and filters views. The MainView extends the Marionette

CompositeView, which is a special view type used to contain a collection of child

views, which are specified here to be of the type ListItemView. The events hash in

this view simply attaches a click event on the button to show and hide the filters view.

initialize() attaches an event to the filter:count message, which updates the

number of filters displayed on the button. appendHtml() controls the manner in which

each ListItemView object is added to the MainView by dictating that they be added

into the tbody HTML element of the template for this view. redrawTable() re-

renders the contents of this views collection.

 Line 65 - Controller is the class in which all of the logic for a module exists. In this

case, initialize() defines where on the page the templates will be loaded, which

dataset to use, and then initializes the views. show() tells the views to render, and

ensures that the proper filter settings are activated. onClose() is triggered when the

controller is closed, which typically occurs when changing pages and simply ensures that

all regions and events associated with the module are removed and unbound accordingly.

redraw() is a method triggered by the filters:processed event, which occurs

each time the dataset is filtered. When run, it tells the container view to redraw all of the

child elements (in this case, table rows) it contains according to the new dataset.

 Line 104 - Mod.addInitializer - adds a callback method to the initialization

sequence of the module. When the application runs this module, this callback is run

which essentially just creates and initializes the controller with the region it should be

using to display its views.

Kelowna Irrigation Parks Management System

UBCO - Derrick Pelletier - 28

5.3.3 Templates

Template files are stored in assets/js/m/templates and contain small portions of HTML

to be inserted into the page by the views. Each view automatically passes its assigned model into

the template as a JSON object, at which point each attribute of that object becomes a global

variable. The templates use a syntax known as ERB and made popular by Ruby on Rails. Within

the template, when an attribute should be printed out, the template uses syntax such as:

<td><%= address %></td>. This will dynamically generate a table cell with an address

within it.

Template file names can that are specific to either desktop or mobile should be named with either

*.d.html or *.m.html, respectively. By appending the global variable tpl_type to the

template definition in a view, the view will load the appropriate template automatically.

6 Feedback

In developing this application for the Parks Department, we utilized a pragmatic process. The

department was unsure of the most effective way to utilize, visualize, and translate their existing

data, therefore our process was largely exploratory. We began by prototyping early, straight

translations of the data so the department could begin to visualize the data beyond spreadsheets.

Out of this process, we discovered new avenues of use for the data and new needs that could be

solved. For example, by creating proof-of-concept prototypes of visualized parks on an

interactive map, we discovered that the application should be divided into two core systems with

shared functionality: one for desktop, in-office use, and the other for mobile, in-field use. The

Parks Department worked closely to ensure the application continued down a path that met their

needs with a consistent vision.

7 Conclusions

In its current state, the department has expressed that they are pleased with the progress of the

Application and the clarity it brings to their dataset. The department is excited about the

Kelowna Irrigation Parks Management System

UBCO - Derrick Pelletier - 29

possibilities it holds for visualizing their usage trends and maintenance patterns, as well as

optimistic about the projected growth of the Application. They are eager to test the current stable

version in the field in the upcoming season. The ease with which reports can be generated, as

well as the immense increase in accessibility has had a great response from the members of the

department. It was an exciting opportunity to work on a project that makes a sizable difference in

the way they approach their data with each small iteration, and it was exciting to discover new

needs that could be met for the department with each of these iterations. The possibilities for this

application to help facilitate a sustainable future are incredible, not only Kelowna, but also for

markets where water resources are even scarcer.

8 Future Work

The Application was designed using module patterns in order to simplify future additions by

ensuring that the code for each module was completely encapsulated, while the core application

functionality remained available across the entire system. By utilizing a shared code base on both

the desktop and mobile applications, we ensured that future progress on both ends of the

application will maintain a consistent direction and avoid any complications and technical debt

from constantly diverging paths. Future plans for the application that have been discussed are

more detailed reporting analytics, public-accessible reporting, maintenance logging, enhancing

the map views with more data and detailed equipment, and scheduling-system integrations. The

modular approach that has been taken in development thus far makes these updates and

modifications seamless.

9 Acknowledgements

In conclusion of this project, I would like to thank Dr. Ramon Lawrence for his supervision,

direction, and for acting as the project manager and liaison between UBCO and the Parks

Department. I would like to thank Ryan Trenholm for his previous work with the Parks

Department, the prototype phase of this project, and for assisting with portions of the build for

this application. I would also like to thank Cody Clerke for his work parsing existing data

formats and developing new database structures for the Application.

Kelowna Irrigation Parks Management System

UBCO - Derrick Pelletier - 30

10 References

Backbone.js - http://backbonejs.org

Bootstrap - http://twitter.github.io/bootstrap

CodeIgniter - http://ellislab.com/codeigniter

Marionette.js - http://marionettejs.com

MySQL - http://mysql.com

PHP - http://php.net

