

1

Developing the SQL IonDB Query Language

by Dana Klamut

A THESIS SUBMITTED IN PARTIAL FULFILLMENT
OF THE REQUIREMENTS FOR THE DEGREE OF

B.A. COMPUTER SCIENCE HONOURS

in

Irving K. Barber School of Arts and Sciences

(Computer Science)

Supervisor: Dr. Ramon Lawrence

THE UNIVERSITY OF BRITISH COLUMBIA

(Okanagan)

April 2018

© Dana Klamut, 2018

2

Abstract – The Internet of Things (IoT) continues to engage society as its capabilities
extend. With these IoT devices aiding daily life, the data created through their use grows
rapidly. As these devices are memory constrained, IonDB was created to serve as a key-
value database able to accommodate these constraints, in a performance competitive
manner. However, the methods required for querying the data are IonDB-specific, and
therefore may not be intuitive to users. Professionals use the SQL query language, which
is a well-known, standard query language. Due to the prevalence of IonDB’s users’
familiarity with the structure of SQL, this document demonstrates the creation of an SQL
IonDB query language, known as IINQ. The implementation and format of this query
language, which adheres to IonDB’s standards of speed and memory, are presented in detail.
Experimental results and testing was performed on the popular Arduino system.

3

Table of Contents

1. Introduction ... 8

1.1 Embedded Devices .. 8
1.2 IonDB .. 9
1.3 Query Languages .. 11
1.4 Motivations ... 11
1.5 Contributions ... 12

2. Background ... 12
2.1 IoT Databases .. 12
2.2 SQL ... 13

2.2.1 Create Table ... 13
2.2.2 Insert .. 13
2.2.3 Update .. 14
2.2.4 Delete ... 14
2.2.5 Select .. 15
2.2.6 Drop Table ... 15

3. Architecture ... 15
3.1 Create .. 16
3.2 Insert ... 17
3.3 Update ... 18
3.4 Delete .. 20
3.5 Select ... 22
3.6 Drop .. 24

4. Experimental Results .. 24
4.1 Testing Environment ... 24
4.2 Insert ... 25

4.2.1 Simple Insert Statement ... 25
4.2.2 Prepared Insert Statement .. 25

4.3 Update ... 26
4.3.1 Update Statement – 1 field to update, 1 where condition 26
4.3.2 Update Statement – 1 field to update, 3 where conditions 27
4.3.3 Update Statement – 3 fields to update, 1 where condition 28
4.3.4 Update Statement – 3 fields to update, 3 where conditions 28

4

4.4 Delete .. 29
4.4.1 Delete Statement – 1 where condition ... 29
4.4.2 Delete Statement – 3 where conditions .. 30

4.5 Select ... 31
4.5.1 Select Statement – select 2 fields, 1 where condition 31
4.5.2 Select Statement – select 2 fields, 3 where conditions 32

5. Conclusions and Future Work .. 32

5

Table of Figures

Figure 1. IINQ architecture and process flow ... 16

Figure 2. IINQ Update process ... 20

Figure 3. IINQ Delete process .. 21

Figure 4. IINQ Select process ... 23

Figure 5. Performance of an insert. ... 25

Figure 6. Performance of a prepared statement insert. ... 26

Figure 7. Performance of an update with one field, one where condition. 27

Figure 8. Performance of an update with one field, three where conditions. 27

Figure 9. Performance of an update with three fields, one where condition. 28

Figure 10. Performance of an update with three fields, three where conditions. 29

Figure 11. Performance of a delete with one where condition. .. 30

Figure 12. Performance of a delete with three where conditions. 30

Figure 13. Performance of a select with one where condition. ... 31

Figure 14. Performance of a select with three where conditions. 32

6

Table of Listings

Listing 1. IonDB Dictionary level interface dictionary creation .. 9

Listing 2. IonDB C++ Wrapper dictionary creation ... 9

Listing 3. IonDB dictionary level interface Insert operation .. 10

Listing 4. IonDB C++ user interface Insert operation .. 10

Listing 5. IonDB dictionary level interface All Records query .. 10

Listing 6. IonDB C++ user interface All Records query .. 11

Listing 7. SQL Create Table schema statement .. 13

Listing 8. SQL Insert data statement ... 14

Listing 9. SQL Update data statement .. 14

Listing 10. SQL Delete data statement ... 15

Listing 11. SQL Select data statement .. 15

Listing 12. SQL Drop Table statement ... 15

Listing 13. IINQ Create Table statement .. 16

Listing 14. IINQ translated Create Table statement ... 16

Listing 15. IINQ Insert function signatures .. 17

Listing 16. IINQ Insert statement ... 17

Listing 17. IINQ Insert prepared statement .. 17

Listing 18. Translated IINQ Insert statement ... 18

Listing 19. IINQ Where function signature .. 18

Listing 20. IINQ Update function signature ... 19

Listing 21. IINQ Update statement ... 19

Listing 22. Translated IINQ Update statement ... 19

Listing 23. IINQ Delete function signature .. 21

Listing 24. IINQ Delete statement .. 21

Listing 25. Translated IINQ Delete statement .. 21

Listing 26. IINQ Select function signature ... 22

Listing 27. IINQ Select statement ... 22

Listing 28. Translated IINQ Select statement ... 22

Listing 29. IINQ GetInt function signature ... 22

7

Listing 30. IINQ GetString function signature ... 23

Listing 31. Example IINQ Select processing .. 23

Listing 32. IINQ Drop Table statement .. 24

Listing 33. IINQ Drop Table statement .. 24

8

1. Introduction

In the age of the Internet of Things, microcontrollers and embedded processors are
seamlessly integrated into everyday life. As technology is continuously assimilated into
society at increasing rates, these devices are gathering and storing seemingly endless
amounts of data. This data has the capacity to drive decision-making. The need for
accessing the data in meaningful ways led to the creation of query languages for users to
access information in a database based on their particular request, without the necessity for
the user to have extensive knowledge of the database configuration [1]. SQL, originally
known as Structured English Query Language, or SEQUEL, is the standard query language
for relational database management systems [2]. In addition, many professions continue
to require SQL skills including data analysts [3]. As SQL is universally well-known as a
standard query language, it can be extended to new areas, even as database technology
evolves.

With the active presence of embedded devices, the opportunity arises to extend their
functionality to users. This includes both data storage and the possibility for further
manipulation. The action of data being processed locally on these memory-constrained
devices has been the main focus of IonDB, a key-value database designed specifically for
embedded devices [4]. With IonDB’s already established foundation, an Ion Integrated
Query (IINQ) language can be built upon its basis. The name IINQ was chosen in keeping
with the “Ion” prefix of IonDB, and as a tribute to LINQ, Microsoft’s .NET Language
Integrated Query [5]. After presenting a more thorough background on embedded devices,
IonDB, and query languages, the motivations of this project will be discussed. To follow,
other research with respect to databases designed for embedded devices and the framework
and history of SQL is examined in detail. This section also highlights several key features
of SQL and a compares SQL to other existing query languages. The implementation of
each feature of IINQ is discussed in detail with respect to both user code and IINQ
translated code. Thereafter, the experimental results of IINQ testing are examined,
followed by final conclusions and opportunities for future work.

1.1 Embedded Devices

 The Internet of Things (IoT) consists of devices that are interconnected on a
network with the goal of improving and aiding society through data collection and analysis.
The framework in which the IoT is built supports data being interchanged over a network
between users and electronic devices [6]. It is important to note that the IoT may be
decomposed into three main components: software, hardware, and communication
infrastructure [6]. IINQ will focus on software designed to support the communication and
manipulation of data collected by these devices.

Many of these IoT devices include embedded devices, including one particular
brand known as Arduino, which can be programmed for communication and operations
using internet connectivity and various sensors [7]. The Arduino was created in 2005 by
Massimo Banzi and David Cuartielles [8]. Arduinos are 8-bit microcontroller AVR
devices that are designed to be inexpensive, self-contained, and easy-to-use, including an
IDE for programming [8]. Due to these unique characteristics which are suited for real-
world monitoring and their capabilities for internet access, Arduinos can easily be

9

configured to function as IoT devices. Embedded devices, including Arduinos, are often
superior in these applications as they allow for the processing of the generated data to occur
directly on the devices instead of transferring the data [9].

1.2 IonDB

IonDB has been actively developed since the summer of 2014. It is as a key value
database for embedded devices, which is easy to use and performance competitive [4].
IonDB includes six unique data structure implementations including: skiplist, open address
hash, open address file hash, B+ tree, flat file, and linear hash [10] [11]. Several of IonDB’s
most notable advancements since its first publication at IEEE (CCECE) in 2015 include
the implementation of two supplementary data structures, as well as a C++ language
wrapper for increased ease of use of the Arduino API. Listing 1 shows the original Arduino
API usage to create a file-based dictionary. In contrast, Listing 2 exemplifies the creation
of a file based dictionary using the C++ wrapper.

// Declare the dictionary and handler structs
ion_dictionary_handler_t handler;
ion_dictionary_t dictionary; // Initialize handler
ffdict_init(&handler);
dictionary_create(&handler,

&dictionary,
-1,
key_type_numeric_signed,
sizeof(int),
60,
10);

Listing 1. IonDB Dictionary level interface dictionary creation

Dictionary<int, int> *dictionary = new FlatFile<int, int>

(-1,
key_type_numeric_signed,
sizeof(int),
sizeof(int),
7);

Listing 2. IonDB C++ Wrapper dictionary creation

As shown in Listing 1, the init function is required to affix the dictionary-type specific
functions to the API to ensure the instance the dictionary adheres to the data structure
implementation [9]. Listing 2 in comparison to Listing 1 illustrates the simplicity of the
C++ wrapper as well as its conveniently minimalistic user code.

IonDB’s other most notable recent accomplishment is a second publication at IEEE
(CCECE) in 2017. This publication features the continuous integration platform for
Arduino embedded software, as used by IonDB [12]. With the use of this platform,
IonDB’s development is continuously integrated, including strict testing, ensuring that the
codebase is maintained and progressed adhering to a high quality of work. IonDB has
progressed as a fully functional database, including many choices of unique data structures
to be selected with respected to user preferences and constraints. With its continued

10

development, and loyal following on GitHub, IonDB provides a structured basis for further
growth.

The dictionary level interface of IonDB is written in the C programming language,
as is IINQ in this document, unless otherwise explicitly stated as Java or C++ code. As a
key-value database, the main functionality of IonDB includes insert, update, and delete
operations for records, accessible through both the dictionary level interface and the C++
wrapper. Listings 3-4 below demonstrate the user code necessary, through use of the
dictionary level interface or the C++ user interface, respectively, to perform an insert
operation.

// Instantiate the key and value to be inserted
ion_key_t keys = IONIZE(42, int);
ion_value_t value = (ion_value_t) "Hello IonDB";

// Insert record into dictionary
dictionary_insert(&dictionary, key, value);
Listing 3. IonDB dictionary level interface Insert operation

// Instantiate value to be inserted (may omit if value is a base type)
ion_value_t value = (ion_value_t) "Hello IonDB";

// Insert record into dictionary
dictionary->insert(42, value);
Listing 4. IonDB C++ user interface Insert operation

Listing 4 demonstrates how IonDB’s user interface has evolved from that of Listing 3 to
be more simplistic and require less code and IonDB specific knowledge from users.
 The current query capabilities of IonDB include all records, range, and equality
cursor queries. An equality query produces resultant records from within the specified
dictionary with a matching key to the key given by the user and cannot produce records
corresponding to a value field in the database. The dictionary level interface code and the
C++ user interface code required to perform an example all records query using IonDB are
shown in Listings 5 and 6, respectively.

ion_predicate_t predicate;
dictionary_build_predicate(&predicate,

 predicate_equality,
 IONIZE(10, int));

ion_dict_cursor_t *cursor = NULL;
dictionary_find(&dictionary, &predicate, &cursor);
ion_record_t ion_record;
ion_record.key = malloc(key_size);
ion_record.value = malloc(value_size);

ion_cursor_status_t cursor_status;

while ((cursor_status = cursor->next(cursor, &ion_record)) ==
cs_cursor_active || cursor_status == cs_cursor_initialized) {

printf("\tKey: %d, Value: %s\n", NEUTRALIZE(ion_record.key, int),
(char *) ion_record.value);

}
Listing 5. IonDB dictionary level interface All Records query

11

Cursor <int, int> *cursor = dictionary->equality(10);

while (cursor->next()) {
 int key = cursor->getKey();
 ion_value_t = cursor->getValue();
}
Listing 6. IonDB C++ user interface All Records query

As shown in the listings thus far, it is evident that IonDB has undergone improvements
with respect to the user code required to perform operations. However, it still has its own
API and does not follow a standard such as SQL.

1.3 Query Languages

 Familiarity with databases, including the manipulation and retrieval of data from
them using a query language, is a key component of any computer science education [3].
Queries are defined as requests to databases, with the structure in which these queries are
written denoted as a query language [1]. SQL was one query language intended for bridging
the gap between the data stored in databases and those who wished to access it, without
using additional software or enlisting a programmer [1].
 In 1986 the first edition of the SQL query language was released, as developed by
the American National Standards Institute [13]. Learning to compose and execute SQL
continues to be a main focus in many computer and data science courses and remains
applicable to numerous professions [3].
 Other technologies developed for the storage and manipulation of data include
NoSQL systems, which abbreviates “No SQL” or “Not only SQL” [14]. Unlike databases
such as IonDB tailored to memory constrained environments, NoSQL systems are capable
of handling big data, including storage and processing [14].

1.4 Motivations

With the advances of IonDB, more features have been made possible. As IonDB
has developed into a fully functional key-value database, its areas of expansion have also
grown. One area of interest in particular, is that of an SQL query language to complement
IonDB, as the current fundamental operations supported by IonDB such as create table,
insert, update, and delete may not be instinctive to even experienced programmers. Due to
the prevalence of use of SQL as a query language, IonDB queries adhering to the standard
of SQL would be widely understood by the majority of users.

As IonDB is already fully functional, one of the main challenges of IINQ is
encapsulating this functionality within an SQL user format while adhering to the
performance and memory standards set by IonDB. With doing so, the user code necessary
for accomplishing these operations must also be kept minimal and simplistic, including all
underlying dictionary level C code being concealed from the user.

IonDB is the perfect base for an SQL query language as it is a key value database,
hence making it recognizable to users experienced with any key-centric data model, such

12

as semantic models, object models, XML, or RDF [15]. The implementation of a
universally understood SQL query language for IonDB will extend both IonDB’s
functionality and user following.

1.5 Contributions

The contribution of this thesis is the development and performance evaluation of
an SQL interface for IonDB. Since embedded devices have insufficient memory and CPU
resources to process SQL queries on device, the key contribution is a compile-time
optimization and automatic code generation that translates user-specified SQL queries into
optimized C code for execution on the device. The typical steps of query optimization and
processing done by a relational database are performed offline during compilation which
dramatically improves performance and ensures that the SQL-enabled IonDB
implementation can run on very resource-limited devices.

2. Background

2.1 IoT Databases

 IonDB was created to bridge the gap of storing generous amounts of key-value data
within a memory limited environment, however, other work has also been done in this area.

Other research includes a “small-footprint” database designed for Windows CE, a
Microsoft embedded device and mobile operating system [16]. This database in particular
supports relational databases through the use of SQL Server, using both built-in SQL
functionality and embedded environment specific features [16]. Similar to IINQ, SQL
Server for Windows CE understands the importance of adhering to SQL syntax standards
to accommodate a wide audience of users [16]. Another memory-conscious database that
has been designed focuses on using flash memory for data storage and manipulation [17].

In addition, FAME-DBMS was also created with these constraints in mind [18].
However, FAME-DBMS remains unique as in addition to being suited for embedded
systems, this database management system (DBMS) uses the software product line to tailor
data management to a variety of scenarios [18]. This work was in part motivated by
research on Berkley DB, an embedded and server systems embedded DBMS [18] [19]. As
Berkley DB is not designed solely for use on embedded systems, some configurations must
be made by the user to alter its original format of 96,000 lines of code in order to fit on
memory constrained devices, making it less ideal for embedded systems users [19].

Although the advancements of databases designed for memory limited
environments continue, they are not necessarily a novel area of research. In 1999 IBM
began producing small system databases, coined as their DB2 database family [20]. This
announcement by IBM followed Oracle releasing the Oracle8i Lite, another system created
to address the need for small storage on IoT devices [20].

13

2.2 SQL

Following the acceptance of Dr. E. F. Codd’s relational model and relational
database management systems, SEQUEL was created by IBM Corporation, Inc., and later
made commercially available by Relational Software Inc. in 1979, now known as Oracle,
who rebranded the query language as SQL [2]. SQL serves as an intermediary tool which
non-technical users can master, without being experienced programmers, to access the data
in relational databases [1]. Since its development, SQL has become widely known and used,
ranking as the greatest in-demand data language in 2012 [21]. This is exemplified by
relational database technology being valued at 40 billion US dollars annually, compared to
3.5 billion US dollars for NoSQL systems [15]. Hence, it is clear that both systems are
widespread, however, relational databases and therefore SQL technology exhibits a larger
following. In addition, relational databases also impose relations between data tables and
reinforce ACID properties, which are used to ensure valid data consistencies and
concurrent transactions [14].

2.2.1 Create Table

 SQL schema statements allow users to describe the data structures and schema to
be stored and can be used to create new tables [13]. A schema statement used to create a
new table in the database includes the keywords CREATE TABLE, followed by the desired
schema information for the table [13]. An example schema statement for creating a table
using SQL syntax is shown in Listing 7.

CREATE TABLE Dogs (
 id INT,
 name VARCHAR(30),
 breed VARCHAR(40),
 age INT,
 hunger INT,
 PRIMARY KEY(id)
);
Listing 7. SQL Create Table schema statement

As demonstrated above, a schema statement for creating a table includes defining the
values to be stored in the table and their corresponding data types. It is also notable that the
primary key of the table is also defined in this statement. The key serves as a group of fields
whose values can uniquely identify a specific record in the table and should be selected
carefully as to ensure that it is a distinctive identifier [15].

2.2.2 Insert

 SQL also supports data manipulation statements, which include INSERT,
UPDATE, DELETE, and SELECT statements [13]. Insert statements are used to populate
tables created through CREATE TABLE statements. The necessary components of an
INSERT include the table name in which the values are to be inserted into; the column

14

names that data is being provided for, this is not required if data is provided for every
column included in the table; and the values corresponding to those columns which will be
populated into the table [13]. To comply with proper SQL syntax, the values listed must be
in the same order as the table schema, or as defined in the column list, with their value
types adhering to the data types defined for each column in the table’s schema statement
[22]. The value to be inserted corresponding to the primary key column must be unique, or
else the data statement will be rejected by most SQL systems [15]. An example INSERT
statement following SQL syntax is shown in Listing 8 and corresponds to the schema as
defined in the CREATE TABLE statement of Listing 7.

INSERT INTO Dogs (id, name, breed, age, hunger)

VALUES (1, 'Minnie', 'French Bulldog', 5, 2);
Listing 8. SQL Insert data statement

The result of an INSERT statement is that of one row being added to the database specified
[13].

2.2.3 Update

 Once the table has been populated, modifications to the data may be necessary.
These alterations are possible through UPDATE SQL data statements [13]. The
information necessary to complete an UPDATE operation is similar to INSERT operations,
as it involves the table name, as well as the fields to be updated and their corresponding
data values. Listing 9 demonstrates an example UPDATE statement as defined by SQL and
following the schema of Listing 7.

UPDATE Dogs SET
 age = 4,
 hunger = 0
WHERE breed = 'Chihuahua';
Listing 9. SQL Update data statement

Note that a new keyword included in Listing 9 is WHERE. The WHERE clause is optional in
UPDATE, DELETE, and SELECT statements, and acts as a filter on the dataset, limiting
the rows produced by the query [23]. It does so by evaluating the conditional statement
provided by the user to true or false, and then either includes the row in the data set or
excludes it, respectively [23].

2.2.4 Delete

 The deletion of rows from a table occurs based on the table name provided by the
user and the optional WHERE clause. As discussed above, the result set is limited to those
rows matching the WHERE clause condition [23]. Once a DELETE is performed, all rows
matching the condition are erased from the table. An example DELETE operation is shown
in Listing 10.

15

DELETE FROM Dogs
WHERE age > 10;
Listing 10. SQL Delete data statement

If Listing 10 were to be run on a populated table named Dogs, it would erase all of the rows
in the table where the value for the field age is an integer greater than 10.

2.2.5 Select

 The SELECT SQL is the fundamental data statement for accessing the table data in
a meaningful way according to the user’s needs, through the retrieval of data from single
or multiple tables [23]. Following the SELECT keyword, the user must list the fields in
which they wish to receive from the result set, or a * signifies that all columns will be
returned [24]. In addition, a FROM clause must be stated which specifies the sources of the
data to be retrieved [23]. A simple SELECT statement, including only FROM and WHERE
clauses, is displayed in Listing 11.

SELECT name, age
FROM Dogs
WHERE hunger = 0;
Listing 11. SQL Select data statement

The above query will provide a result set of the values of the ages and names from all of
the rows in the table Dogs where the value of hunger in that row is 0.

2.2.6 Drop Table

 DROP TABLE is the simplest of the SQL commands. This statement is used to
remove the table specified, including any data still contained within it, from the database
[25]. The code to drop all information from the Dogs table, and delete the table itself, is
shown in Listing 12.

DROP TABLE Dogs;
Listing 12. SQL Drop Table statement

Although DELETE may be used to delete all of the rows from within the table, the table
continues to persist in memory until a DROP TABLE command is performed [25].

3. Architecture

 IINQ’s intuitive SQL interface uses an SQL translator that converts user SQL code
into executable code on the device during compilation and building. This process is
accomplished through several steps almost entirely concealed from the user. To perform
an SQL command, the only code the user is responsible for writing is the command
including their specifications, as outlined by IINQ SQL syntax, which is defined in detail
in Sections 3.1 – 3.5. Once the user code is written, an SQL translator is run to generate
the C code necessary to run the SQL command on IonDB. This is accomplished through

16

Java code parsing the user code and writing back to another C file in the user’s directory
only the C code for their current commands. Hence, the C file with the underlying generated
code supporting the functionality of IINQ is re-generated depending on the user’s
commands as to limit the space it uses and increase IINQ’s performance speed. The user
commands are also updated by the Java code to follow the function signatures generated.
Following the C code generation by the Java SQL translator, the code is now executable
and can be compiled on device. This general process is outlined in Figure 1.

Figure 1. IINQ architecture and process flow

3.1 Create

 Creating a new table in the database is fundamental to any subsequent operations.
This process is accomplished through user code designed to be similar to the SQL CREATE
TABLE command. The user code written to create a new table, as outlined in Listing 7, is
shown in Listing 13.

SQL_execute("CREATE TABLE Dogs

(id INT,
name VARCHAR[30],
breed VARCHAR(40),
age INT,
hunger INT,
primary key(id));");

Listing 13. IINQ Create Table statement

Once the Java SQL translator is run on the user code, Listing 13 becomes translated to the
code in Listing 14.

/* SQL_execute("CREATE TABLE Dogs (id INT, name VARCHAR[30], breed
VARCHAR(40), age INT, hunger INT, primary key(id));"); */
create_table("Dogs.inq",

key_type_numeric_unsigned,
sizeof(int),
(sizeof(int) * 3)+(sizeof(char) * 70));

Listing 14. IINQ translated Create Table statement

The IINQ create_table function is fully generic and can be called repeatedly to create
an infinite (within memory constraints) number of tables. The value size for the table to
support, the last parameter shown in the function call of Listing 14, is calculated from the
data types of each field listed in the user code and condensed for minimal computations.

17

3.2 Insert

 IINQ has been written to follow SQL syntax as close as possible to accommodate
users while still supporting the underlying functionality. The function signatures for a user
to complete an INSERT are listed in Listing 15.

iinq_prepared_sql SQL_prepare (char *insert_sql);
void setParam (iinq_prepared_sql p, int field_num, void *value);
void execute (iinq_prepared_sql p);
Listing 15. IINQ Insert function signatures

The variation from standard SQL syntax evident in Listing 15 is the
iinq_prepared_sql variable returned from the INSERT statement. This object is
responsible for setting up the function pointers used for executing the command. The SQL
INSERT command is written as a string within the SQL_prepare() function call. Every
succeeding function call must be passed the iinq_prepared_sql variable, as it also
stores the table identifier, as well as the key and value to be inserted. A full example of an
IINQ INSERT statement is shown in Listing 16, following the table schema defined in
Listing 13.

iinq_prepared_sql p = SQL_prepare("INSERT INTO Dogs

VALUES (1, 'Poodle', 'Lady', 5);");
p.execute(p);
Listing 16. IINQ Insert statement

IINQ also supports prepared insert statements, as demonstrated in Listing 17. Prepared
statements in IINQ are indicated by (?) within the INSERT SQL string. These values are
then set with the setParam function, using the field number that the user is setting the
value for (field numbers are incremented starting at 1), and the value to be set for the field.
Regardless of data type, any parameterized value may be set using setParam as its
function signature expects a void pointer type. However, this is also an area of caution for
users to ensure that they are inserting the correct value type for the given column.

iinq_prepared_sql p = SQL_prepare("INSERT INTO Dogs

VALUES (1, (?), 'Lady', 5);");
p.setParam(p, 2, "'Poodle'");
p.execute(p);
Listing 17. IINQ Insert prepared statement

Once the user code for the INSERT statement has been written, the Java code that acts as
an SQL translator may be run. Listing 18 shows the resultant user C code after running the
SQL translator.

18

/* iinq_prepared_sql p = SQL_prepare("INSERT INTO Dogs
VALUES (1, (?), 'Lady', 5);"); */

iinq_prepared_sql p = SQL_Dogs(1, "(?)", "'Lady'", 5);

p.setParam(p, 2, "'Poodle'");
p.execute(p);
Listing 18. Translated IINQ Insert statement

As demonstrated above, the user’s inserted statement is translated into a function call
specific to the table they are inserting values into, and those values are transformed into
the according parameters of the function. In addition, all of the underlying code for
SQL_Dogs, setParam, and execute is written in a C file without any additional effort
required from the user. These methods are capable of supporting multiple tables and
multiple INSERT statements depending on the volume of commands provided by the user
for that iteration of translation. All underlying code is generated to be as generic as possible
for this reason, except for the table specific call that initially returns the
iinq_prepared_sql object. The rows inserted into the table are stored indefinitely
until the destruction of the table.

The IINQ functions setParam, update, and iinq_select all utilize the
calculateOffset(const unsigned char *table, int field_num) and
getFieldType(const unsigned char *table, int field_num)
functions which are created upon Java translation. These functions each contain a switch
statement for each table that an IINQ SQL statement is written for in the user code file.
Within the switch for each table, there is another switch statement for the field number.
The function calculateOffset returns the size of the data type specified that field
number, whereas getFieldType returns an enum representing the data type for that
specified field number. These functions allow the underlying SQL command functions to
remain more generic as there is limited table-specific code.

3.3 Update

 The architecture of the IINQ SQL UPDATE and DELETE commands is quite similar,
and they differ from the other commands in their very altered form from standard SQL
syntax following Java translation. As both functions support WHERE clauses, a where
function is called by both UPDATE and DELETE for every record examined and returns a
boolean value with respect to whether the record passes the WHERE condition. However,
differing from standard SQL syntax, the user separates multiple WHERE clauses using
commas in IINQ instead of the standard AND keyword. This is due to optimizing the
reusable code already implemented in the Java translator, as WHERE is the only list in SQL
commands such that the components are not comma separated. The function signature for
where is shown in Listing 19.

ion_boolean_t
where(unsigned char *id, ion_record_t *record, int num_fields,
 va_list *where_clause);
Listing 19. IINQ Where function signature

19

As demonstrated in Listing 19, the parameters of where include the record in question,
the number of items in the variable argument list, and the variable argument list of WHERE
clauses. Within the variable argument list, we expect a field number, an operator (such as
equal to, greater than, etc.), and a value for each WHERE clause in the UPDATE or DELETE
statement. These items determine whether the record passes the WHERE condition and are
translated from the user code.

UPDATE is a complex command as it contains a list of WHERE conditions as well as a list
of updates to perform. The function signature of update is displayed in Listing 20.

void
update(int id, char *name, ion_key_type_t key_type, size_t key_size,
size_t value_size, int num_wheres, int num_update, int num, ...);
Listing 20. IINQ Update function signature

As evident in Listing 20, update is a variable argument function. The use of variable
arguments is necessary to support a potentially infinite number of WHERE conditions or
updates to perform. From the parameters num_wheres and num_update, the variable
argument list is able to be separated correctly. Similar to where, the updates are translated
into a field number, implicit update field number, math operator (such as add, multiply,
etc.), and a value. The implicit update field number and math operator are only found in
user code when the UPDATE includes using a field value to update a possibly different
field. If the user code is simply updating a field to a new constant value, the implicit update
field number and math operator are set to null. The user code and Java translated code for
an implicit update statement are shown in Listings 21 and 22.

SQL_execute("UPDATE Dogs SET age = age + 5 WHERE hunger > 0;");
Listing 21. IINQ Update statement

/* SQL_execute("UPDATE Dogs SET age = age + 5 WHERE hunger > 0;"); */
update(0, "Dogs.inq", key_type_numeric_unsigned, sizeof(int),
(sizeof(int) * 3)+(sizeof(char) * 70), 3, 4, 7, 5, iinq_greater_than, 0,
4, 4, iinq_add, 5);
Listing 22. Translated IINQ Update statement

The translation of user code is especially necessary for UPDATE commands as the function
call to IINQ update is complicated and unintuitive. However, through the use of the Java
translator, the simple user code can be transformed to adhere to underlying update
function signature without the user needing any knowledge of its structure. Therefore, the
C code of update remains generic and can be called for any table with any variation of
updates and WHERE conditions.

UPDATE operates through a variety of steps, as outlined in Figure 2.

20

Figure 2. IINQ Update process

As seen above, when the translated user UPDATE command is called, an all records query
is performed on the table in question. Each record retrieved is passed to the where function.
If the record passes the WHERE condition, it is stored in a second IonDB dictionary, to
utilize the flash memory available instead of storing the records on the stack. Once all of
the records in the specified table have been examined, a new all records query is then
performed on the new dictionary storing the records to be updated. On this iteration each
record is updated accordingly, and an IonDB dictionary_update is performed on the
original table. Finally, the temporary dictionary storing the records to be updated is deleted
from memory.

3.4 Delete

 The DELETE command mimics the architecture of update as they both support a
WHERE condition. The IINQ DELETE process is demonstrated in Figure 3.

21

Figure 3. IINQ Delete process

The main differentiating factor between DELETE and UPDATE is the handling of the
records inserted into the temporary dictionary. Unlike UPDATE, DELETE is able to insert
only the keys of the records to be deleted, as verified by the WHERE condition, with an
arbitrary integer value as the record's value instead of the true value to conserve memory.
This is possible as only the record's key is necessary to perform dictionary_delete
on the table.

The function signature for DELETE is shown in Listing 23 and is fully generic to support
deletes on any number of tables through multiple function calls. The naming of delete has
been changed to delete_record as DELETE is a reserved word in C++, therefore
throwing an error when compiling in the Arduino IDE.

void
delete_record(int id, char *name, ion_key_type_t key_type,
size_t key_size, size_t value_size, int num_fields, ...);
Listing 23. IINQ Delete function signature

The user code to complete a DELETE command is shown in Listing 24, with the translated
code to fit the delete_record parameters demonstrated in Listing 25. This translated
code is similar to update, with the exclusion of a list of fields to update.

SQL_execute("DELETE FROM Dogs WHERE age < 5;");
Listing 24. IINQ Delete statement

/* SQL_execute("DELETE FROM Dogs WHERE age < 5;"); */
delete_record(0, "Cats.inq", key_type_numeric_unsigned, sizeof(int),
(sizeof(int) * 3)+(sizeof(char) * 70), 3, 4, iinq_less_than, 5);
Listing 25. Translated IINQ Delete statement

22

The variable arguments in a DELETE include the field number to check in the WHERE
condition, the operator, and the value to compare the field value to. Through the use of the
where function, as outlined in detail in section 3.3, delete_record is able to support
an unlimited number of WHERE clauses.

3.5 Select

 The SELECT command allows users to draw meaningful insights and conclusions
from querying the records. SELECT can be extended to support complex queries, however,
as outlined in Section 2.2.5, IINQ's implementation of SELECT is limited to selecting a
field list from one table with an unlimited number of WHERE conditions. The function
signature of IINQ's SELECT command follows standard SQL syntax, as outlined in Listing
26.

iinq_result_set
iinq_select(int id, char *name, ion_key_type_t key_type, size_t key_size,
size_t value_size, int num_wheres, int num_fields, int num, ...);
Listing 26. IINQ Select function signature

From Listing 26, it is evident that the SELECT function signature resembles update very
closely. However, the parameters of iinq_select also include the number of fields in
the field list to return, to accommodate getInt and getString. The user code to
perform SELECT, followed by the translated iinq_select code, is shown in Listings
27 and 28. An iinq_result_set struct is returned from the SELECT command,
modelling how an SQL SELECT statement is processed in Java using JDBC [26]. This
struct contains a pointer to retrieve the next record stored in the temporary IonDB
dictionary containing all of the records from the user specified table which passed the given
WHERE conditions. The values of the records in the temporary dictionary are condensed to
only include the fields listed in the field list.

iinq_result_set rs1 = SQL_select("SELECT id, name FROM Dogs WHERE
 age < 10;");
Listing 27. IINQ Select statement

/* iinq_result_set rs1 = SQL_select("SELECT id, name FROM Dogs WHERE age
< 10;"); */
iinq_result_set rs1 = iinq_select(0, "Cats.inq",
key_type_numeric_unsigned, sizeof(int), (sizeof(int) * 2)+(sizeof(char)
* 30), 3, 2, 5, 4, iinq_less_than, 10, 1, 2);
Listing 28. Translated IINQ Select statement

Following the return of the result set iterator, the user is able print or process the records
accordingly. To accommodate this, getInt and getString have been implemented to
allow the user to print specific fields stored within the returned record. The function
signatures of these helper functions are shown in Listings 29 and 30.

int getInt(iinq_result_set *select, int field_num);
Listing 29. IINQ GetInt function signature

23

char* getString(iinq_result_set *select, int field_num);
Listing 30. IINQ GetString function signature

The above functions can be called with the result set to aid the user in, for example, printing
a specific field value. The field number passed to the function in this case does not
correspond to the field's listing in the table schema, but instead to the field's placement
within the field list of the SELECT statement. Example user code of the user's interaction
with the result set following the execution of a SELECT statement is displayed in Listing
31. This listing demonstrates the intentional similarity between IINQ user code and JDBC
SQL statement processing.

while (next(&rs1)) {
 printf("ID: %i,", getInt(&rs1, 1));
 printf(" name: %s\n", getString(&rs1, 1));
}
Listing 31. Example IINQ Select processing

With the use of getInt and getString, the records returned by SELECT can be
processed in any way the user wishes by accessing the fields independently, and in no
particular order. An overview of the iinq_select process is outlined in Figure 4.

Figure 4. IINQ Select process

24

3.6 Drop

 The simplest SQL command is arguably DROP TABLE, as the only user provided
information needed is the table name. Following regular SQL syntax, the IINQ user code
to drop a table is shown in Listing 32 below.

SQL_execute("DROP TABLE Dogs;");
Listing 32. IINQ Drop Table statement

Due to the simplicity of the command, the translated user code is one functional call with
the table name as the only parameter, as demonstrated in Listing 33.

/* SQL_execute("DROP TABLE Dogs;"); */
drop_table("Dogs.inq");
Listing 33. IINQ Drop Table statement

As drop_table takes the table name as a parameter, the underlying code is generic and
therefore can be used to destroy any table from memory.

4. Experimental Results

4.1 Testing Environment

 Performance testing of IINQ commands are run on an Arduino ATmega2560
microcontroller with an Ethernet shield and microSD card. This model of embedded device
is equipped with 256 KB of Flash memory and 8 KB of SRAM, not including the added
capacity of the microSD card [27]. It has a clock speed of 16 MHz [27].

 The following test cases have been broken into SQL commands. For each IINQ
SQL function, variations of the test are also performed when applicable, such as different
tests with a variable number of WHERE conditions. Each test follows the same table schema,
with a record composed of two integers and a character array of length 30, which equals a
value size of 38 bytes. Due to the user defined schema, these tests results may not be
replicable with a larger record size, however, the performance may be exceeded with
smaller records. Although create_table and drop_table are not explicitly
included in the test cases below, they are imperative to each scenario as they facilitate the
functionality of each test.

 As testing is performed on a memory constrained device, we must be certain that
IINQ has stringent memory management. To ensure this, testing was also performed using
Valgrind [28]. This tool allowed all memory leaks to be caught and resolved, guaranteeing
that IINQ is of high quality and suitable for embedded devices.

25

 The graphs included in the testing results below all follow the same format. The x-
axis shows the number of records within the created table, and the y-axis signifies the
number of milliseconds elapsed while performing 5 iterations of the particular command.

4.2 Insert

4.2.1 Simple Insert Statement

 This test case follows the INSERT statement format outlined in Listing 16. From
testing we calculate the mean and standard deviation of performing 5 insertions, in the
simplest case, to be 350.447 ms and 22.217 ms, respectively. Figure 35 demonstrates the
testing results.

Figure 5. Performance of an insert.

It is evident from Figure 35 that as the table size increases, the time taken to perform 5
insertions does not differ drastically.

4.2.2 Prepared Insert Statement

 Differing from the simple INSERT case demonstrated above, we also tested
prepared INSERT statements as outlined in Listing 17. This insertion has the added step
of updating the record value with a parameterized value. The mean and standard deviation
of performing 5 prepared statement insertions are 354.993 ms and 47.286, respectively.
Although this mean does not vary widely from the mean calculated for a simple INSERT,
the standard deviation of a prepared statement insertion is double. This variation in the data
may be due to outliers during testing. In addition, the optimization of the C code has been
performed prior to run-time, therefore the two INSERT statements are identical with the

26

small added step of the byte array value update for a prepared statement, which does not
decrease performance time substantially. The results of this test are shown in Figure 6.

Figure 6. Performance of a prepared statement insert.

4.3 Update

 Multiple tests were performed to evaluate the performance of UPDATE, DELETE,
and SELECT, as their architecture contains additional computation and function calls.
Hence, testing for these commands was repeated with variations of parameters, including
the number of WHERE conditions and the number of fields to update.

4.3.1 Update Statement – 1 field to update, 1 where condition

 This test case refers to an UPDATE statement with one field to update in the
command, and one WHERE condition for the records to pass. The mean of the performance
of this test is 4066.14 ms with a standard deviation of 1135.427 ms. The full results are
displayed in Figure 7.

27

Figure 7. Performance of an update with one field, one where condition.

4.3.2 Update Statement – 1 field to update, 3 where conditions

 The testing of update was repeated with 3 WHERE conditions in the command.
This test executed with a mean and standard deviation of 4025.1 ms and 1118.427 ms,
respectively. This mean slightly underperforms the mean calculated in Section 4.3.1, as
this case is more intensive as more conditions are checked due to the additional WHERE
conditions. The results of this test are shown in Figure 8.

Figure 8. Performance of an update with one field, three where conditions.

28

 4.3.3 Update Statement – 3 fields to update, 1 where condition

 UPDATE was also tested with respect to the performance time to update multiple
fields within the record. This test was repeated with varying numbers of WHERE conditions.
The mean time to update 3 fields in a record that has met one WHERE condition is 4066.407
ms, with a standard deviation of 1135.149 ms. These calculations are almost identical to
Section 4.3.1; therefore, it can be assumed that updating multiple fields in the record does
not add much time to the performance of the command. Figure 9 shows a graph of the
results of this test.

Figure 9. Performance of an update with three fields, one where condition.

4.3.4 Update Statement – 3 fields to update, 3 where conditions

 To gather comprehensive testing of the UPDATE command, it was also evaluated
with respect to updating 3 fields in a record that has passed 3 WHERE conditions. Although
update could be tested further with additional fields to update and WHERE conditions, it
is unlikely for such an occurrence to happen with regular use. However, IINQ does support
updating more than 3 fields as well as more than 3 WHERE conditions. The mean of this
test is 4199.413 ms with a standard deviation of 1197.638 ms. This mean is the largest of
the update tests due to its computational complexity. The full test results are
demonstrated in Figure 10.

29

Figure 10. Performance of an update with three fields, three where conditions.

It is evident from Sections 4.3.1 – 4.3.4 that the variance of performance time of the
update tests is much greater than that of INSERT testing, as exemplified by the test
standard deviations. Hence, we observe that table size has a greater impact on commands
such as update.

4.4 Delete

 Testing of DELETE was performed in a method similar to the UPDATE command
testing. IINQ code for performing DELETE commands with a varying number of WHERE
conditions was generated and evaluated by performing the command on 5 records.

4.4.1 Delete Statement – 1 where condition

 Results were gathered from performing DELETE on a table with varying size from
5 to 750 records. In this case, the DELETE statement contained one WHERE condition to
be evaluated. This produced a mean and standard deviation of 4114.293 ms and
1181.276 ms, respectively. Figure 11 shows the full results of the test.

30

Figure 11. Performance of a delete with one where condition.

4.4.2 Delete Statement – 3 where conditions

 The testing of delete_record was repeated with 3 WHERE conditions to
evaluate. This generated a mean of 4128.927 ms, with a standard deviation of
1189.177 ms. More exhaustive testing for DELETE commands is possible through an even
greater number of WHERE conditions, however, for regular use 3 conditions is sufficient.
The results of this test are demonstrated in Figure 12.

Figure 12. Performance of a delete with three where conditions.

31

The results of delete_record testing are comparable to update, as expected, due to
their similar architecture and implementation.

4.5 Select

 SELECT is the most complex SQL operator, however, IINQ only currently supports
selecting a field list from a single table with WHERE conditions. Therefore, testing is
performed using a varying number of WHERE conditions. The number of fields in the field
list is constant at 2 as this variation causes insignificant changes in the performance of the
command. In addition, getInt and getString are not included in testing as it is user
responsibility how to use the returned record and does not affect the performance time of
iinq_select.

4.5.1 Select Statement – select 2 fields, 1 where condition

 The results gathered from testing iinq_select with a single WHERE condition
and a field list of two fields produced a mean and standard deviation of 3439.193 ms and
841.821 ms, respectively. Although this mean time is greater than UPDATE and DELETE
commands, it is more consistent with a smaller standard deviation. Figure 13 exhibits the
full results of this test.

Figure 13. Performance of a select with one where condition.

32

4.5.2 Select Statement – select 2 fields, 3 where conditions

 Comparably, testing a SELECT command now with 3 WHERE conditions produces
a mean of 3470.173 ms, with a standard deviation of 856.491 ms. Hence, in comparison to
Section 4.5.1, evaluating multiple WHERE conditions does not considerably impede the
performance of iinq_select. The testing results are shown in full in Figure 14.

Figure 14. Performance of a select with three where conditions.

As no operations are performed on the records in the table in question during a SELECT
command, it outperforms both update and delete_record.

5. Conclusions and Future Work

 IINQ SQL syntax was created to support SQL user code while remaining
performance competitive in a microprocessor environment. As these devices are memory
constrained, the SQL Java translator of IINQ only includes the source code for the
functions immediately called in the user code. IINQ also accommodates users by
supporting SQL syntax as closely as possible, while complying to the C language structure.
Development was impeded by alternating between the translation of the user code, while
parsing through the Java translator, and the functionality of the generated C code. However,
the concealment of all complex code from the user ensures that IINQ is as user-friendly as
possible.

33

 With further development, IINQ could be extended to include other important
features of SELECT. These include aggregate operators, GROUP BY clauses, and ORDER
BY clauses, for example. To truly replicate a relational database, these additional keywords
are essential for complex queries. As demonstrated through intensive testing, this query
language accomplishes the goals put forth to utilize the functionality of IonDB while
adhering to the SQL standard, in a convenient and performance competitive manner.

34

References

[1] G. Milener, C. Rabeler and C. Guyer, "Structured Query Language (SQL)," 19

January 2017. [Online]. Available: https://docs.microsoft.com/en-
us/sql/odbc/reference/structured-query-language-sql. [Accessed 27 February 2018].

[2] D. Lorentz and J. Gregoire, "Oracle Database SQL Reference," December 2003.
[Online]. Available:
https://docs.oracle.com/cd/B13789_01/server.101/b10759/intro001.htm. [Accessed
22 February 2018].

[3] P. Garner and J. Mariani, "Learning SQL in steps," Journal of Systemics,
Cybernetics and Informatics, vol. 13, no. 4, p. 19, August 2015.

[4] IonDB Project, "IonDB," [Online]. Available: http://iondb.org. [Accessed 20
February 2018].

[5] D. Box and A. Hejlsberg, "LINQ: .NET Language-Integrated Query," February
2007. [Online]. Available: https://msdn.microsoft.com/en-
us/library/bb308959.aspx. [Accessed 4 March 2018].

[6] G. Harshini and M. R. Sreeha, "Internet Of Things And Analytics," International
Journal of Scientific & Technology Research, vol. 6, no. 08, p. 287, August 2017.

[7] Office of the Privacy Commissioner of Canada. Policy and Research Group, &
Canadian Government EBook Collection, The internet of things: An introduction to
privacy issues with a focus on the retail and home environments, Gatineau: Policy
and Research Group of the Office of the Privacy Commissioner of Canada, 2016.

[8] J. M. Hughes, Arduino: A Technical Reference, Sebastopol: O'Reilly Media, 2016.
[9] S. Fazackerley, E. Huang, G. Douglas, R. Kudlac and R. Lawrence, "Key-value

store implementations for Arduino microcontrollers," in 2015 IEEE 28th Canadian
Conference on Electrical and Computer Engineering (CCECE), Halifax, 2015.

[10] IonDB Project, "Basic User Interface," 6 July 2017. [Online]. Available:
https://github.com/iondbproject/iondb/wiki/Basic-User-Interface. [Accessed 4
March 2018].

[11] S. D. J. MacBeth, "Linear Hashing for Flash Memory on Resource-Constrained
Microprocessors," University of British Columbia - Okanagan, Kelowna, 2017.

[12] W. Penson, E. Huang, D. Klamut, E. Wardle, G. Douglas, S. Fazackerley and R.
Lawrence, "Continuous Integration Platform for Arduino Embedded Software," in
2017 IEEE 30th Canadian Conference on Electrical and Computer Engineering
(CCECE), Windsor, 2017.

[13] A. Beaulieu, Learning SQL, Second Edition, 2nd Edition ed., O'Reilly, 2009.
[14] M. T. González-Aparicio, M. Younas, J. Tuya and R. Casado, "Testing of

transactional services in NoSQL key-value databases," Future Generation
Computer Systems-the International Journal of Escience, vol. 80, pp. 384-399,
March 2018.

[15] H. Köhler, U. Leck and X. Zhou, "Possible and certain keys for SQL," The VLDB
Journal, vol. 25, no. 4, pp. 571-596, August 2016.

35

[16] P. Seshadri and P. Garrett, "SQLServer For Windows CE – A Database Engine for
Mobile and Embedded Platforms," in Proceedings of 16th International Conference
on Data Engineering, San Diego, 2000.

[17] G.-J. Kim, S.-C. Baek, H.-S. Lee, L. Han-Deok and M. J. Joe, "LGeDBMS: a small
DBMS for embedded system with flash memory," in VLDB '06 Proceedings of the
32nd international conference on Very large data bases, Seoul, 2006.

[18] M. Rosenmuller, N. Siegmund, H. Schirmeier, J. Sincero, S. Apel, T. Leich, O.
Spinczyk and G. Saake, "FAME-DBMS: Tailor-made Data Management Solutions
for Embedded Systems," in SETMDM '08 Proceedings of the 2008 EDBT workshop
on Software engineering for tailor-made data management, Nantes, 2008.

[19] M. Rosenmuller, S. Apel, T. Leich and G. Saake, "Tailor-made data management
for embedded systems: A case study on Berkeley DB," Data & Knowledge
Engineering, vol. 68, no. 12, pp. 1493-1512, 2009.

[20] E. Booker, "Big databases get small -- IBM DB2, Oracle to be released for mobile
and embedded devices," InternetWeek, no. 766, p. 9, 1999.

[21] M. Fotache, "Data Processing Languages for Business Intelligence. SQL vs. R,"
Informatica Economica, vol. 20, no. 1/2016, pp. 48-61, March 2016.

[22] E. Macauley, B. Kess and C. Guyer, March 2017. [Online]. Available:
https://docs.microsoft.com/en-us/sql/t-sql/statements/statements.

[23] K. Morton, K. Osborne, R. Sands, R. Shamsudeen and J. Still, Pro Oracle SQL,
Second Edition, 2nd Edition ed., New York: Apress, 2013.

[24] D. Laudenschlager, C. Guyer, G. Milener and R. Byham, "SELECT (Transact-
SQL)," 24 October 2017. [Online]. Available: https://docs.microsoft.com/en-
us/sql/t-sql/queries/select-transact-sql. [Accessed 22 February 2018].

[25] E. Macauley, R. Byham and C. Guyer, "DROP TABLE (Transact-SQL),"
Microsoft, 12 May 2017. [Online]. Available: https://docs.microsoft.com/en-
us/sql/t-sql/statements/drop-table-transact-sql. [Accessed 3 April 2018].

[26] Oracle, "Processing SQL Statements with JDBC," [Online]. Available:
https://docs.oracle.com/javase/tutorial/jdbc/basics/processingsqlstatements.html.
[Accessed 4 April 2018].

[27] Arduino, "Arduino MEGA 2560 & Genuino MEGA 2560," [Online]. Available:
https://www.arduino.cc/en/Main/ArduinoBoardMega2560?setlang=en. [Accessed 6
April 2018].

[28] Valgrind Developers, "Valgrind," Valgrind, [Online]. Available: http://valgrind.org.
[Accessed April 10 2018].

	Table of Listings
	1. Introduction
	1.1 Embedded Devices
	1.2 IonDB
	1.3 Query Languages
	1.4 Motivations
	1.5 Contributions

	2. Background
	2.1 IoT Databases
	2.2 SQL
	2.2.1 Create Table
	2.2.2 Insert
	2.2.3 Update
	2.2.4 Delete
	2.2.5 Select
	2.2.6 Drop Table

	3. Architecture
	3.1 Create
	3.2 Insert
	3.3 Update
	3.4 Delete
	3.5 Select
	3.6 Drop

	4. Experimental Results
	4.1 Testing Environment
	4.2 Insert
	4.2.1 Simple Insert Statement
	4.2.2 Prepared Insert Statement

	4.3 Update
	4.3.1 Update Statement – 1 field to update, 1 where condition
	4.3.2 Update Statement – 1 field to update, 3 where conditions
	4.3.3 Update Statement – 3 fields to update, 1 where condition
	4.3.4 Update Statement – 3 fields to update, 3 where conditions

	4.4 Delete
	4.4.1 Delete Statement – 1 where condition
	4.4.2 Delete Statement – 3 where conditions

	4.5 Select
	4.5.1 Select Statement – select 2 fields, 1 where condition
	4.5.2 Select Statement – select 2 fields, 3 where conditions

	5. Conclusions and Future Work

