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Abstract

To meet the demand for increasingly accurate sensor monitoring and
forecasting, time series datasets have grown to take larger, more detailed
samples with more frequent sampling rates. As a result, the size of time
series datasets has grown larger and now require more efficient indexing
methods to manage properly. Time series databases have unique traits that
allow for efficient indexing structures to be used. The timestamps are always
increasing in an append-only fashion, a characteristic which can be exploited
to create more efficient indexing structures. In this research, two different
indexing algorithms for time series databases are evaluated. The spline index
model uses existing points of the time series data to form a series of linear
approximations. The other index model examined is the piece-wise geometric
model (PGM), which forms fully independent lines that approximate the
underlying time series data. Experimental results show both the Spline and
PGM learned indexes outperform conventional indexes for time series data.
Performance metrics for binary search and simpler single line approximations
are also included for comparison.
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Lay Summary

Wireless sensor networks monitor and collect data in areas too large to
be covered by a single sensor, or in scenarios where it is impractical to run
cables to every individual sensor device. Sensor network nodes are comprised
of battery-powered embedded devices with flash storage that communicate
using a wireless radio. Data gathered by sensor nodes can be transmitted
directly to a base station where it is stored and processed, however, lower
energy consumption (and longer battery life) can be achieved by processing
the data locally. Local data processing requires an efficient data indexing
structure optimized for flash memory with the limited CPU and memory re-
sources available to an embedded device. In this work we modify two learned
indexing structures (Spline and PGM) to support the continuous appending
functionality required for continuously generated sensor data. Benchmark
results on ordered data sets show performance advantages compared with
conventional indexes.
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Chapter 1

Introduction

A time series is a set of data indexed using temporal information. This
type of data set is generally sorted by their temporal indexes and are com-
monly used to track metrics over a period of time. A typical time series
data point is comprised of a data segment, coupled with a temporal index.
The data segment can contain arbitrary information and can contain mul-
tiple fields. The temporal index must contain some descriptor of the time
associated with the data segment. Data organized in this way can be used
to monitor changes, extrapolate trends, and find patterns that emerge when
comparing data points against themselves at different points in time.

Time series databases are software solutions designed to handle time
series data and provide the means to efficiently insert new data points and
to query for existing data within a time series dataset. Time series databases
are commonly applied in fields such as meteorology, finance, and economics
where time-dependent data such as stock prices, climate information, and
macroeconomic data can be stored and analyzed. These are fields in which
forecasting is a major point of interest, and in which significant value can be
extracted from correct predictions of future trends.

They are also used in a variety of other applications with a focus on mon-
itoring. Examples include manufacturing, power grids, and retail. In these
scenarios, reacting to changing conditions in real time is a major interest,
and time series databases are able to send out notifications to the end users if
production falls too far behind schedule, power demands spike unexpectedly,
or if product inventory falls to a critical level. Generally, organizations use
time series databases to gain insights into their data, predict about future
trends, and optimize ongoing operations.

A notable use-case example of time series data logging is their applica-
tions in agriculture. Deployments of embedded sensor devices could directly
reduce operating costs and increase profits from crop yields by continuously
sampling the environment to generate time series data. Soil moisture sensors
can enable the use of targeted irrigation, reducing costs by watering crops
only in parts where it is necessary. Temperature, humidity, and precipitation
data can inform personnel of abnormal weather conditions so they have a
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chance to take preventative measures for preventing crop loss.
Time series data is typically collected with a consistent sampling interval,

the result of which are timestamps that are equally spaced apart. These data
points are then stored on disk for later retrieval. By applying a mathematical
model on top of the timestamps, it is possible to estimate the approximate
index of a specific data slice. Indexes can then be used to generate the disk
location of a specific data slice, which reduces the number of disk access and
comparison operations needed to complete a database search.

When time series are sampled regularly with zero missed sampling points,
a simple linear model would be sufficient to accurately predict the position
of any data point. However, time series datasets in practice often have
missed samples, or are only sparsely populated on demand. For example,
meteorological stations may opt to skip certain reporting intervals due to
maintenance operations or equipment failure. Additionally, in applications
where energy efficiency is critical (such as with battery powered devices),
a design decision may be implemented to only record new data samples
when noteworthy observations are made. With these sparsely populated
time series, a more sophisticated indexing method is necessary.

Machine learning models have seen significant research in recent years re-
garding their applicability in the enterprise database area [KBC+17]. These
models aim to improve upon the performance offered by traditional indexing
methods by fitting the patterns in the underlying distribution of the data.
Piecewise linear functions are a type of learned indexes that have been ap-
plied in the field of machine learning and big data as an efficient method
of approximating a Cumulative Distribution Function (CDF). The memory
efficiency of these models makes it possible to index massive datasets where
a conventional index may not fit in memory [ALAB+20], but it could also
lend itself well in situations where limited hardware resources are available.

This work adapts learned indexing techniques, specifically the Spline and
PGM piecewise linear functions, originally designed for server applications
for indexing time series data on embedded devices. A key contribution is sup-
porting incremental appends as a sensor collects time series data over time.
The performance of these index structures is benchmarked against other in-
dexing methods using metrics such as memory consumption, IO count, and
throughput. We demonstrate the advantages of applying a learned index
for time series data supported by our experimental benchmarking results on
real-world datasets.

The contributions of this thesis are:

− A C implementation of the Spline and PGM learned indexes for limited
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memory embedded systems

− The addition of append support for the Spline and PGM indexes

− Performance evaluations of the Spline and PGM learned indexes against
the SBITS conventional index for multiple real-world sensor data sets

The organization of this thesis is as follows. Chapter 2 provides back-
ground on database systems and indexing with specific details on unique
challenges and solutions for indexing on embedded devices and sensor net-
works. Chapter 3 describes the methodology for adapting existing learned
indexes to support embedded time series data and incremental appends.
Implementation details are described in Chapter 4. Experimental results in
Chapter 5 demonstrated improved performance of learned indexes compared
to the state of the art. The thesis closes with conclusions and future work.
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Chapter 2

Background

2.1 Database Systems

After the introduction of random access storage, the Relational Model
popularized the notion that applications should query for data by content.
This requires data to be organized in a way such that their semantic purpose
was integrated into the structure. The concept of the database “table” was
created to fulfill this purpose, with each table being designated to contain
data of a specific type and function. A table consists of rows and columns,
where each row represents a record and each column represents a field within
the record. Records are also commonly referred to as tuples. The columns
define the type of data that can be stored in each field, such as text, numbers,
or dates. For example, a table that holds student records for the purpose
of school administration might have a text column to contain the student’s
name, a number column that contains the student’s grade number, a number
column to hold the student’s age, and another number column containing
a unique identifier tied to the student. A populated table following this
structure is shown in Table 2.1(a). The data types defined by the columns
must be met for all student information to be inserted into the table. A
formatted piece of information with the correct number of fields containing
the correct data types as defined by the database table can then be inserted as
a “row” in the database. A database row can only be inserted into a database
table if and only if the row has the correct number of fields required by the
table, with each field containing the correct data types. Tables within a
database can be related to one another through common keys and indexes,
which allow for the retrieval of data from multiple tables based on common
values. Tables are the building blocks of relational databases and are used
to store and manage large amounts of structured data.

Software used to manage and organize relational databases (as well as
other types of databases) are called Database Management Systems (DBMS).
They provide tools and features for creating, maintaining, and accessing
databases, including data modeling, data manipulation, data security, and
data retrieval. The DBMS acts as an interface between the database and the
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2.1. DATABASE SYSTEMS

StudentID StudentName Grade Age
0 David 1 6
1 John 1 7
2 Joseph 1 7
3 Alex 1 6
4 Lisa 1 6
5 Allie 2 7
6 Jessica 2 8
7 Jake 2 8
8 Chris 2 7
9 George 2 7
10 Polly 3 9
11 Brock 3 8
12 Shawn 3 8
13 Jeff 3 8
14 Peter 3 9
15 Jason 4 10
16 William 4 9
17 Danny 4 10
18 Zack 4 9
19 Bill 4 9

(a) Students Table

TeacherID TeacherName Subject
0 Emma Math
1 Gerald English
2 Molly Science
3 Harold Social Studies

(b) Teachers Table

Grade TeacherID
1 0
2 1
3 2
4 3

(c) Homeroom Table

StudentName TeacherName
John Emma

Joseph Emma
Allie Gerald
Chris Gerald

George Gerald

(d) Query Result For Age 7 Students
And Their Homeroom Teachers

Table 2.1: Relational Database Tables

applications that use it, allowing users to interact with the database without
having to understand the underlying data structures. DBMSs can be rela-
tional, NoSQL, or a combination of both, and they are essential for managing
large amounts of data in organizations and businesses. Examples of popular
DBMSs include Oracle, Microsoft SQL Server, MySQL, and PostgreSQL.

To interact with relational databases, a querying language is needed.
SQL (Structured Query Language) is a standard programming language for
managing relational databases. It is used to create, modify, and query re-
lational databases. SQL is used to interact with a relational database man-
agement system (DBMS) and perform tasks such as:

− Creating and modifying database structures, including tables, views,
indexes, and constraints.

− Inserting, updating, and deleting data in a database.

− Retrieving data from a database, using SELECT statements to retrieve
specific data based on criteria.

− Grouping and aggregating data, using aggregate functions such as
SUM, AVG, and COUNT.

5



2.1. DATABASE SYSTEMS

− Joining data from multiple tables using join operations to combine data
from multiple tables into a single result set.

SQL is a declarative language, meaning that you specify what you want
to do, and the database management system takes care of the details of how
to do it. This makes it a high-level language that is easy to use, even for
non-programmers. SQL has been widely adopted as the standard for rela-
tional database management and is supported by a wide range of database
management systems. It is widely used in various industries and has become
a standard language for accessing and managing data in relational databases.
Using the school administration example, we can write a specific SQL query
to show the names of students and their homeroom teachers. We can then
apply a filter to only show students of age 7. The full SQL query of this
example is:

SELECT
StudentName, TeacherName

FROM
HOMEROOM
NATURAL JOIN STUDENTS
NATURAL JOIN TEACHERS

WHERE
STUDENTS.Age = 7;

The result set from executing this query is shown in Table 2.1(d).
To uniquely differentiate all entries stored within a database table, each

database tuple contains a unique identifier. This unique identifier is referred
to as the primary key. It is used to enforce referential integrity, which en-
sures that all records in a database are individually addressable and that re-
lationships between database tables are maintained. Database keys are also
used to enforce constraints between tables in a relational database. These
constraints ensure the accuracy and consistency of data in the database.
Primary keys belonging to other tables are referred to as foreign keys. Some
examples of keys are: a timestamp/datecode, a numerical ID generated by
the database software, or a text field containing some unique data descrip-
tor. On our school administration example, the TeacherID column on the
Homeroom table is a foreign key that corresponds to the primary key on the
Teachers table. These keys represent a relationship between the two tables,
and allow them to be joined into a combined table like shown on Figure 2.1.

To store data within a physical storage medium, the DBMS must typ-
ically interact with the host operating system. The operating system then

6



2.2. DATABASE INDEXES

Figure 2.1: Database Keys

interfaces with the storage device, creating an abstraction layer which is il-
lustrated in Figure 2.2. When data is stored on a disk, it is stored in blocks
consisting of a contiguous number of bytes. Operating systems may choose
to use any arbitrary block size, but it is typically between 4 KiB and 64
KiB. By using a larger block size, the operating system needs to index fewer
blocks for the entire size of the storage device, which greatly benefits memory
constrained devices.

2.2 Database Indexes

To improve querying and general database performance, indexes are often
used in conjunction with a search algorithm to reduce the number of com-
parisons and disk access operations. As noted previously, storage devices
must be written to in blocks. All tuples stored within the database must be
distributed into these blocks before they can be written to storage. Storage
blocks are not guaranteed to be contiguous and may be spread throughout
the storage media. This presents problems in the context of a database ap-
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2.2. DATABASE INDEXES

Figure 2.2: Hardware Abstraction Layers for Database Storage

plication, where a query operation searching for a specific piece of data must
search through the storage device block by block until the correct query re-
sult is found. This means that to fulfill certain database queries, all the disk
blocks containing database information must be read, and no search algo-
rithm can be used. Indexes solve this issue by creating an organized data
structure that stores database keys along with the corresponding pointers
to the physical addresses of the data block stored on disk. This can reduce
the total number of disk access operations necessary for most database op-
erations by determining the correct pointer to the storage block containing
the needed data instead of reading and searching through multiple blocks.
According to [Gra93], there are several indexing approaches.

8



2.2. DATABASE INDEXES

Figure 2.3: B-Trees

B-trees [Com79] are the most common and widely used database index.
Many derivatives of the B-tree implementation are also in use, including B+
trees which have improved scan speed, and B* trees which have superior
space utilization for random inserts. The base implementation of a B-tree is
made up of several different types of nodes: internal nodes, leaf nodes, and
the root node. These different node types are shown in Figure 2.3. All nodes
contain index keys and pointers to the physical storage block that contains
the relevant database tuple that correspond with their index key. The root
node acts as the point of entry for all querying operations. This node can
either be a leaf node, or have links to one or more child nodes. Child nodes
can be either leaf nodes or internal nodes. Leaf nodes are nodes that do not
have any children, and just contain an index key and pointer. Internal nodes
are nodes that have one or more child nodes but are not the root node. These
nodes contain keys known as pivots which determine the value ranges that
their child nodes are split upon. On our B-tree example shown in Figure 2.3,
the root node contains a single pivot with a value of 5. Consequently, this
means that all child nodes on the left of the root node contain values less
than 5, and all child nodes to the right of the root node contain values larger
than 5. This same logic applies recursively for all nodes with child nodes to
the left and right. Nodes that contain more than one pivot also have more
than two child nodes. On our B-Tree example, the root node’s right child
contains two pivot values of (009, 011). As such, it accommodates a total of
three child nodes. Left child nodes are smaller than the smallest pivot (009),
middle child nodes are values between 009 and 011, and right child nodes
contain values larger than 011. Nodes containing more pivots accommodate
even child nodes that have values between the pivots.

Linear hashing [FOKM+20] is another indexing method that aims to
reduce the number of disk lookups by determining the physical address of

9



2.2. DATABASE INDEXES

Figure 2.4: Hash index

an indexed database tuple by using a hashing method. Hashing algorithms
are able to deterministically generate a hash for an arbitrary input key.
This is illustrated in Figure 2.4. Note that collisions are possible where
two input keys generate the same hash. When hashes are used correctly
and collisions are minimized, hashing can be very fast for individual value
lookups. A trade-off for this performance is that the index does not support
range operations.

R-trees are another type of tree that are specially suited for multi-
dimensional querying. R-trees operate by organizing data into a series of
minimum bounding rectangles (MBRs), where each rectangle fully encap-
sulates its children with the smallest possible margins. These MBRs are
then used as the pivot points in a tree structure, where coordinates can be
searched according to the bounding region that the point is located in. An
example of an R-Tree structure is shown in Figure 2.5, along with its spatial
representation. Note that all child elements are fully encapsulated in the
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Figure 2.5: R-Tree index

MBR of the parent element.

2.3 Flash Indexes

The indexing strategies discussed thus far were developed primarily for
the spinning magnetic hard disk. In recent years, Solid State Drives (SSDs)
have become increasingly popular. SSDs use NAND flash as the storage
medium rather than spinning magnetic disks, offering performance, durabil-
ity, and power consumption advantages, but also some unique characteristics
not present on magnetic hard disks [FABM19]. One such idiosyncrasy is that
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pages can be individually updated on magnetic storage disks, whereas NAND
memory must perform an erase and a write to complete the same operation.
This is because pages stored on NAND flash cannot be directly overwritten
like they can on a magnetic hard drive. Instead, groups of pages called an
(erase) block must be erased before new data can be written (erase-before-
write). This presents two problems, one of performance, and the other of
device longevity. The performance problem is intuitive to understand, where
updating a single page may require a block erase consisting of multiple pages.
A update-in-place operation is extremely costly requiring reading the block
of pages into memory, erasing the block, then writing back all pages includ-
ing the updated page. In practice, an update to an existing page is written
somewhere else in storage and a flash translation layer (FTL) used to map
logical page addresses to physical locations. The longevity problem stems
from the fact that NAND flash cells have a limited number of erases it can
perform before the cell can no longer reliably hold data. Performing re-
peated updates on a single page (with each update involving an erase and
write cycle) quickly wears down flash cells which can result in reliability
problems. Manufacturers of SSDs know about these issues and have imple-
mented firmware solutions to help mitigate them. These mitigations often
involve writing an updated block (along with the rest of the page that the
block resides in) in a new page and marking the old page as “deleted” with
a tombstone marker in the drive’s internal lookup table. This alleviates the
immediate performance penalty of having to perform a page-wide erase but
will need a garbage collection process to clear the tombstone pages when the
SSD is idle. These mitigations are packaged together into the interface that
manages the NAND flash on the storage drive and handles communication
with the host device. This firmware is known as the Flash Translation Layer
(FTL) and is able to spread the wear of the flash cells on an SSD evenly
between the available flash packages instead of wearing out a single flash
cell prematurely. However, it is still imperative to explore indexing methods
that address the shortcomings of NAND storage, as the FTL cannot perfectly
mitigate the issues associated with an indexing scheme that was originally
designed to be used with a different storage technology. The existing flash
indexing schemes can be broadly separated into three different categories:
B-tree based indexes, skip list based indexes, and hash-based indexes.
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2.3.1 B-tree Based Flash Indexes

BFTL [WKC07], IBSF [LL10], RBFTL [XYLW08]

BFTL was the first index designed for SSDs that utilized B-trees. This
index combines an LSM tree [OCGO96] with a write buffer (called the “reser-
vation buffer”) to cache disk operations in the form of “IU records”. LSM
trees are able to batch random writes together to create blocks of sorted
sequential writes before they become IU records. Each IU record contains
information on the type of operation, the key used, and the tree nodes af-
fected. When the reservation buffer fills up, IUs are organized by the nodes
they affect, then written to NAND. This organization process may result in
IUs from different nodes sharing a NAND page. Thus, this index uses an
accompanying Node Translation Table (NTT) to reconstruct the tree struc-
ture from the data contained on the NAND. Improvements to BFTL such as
IBSF and RBFTL employ better buffer management schemes to avoid split-
ting up nodes into different flash pages, and in the case of RBFTL, employs
the usage of a small NOR flash cache to backup IUs before inserting them
into the buffer.

Lazy-Update B+tree [OHLX09], MB-tree [RKKP09], uB+tree
[Vig12], PIO B+tree [RPSL14]

These indexes also aim to delay update operations by buffering them
in memory using a tree structure. Lazy-Update B+tree achieves this by
buffering updates using the leaf nodes of a tree structure. This process is
resource intensive, requiring CPU and memory resources to repeatedly query
the tree nodes. MB-Tree attempts to address this by using fat leaves on the
tree structure. These fat leaves require the use of additional nodes, which also
needs hardware resources to query. The uB+tree (short for unbalanced tree)
forgoes the tree balancing operation for as long as possible, thereby saving
on write operations. Tree nodes are assigned additional overflow nodes as
needed, until they are read a specified number of times, at which point the
nodes are finally split and balanced in a regular fashion. The PIO B+tree
further improves performance by batching multiple IO operations to perform
at once, exploiting the parallelization capabilities of modern SSDs.

FD-tree [LHY+10]

FD-tree has the additional capability to transform many small random
writes into sequential reads and writes. As sequential reads and writes are
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much faster than random reads and writes, this transformation has signifi-
cant performance advantages when applied to SSDs. However the FD-tree
has only been experimentally validated, and it is uncertain whether it can
be used on real systems.

BF-tree [AA14]

Utilizing bloom filters, the key-memberships within B-tree nodes are
recorded and stored alongside the values. This has good search performance,
with the trade-off of costly insert performance. As such, it is designed to be
used as a bulk index, with little flexibility for updates.

AB-tree [JWZ+15]

AB-trees employ the use of buckets that serve as storage structures for
data, and buffers for IO operations. This allows delete, insert, and update
operations to be processed in batches when a buffer fills. The size of the
buckets and buffers within each tree node can also be sized dynamically
according to the workload being conducted.

FB-Tree [JRvS11]

This index tree performs all updates out-of-place, appending the updated
block in its entirety to the end of the file. As such, the newly written blocks
do not have space to accommodate additional updates. This may reduce the
overall lifespan of the SSD as it is less write-efficient for update operations.

Flash B-Tree Indexes Summary

B-Tree indexes designed for flash memory aim to reduce or eliminate the
in-place updates used by conventional B-Trees, as these operations are ineffi-
cient on flash-based storage devices. The BFTL, IBSF, and RBFTL indexes
accomplish this using a write buffer to cache disk operations before they are
written to NAND as IU records. An accompanying Node Translation Table
is used to reconstruct the tree structure from the stored IU records when the
B-Tree needs to be read.

− The Lazy-Update B+Tree, MB-Tree, uB+Tree and PIO B+Tree buffer
update operations in memory, grouped together according to the leaf
nodes that they affect. When the buffer overflows, a policy is used to
select groups to be written to disk such that overall disk writes are
reduced.
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− The FD-Tree uses a separate structure to handle updates, which is used
to turn random writes into sequential writes to improve performance.

− The BF-Tree utilizes bloom filters to record key-memberships, exhibit-
ing improved search performance at the cost of insertion performance.

− AB-Trees use buckets in-place of nodes to batch NAND update oper-
ations. The size of the buckets can be sized dynamically according to
the workload.

− FB-Trees write all updates to the end of the file, which has good
throughput performance but may reduce the overall lifespan of the
storage device, as the newly written data pages do not have space to
accommodate additional updates.

2.3.2 Skip-List-Based Indexes

Skip-lists operate using a probabilistic model, where the most commonly
accessed regions of the list have “shortcuts” that make them easily accessible
without needing to go through an extensive search process. Skip lists are
composed of multiple levels, where the base level is simply a sorted linked
list of nodes containing all data elements. Levels built on top of the base
layer are also sorted linked lists, the difference being that nodes within upper
lists contain additional pointers to other nodes from a list in a lower level.
All pointers to nodes in lower lists are accompanied by a key containing the
lowest-valued element of the node being pointed to. These keys are referred
to as “pivots” as they divide the lower levels into discrete search ranges.
Upper levels of a skip-list “skip” multiple entries in the layer below it to
allow for quick traversal to the most commonly accessed entries, skipping
over the entries that rarely get accessed. For example, the upper level on
a two-level skip list with 5 elements may choose to only have pointers to
the 3rd and 5th element on the base level list if the 2nd and 4th elements
are rarely accessed. Policies on the construction of the skip list layers vary
between implementations, some examples of which are listed below.

FlashSkipList [WF17]

FlashSkipList uses an in-memory buffer to store incoming write opera-
tions. When the buffer overflows, it is flushed to flash where it is dynamically
associated with an element in a skip-list search structure. An online com-
petitive algorithm adjusts the distribution of the write buffers within the
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skip list whenever an upper size bound is reached, or a search operation
is conducted. FlashSkipList has been experimentally demonstrated to de-
liver superior performance than the BFTL, FlashDB, LA-Tree and FD-Tree
indexes.

Write-Optimized Skip List [BFCJ+17]

Like the FlashSkipList, the Write-Optimized Skip List implementation
also uses in-memory buffers to store incoming write operations. However,
the Write-Optimized Skip List allocates additional space inside its buffers
inside the nodes of the skip-list structure for insert operations. Nodes also
contain a write buffer which splits its elements into buffers on lower levels
upon overflowing, while a new pivot is inserted into the layer above. The per-
formance of Write-Optimized Skip List has only been theoretically analyzed,
real-world performance remains un-tested.

Flash Skip-List Indexes Summary

Skip lists are able to use probabilistic models to optimize search queries
to the most commonly accessed entries. Both FlashSkiplist and Write-
Optimized Skip List have unique policies to determine how pointers within
the dataset should be organized, but Write-Optimized Skip List also incor-
porates a buffer area within the data nodes to accommodate additional data
inserts.

2.3.3 Hash-Based Indexes

Hash-based indexes are built around the hash table data structure, where
a hashing algorithm is able to evenly and deterministically distribute an
incoming stream of keys into a collection of data buckets. Pointers to the data
buckets and the hash value they are associated with are organized in a table
termed as the “directory”. When searching for a value, the key is evaluated
with the hashing algorithm, where the returned hashed value is referenced
using the directory to locate the bucket containing the value associated with
the un-hashed key. This search structure is very read efficient, as it can return
a specific pointer to the data bucket containing the desired search value often
in only one access. There are several types of hash tables including linear
hash, extendable hashing, and bloom filters. Linear hashing handles bucket
overflows by linking additional overflow buckets from the base bucket to
store overflow value entries. By comparison, extendible hashing does not use
overflow buckets. Instead, overflows are handled by increasing the size of
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the directory so that it can point to a new bucket to contain overflows. This
ensures that extendible hashing will have a O(1) worst-case access time, the
trade-off being that the directory will have a super-linear size. The bloom
filter data structure uses multiple hashing functions to generate a combined,
compound hash value. The number of hashing functions used is determined
by the desired overall error rate, since the bloom filter is able to answer set
membership queries with a chance for false-positives but zero false negatives.
This results in a very space and time efficient index. In the context of flash
memory, operations like inserting values and bucket splitting often involve in-
place updates and random writes which are detrimental for SSD performance
and longevity. The following are a selection of flash-aware hashing indexes
that attempt to remedy this problem.

LS Linear Hash [LDM08]

LS Linear hash handles bucket splitting by constantly monitoring search
performance, and only performing the bucket splitting operation when per-
formance levels fall below a threshold. Bucket splitting is then done in
batches that optimize writes in return for increased reads.

HashTree [CJY10]

HashTree uses a bounded-height FD-tree (a B-Tree structure designed
for flash) as storage buckets. The sorted values in the FD-Tree can then be
written to flash with sequential writes rather than random writes.

SAL-Hashing [JYW+18]

The buckets in SAL-Hashing are arranged together into units that are
batched together and written to disk simultaneously, taking advantage of
the fast parallel IO characteristics of SSD storage. This scheme introduces
an online algorithm to split and merge logs into buckets, which introduces a
penalty in search performance.

BBF [CMB+10], BloomFlash [DSl+11] and FBF [LDD11]

Both BFF and BloomFlash are bloom filter derivatives that use similar
approaches to incorporating bloom filters on SSD storage. Bloom filters are
split up into smaller sub bloom filters that are exactly one page in size, such
that write operations can be done without conducting any in-place updates.
A limitation of both BBF and the BloomFlash index is an upper bound
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on the number of elements that can be stored. FBF solves this issue by
organizing the sub bloom filters hierarchically such that when a level reaches
capacity, a new level is generated wherein each element in the new level
incorporates a predetermined number of blocks from the previous level.

Flash Hash Indexes Summary

Hash based indexes use hashing algorithms to split up incoming keys into
a collection of data buckets.

− LS Linear hash defers bucket splitting until performance falls below a
threshold.

− HashTree uses B-tree structures as buckets to speed up querying per-
formance.

− SAL-Hashing groups buckets together to be written to disk simultane-
ously. An online algorithm determines how to split and merge write
logs into buckets.

− BBF and BloomFlash utilize bloom filters to index pages stored on
flash. The limitation of both these indexes is the an upper bound on
the total number of elements that can be stored.

2.3.4 Flash Indexes Performance Summary

This section summarizes the performance characteristics of the indexes
discussed along with their space efficiency (if available).
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Tree-Based Indexes

Index Search Insertion/Deletion Space

BFTL h ∗ c 2( 1
M−1 + Ñsplit + Ñmerge/rotate) n ∗ c+B

IBSF h 1
niu

(Ñsplit + Ñmerge/rotate) N +B

RBFTL − − −

Lazy-Update B+Tree − − −

MB-Tree 2 + ⌈logM 2∗n
M∗nl

⌉ [3/nf ]w + [(nl + ⌈ 2∗n
M∗nl

⌉)/nf ]r N +B

uB+Tree − − −

PIO B+Tree h− 1 + tL
[
∑h−2

l=⌊6⌋
1

G(l) −
1/M ′(6%1)

G(logM′ (µ−B)−1)

+ 1
G(h−1) ]r + [ 1

G(h−1) ]w
n+ µ

FD-Tree logkn [ k
f−k logkn]srw c ∗ n

BF-Tree h+ [pfp ∗ npl]sr − n ∗ npl

AB-Tree
∑h

l=1
M ′l−1

Nl
l h/sn n

FB-Tree − − −

Skip-List-Based Indexes

Index Search Insertion/Deletion Space

FlashSkipList − − −

Write-Optimized Skip List − − −

Hash-Based Indexes

Index Search Insertion/Deletion Space

LS Linear Hash − − −

HashTree − − −

SAL-Hashing 2 + nlp ∗ pfp (r+4)∗gn
B∗sp−2∗gn ∗ (2 +

g
n + pu ∗ g) n

BBF & BloomFlash 1/nbf , 1 1/nbf n+B

FBF logbn 1/B n+B

Table 2.2: List of flash indexes and their performance [FABM20]. − denotes
a lack of available data, the r, w, s, bm subscripts stand for reads, writes,
sequential and block merges respectively. Refer to Table 2.3 for a list of
symbol definitions.
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Symbol Definition

b Number of child structures introduced to each block after false positive limit is reached

B Size of reservation filter

c Predefined threshold before tree reorganization

f Number of entries per page

g Number of buckets in a group

gn Number of groups

G(i) Average number of update operations that read a node at level i

h The height of the tree

k Logarithmic ratio between the size of adjacent levels

l Variable that denotes a specific level in a tree

L Size of leaf

M
Number of keys per node in the context of B-Trees.
Number of IUs (write logs) per flash page in the context of hashing.

M ′ Average number of entries in a node

µ Amount of available memory

n Number of nodes

nbf Number of buffered operations

nf Number of flushes

niu Number of buffered IUs

nl Number of leaves

nlp Number of pages a log area

npl Number of pages per leaf node

6 Expands to logM ′ n
L(µ−b) − 1

N Number of keys

Ñ Number of operations denoted in the subscript

pfp Probability of false positives

pu Probability that a particular record resides in a particular log area

r Record size

sn Average size of a node

sp Page size

tL 6Time to read a leaf of size L

Table 2.3: List of Symbols Used in Table 2.2 and Their Definitions
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2.4 Time Series Databases

Figure 2.6: Sample Time Series Dataset

A time series dataset consists of a number of key-value tuples, with a
timestamp as the key and a piece of arbitrary data as the value. These
timestamps are stored in ascending order such that the data represents a
temporal progression of values over time. Each data recording is assigned
the current timestamp and inserted into the time series dataset in the order of
which they are collected. An example of a time series dataset depicting data
page numbers that contain information pertaining to specific timestamps are
shown in Figure 2.6. Note the increasing and sorted order of the timestamps.
Tuples of time series datasets are stored on-disk, with each physical page
on the disk containing multiple tuples. Figure 2.7 shows the general data
hierarchy of how tuples are stored on disk. Many database systems designed
to contain time series data exist and have different approaches on how best
to store time series data. Some examples are explored here.

2.4.1 LittleTable

LittleTable [RWW+17] is a time series database system used by Cisco
Meraki to store usage statistics, event logs, and other time-series data col-
lected from customer devices. This data is used to generate data visualiza-
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Figure 2.7: Data Organization of Tuples on Disk

tions like bar graphs and tables displayed with an online dashboard, but can
also be used to perform diagnostic tasks like root-cause analysis and data
forensics. From the database design perspective, this means that:

− Frequent queries retrieving the same data must be very fast. This is
because the most common data visualizations only request the most
recent data (e.g. The number of bytes transferred by a client in the
last hour, rankings of top network users of the past month, etc.).

− Queries retrieving older data must also be quick, as data forensics and
root-cause analysis applications benefit from the ability to look back
further in time.

− The database system should be optimized for use with magnetic disk
hard drives as the storage medium. Storing a longer history of logs
takes up a larger amount of space, so magnetic disks are preferred
over solid state media for economic reasons as the latter still has a
considerably larger cost per byte than magnetic disks.

Taking these considerations into account, LittleTable was designed using
a B-tree indexing system that iteratively adds new records in chunks called
‘tablets’ as they are recorded. As with any time series, the keys are times-
tamps sorted in ascending order. LittleTable intelligently combines a device
ID with the timestamp to form a new key, such that devices that are related
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to each other (eg. in the same network) have contiguous keys. This has
the result of making it likely that data for related devices are also stored on
contiguous blocks on disk. Since data for related devices are often requested
simultaneously, the hard drive does not need to incur a seek penalty to read
data for related devices. As new data is inserted, it is first inserted into a
tablet. Each tablet contains a B-tree index to speed up queries and reduce
operational latency. This index only takes up 0.5 percent of the total size
of the tablet, and is cached on main system memory. The minimum and
maximum timestamps of each tablet is also cached on system memory and
is accessed using binary search. This means that lookups of newer data takes
roughly the same amount of time as lookups of older data. Cisco runs Lit-
tleTable using powerful servers, which they call ‘shards’. Shards are able to
rely on system memory to cache index data and speed up data queries, but
on lower power devices with limited memory, a different approach may be
required.

2.4.2 Apache IoTDB

Apache IoTDB [WHQ+20] is a time series database developed to address
the shortfalls of NoSQL when working in the context of Industrial Internet of
Things (IIOT). The increasing popularity of IoT devices motivated the cre-
ation of a time series management system optimized for high-throughput and
low-latency with support for common operations used in time series analysis.
Additionally, IoT devices are diverse in their implementation, from consumer
applications like wearables, smart-home devices, to industrial and enterprise
applications like connected healthcare and monitoring. This wide gamut of
applications necessitates the creation of scalable and portable software with
wide hardware support. For this reason, IoTDB supports both cloud and
edge deployment models. On the cloud side, IoTDB can be deployed in
distributed computing clusters housed in data centers. On the edge side,
IoTDB can also be scaled down to be hosted on a standalone workstation
PC, or even on an embedded edge device like a Raspberry Pi.

Regardless of the deployment model, IoTDB has been optimized for par-
ticular use cases and features most relevant for IoT devices, namely:

− Edge computing. With the capabilities of edge devices quickly rising
in recent years, the practice of conducting data analysis on the edge-
side has gained prevalence. This requires IoTDB to be run on both
the cloud side and the edge side, with an organizaiton structure that
supports data synchronization between the two.
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− Long-life and large volume historical data. Industrial IoT applications
can generate a large amount of data that must maintain high avail-
ability for extended periods of time. A Boeing 787 jetliner was used
as an example in the original publication. Its monitoring sensors can
produce more than 500 GB of data over the course of a single flight.
Additionally, long historical data logs must be maintained to identify
trends and monitor the life-cycle of safety-critical components.

− High throughput data ingestion. With the large volume of data being
generated by industrial IoT devices, high throughput data ingestion is
required to absorb all the data without dropping data samples.

− Low latency and complex queries. Applications that require real-time
monitoring require low latency query fulfillment to quickly identify
potential equipment faults. Additionally, deeper delves into the data
by data-scientists can be complex and require flexibility on the types
of queries that must be supported.

− Advanced data analytics. Advanced data analysis techniques like ma-
chine learning must compute certain metrics after processing chunks of
historical data using a costly ETL (Extract, Transform, Load) method.
The common operations used in such data analysis techniques must be
done efficiently.

To accommodate these design goals, IoTDB was designed with a uniform
design across the edge and cloud implementations which allow it to be run
on ARM7 processors with as little as 32MB of memory. Data can also be
easily synchronized with cloud instances of IoTDB using a File Sync mod-
ule. Support for long life, high throughput, low latency and advanced data
management is handled using a combination of the TsFile data format and
intelligent indexing methods. The TsFile format is composed of two primary
components, the data content, and the index. The data portion is partitioned
into pages, which are the smallest storage unit on disk. These pages form
a chunk of data, with each chunk containing time series data for a specific
time range specified by the index portion of the file. Additionally, a Sum-
mary Info section is present in each chunk of data to store commonly used
aggregate information such as the max/min values and timestamps of each
chunk, the average value, data count, etc. These commonly used metrics
are pre-calculated at the time of insertion and greatly improve performance
to enable complex, low latency querying over a large pool of data. Addi-
tionally, IoTDB uses write-ahead logging to facilitate high write throughput
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performance. This streamlines the time-ordering process, and leverages the
faster sequential write performance of the storage device. IoTDB’s design
lends itself greatly in applications where flexibility of data retrieval and per-
formance is the primary focus. In applications where embedded devices are
deployed on battery power, energy consumption becomes a very important
metric to optimize to prolong the lifespan of the device. For these scenarios,
alternatives to IoTDB are worth consideration.

2.5 Embedded Databases and Sensor Networks

According to Wolf [Wol02], embedded systems are devices which act as
a component in a larger system, and rely on its own CPU. Embedded CPUs
also require their own memory, which it uses to perform a predefined task
as part of a larger process. This decouples hardware design and software
design, allowing for the same software to be reused in future products that
perform similar functions. As electronic devices become more sophisticated
and perform more functions, they incorporate more embedded devices to
facilitate the added functionality. Common examples of embedded devices
that are part of a bigger whole include:

− The Digital Signal Processors (DSPs) on mobile phones that translate
radio signals into digital data signals, or convert digital data signals
into analogue wave forms that can be perceived as sound.

− The engine management computers in internal combustion vehicles
which control spark and ignition timing to ensure optimal fuel burn
and increase fuel efficiency.

− The co-processors found in inkjet printers that handle typesetting and
enable real-time control of the print head, so that pulses of ink are
applied at the exact moment the print head reaches the correct point
on the page.

Embedded devices can also be networked together wirelessly to form a
larger collection of devices that are able to exchange data with one another.
These devices are often used in locations where direct communication links
are impracticable, or impossible all-together. This means that these devices
often run on battery power or scavenged energy, and have all the resources
they need to function semi-autonomously. By attaching a sensor to these
devices, a sensor network is created.
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Figure 2.8: Wireless sensor network

Sensor networks are used in scenarios where data must be collected over
an area larger than what a single sensor can reliably service. In such sce-
narios, a collection of networked sensors must be distributed to sufficiently
cover the area with their combined sensor ranges. These sensor networks are
often used in applications such as environmental monitoring, surveillance,
and traffic management. Individual sensor nodes are equipped with capa-
bilities to observe and record sensor data and are often run by very small
and efficient embedded microprocessors. All sensor nodes communicate with
a base station to report their sensor readings, where it is aggregated into
a centralized database. Figure 2.8 shows an example sensor network con-
taining a collection of nodes and a base station. During operation, nodes
gather data from attached sensors and must store it locally or transmit to
the base station. The storage and transmission actions are candidates for
optimization, as performing such actions are costly in terms of energy con-
sumption. In the context of a battery powered device where the total avail-
able power is limited, energy consumption becomes the forefront of priorities
of things to be optimized in service of prolonging the service life of sensor
nodes without requiring user maintenance. Examples of successful wireless
sensor networks deployments include the Great Duck Island project [DB10],
in which underground sensors were used to monitor the nests of storm petrels
where they collect health data and relay the information to a gateway node
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placed nearby. They have also been used as a safety tool in the mining sec-
tor, where they monitor the surrounding air quality for traces of hazardous
gases to minimize the risk of explosion, contamination, and inhalation injury
[CFT07].

The three types of sensor data networks defined by Tsiftes and Dunkels
[TD11] are as follows.

Figure 2.9: TinyDB (a data collection architecture)

Data collection networks were one of the first sensor network architectures
to be introduced. In this type of sensor deployment, all sensor nodes submit
their data to designated data sinks, using a data collection protocol. Though
data collection networks theoretically can support data aggregation, it is not
trivial to implement and as a result the feature is rarely used in practice. A
notable example of a data collection network architecture is TinyDB shown
in Figure 2.9. This architecture streams data from sensor nodes behind an
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abstraction layer that orchestrates the data flow around sensor nodes. To
the user, only an SQL-like database querying interface from a designated
data gateway node is exposed.

Figure 2.10: Data logging architecture

Data logging networks are another prominent sensor node architecture
where all sensor nodes log their readings onto a bank of onboard storage to
be retrieved in bulk at a later time. The Golden Gate bridge network is
an example of a successful deployment of this type of sensor network. In
this example, the network was outfitted with 40 sensors to monitor bridge
conditions. The stored sensor data is collected regularly using the Flush
data transfer protocol. Data logging networks are suitable in cases where
the complete dataset must be gathered from all nodes. The top down view
of a data logging network is shown in Figure 2.10

Data mule networks (also called disruption tolerant networks) aim to
operate under circumstances where a reliable network is not available. In
this network architecture, data transfer is achieved by first uploading the
data onto an interim storage device (sometimes referred to as data mules),
which is then physically moved into an area where network access is possi-
ble. The data is then offloaded from the storage device onto the network
where it is finally routed to the collection point. The top down view of a
data logging network is shown in Figure 2.11. This sensor architecture is
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Figure 2.11: Data mule architecture

useful in remote or rural areas where network infrastructure is sparse, or in
disaster areas where the network infrastructure is offline. The trade-off for
this type of sensor network is the significant latency introduced by needing
to physically move the data mule between the data collection site and the
network connection site.

When considering the energy cost of sending wireless transmissions, sen-
sor network architectures are optimized to reduce the usage of the onboard
radio to save power. In the case of the data collection architecture, the user
initiates the data collection command, and thus triggers the transmission of
sensor data into the designated collection point. In this architecture, the
data transmissions are triggered on demand and is thus difficult to optimize.
On the other hand, the data logging and data mule sensor network architec-
tures operate by recording sensor data onto a local storage device as they are
collected, then sending the data in bulk at predetermined intervals. These
architectures retrieve data from their storage devices at the time of data
transmission, and use indexing methods to ensure that the retrieval oper-
ation happens in a timely manner. By introducing more efficient indexing
schemes for embedded devices, sensor networks are allowed more flexibility
on their data transmission intervals. This has the potential to allow for
further network optimization, like longer sampling intervals between data
transfers to lower energy consumption and extend the operational lifetime
of the sensor network.
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2.6 Design Considerations for Embedded Sensor
Networks

Tsiftes and Dunkels [TD11] lay out the technological considerations that
must be factored into the design of an embedded wireless sensor network de-
ployed in a real-world operation. Firstly, energy resources of the embedded
device are limited. This is the result of powering such embedded devices
using batteries, which have limited energy reserves. In most cases, the life-
time of the sensor network is directly determined by the amount of energy
reserves available to the device. In practice, such small, embedded devices
are often placed in difficult to service areas, so battery replacement is sel-
dom done. Therefore once the onboard energy reserves have been depleted,
the device becomes inoperable. With this in mind, system designers choose
hardware that minimizes power draw to increase the battery life (and thus
the lifespan) of the device. Even in scenarios where energy is captured con-
tinuously from the environment, such energy sources often have low power
outputs that still constrain the power draw of the embedded device. For de-
vices that are powered from a stable power source, the power consumption
of such devices directly affect the operational cost of keeping a deployment
of such devices active. For example, in a deployment of a million devices, the
small individual power consumption of the device all add together to form a
considerable cost that must be weighed against the benefits from operating
the fleet of embedded devices. This limitation on power draw also limits the
type of hardware that can be powered. High performance CPUs and large
pools of system memory have elevated power consumption compared to their
low-power counterparts, meaning that embedded devices are often heavily
constrained in terms of CPU, memory, and IO. This hardware limitation
has ramifications on the querying operations and indexing schemes that can
be successfully deployed. Historically, database software have first been de-
veloped for usage on the enterprise side, running on powerful servers which
provide the performance needed to satisfy enterprise customers. These enter-
prise software packages are then adapted down to run lower power devices,
but often they inherit some of the low-level design decisions made to optimize
performance on large powerful machines at the detriment of performance on
lower power machines. Examples of which include memory hungry hash in-
dexing schemes which are incredibly fast on powerful machines with ample
access to memory, but are not viable on low power embedded devices without
such resources. Secondly, the bandwidth to communicate with the embedded
device is also limited. The transfer speed to and from the embedded device
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is tied to power consumption, where higher transmission rates require more
power. This is due to the higher modulation and demodulation speeds re-
quired, higher clock speeds and wider bus widths of the onboard electronics,
which all contribute to higher energy usage. Though some optimization is
possible, the general trend of higher energy consumption hardware remains.
Thirdly, the storage capabilities of the device is functionally infinite. Con-
trary to the restricted availability of power and communication bandwidth,
the storage capabilities of an embedded device is not a limiting factor. Stor-
age devices are a static component, and as such, larger capacity storage
devices still fit into the same standardized form factor, and do not incur any
increased energy cost. The proliferation of cheap and large storage devices
means that embedded devices effectively have unlimited storage space for
record keeping. Modern flash devices have enough capacity to fit the entire
dataset an embedded device is expected to generate within its lifetime. For
example, an 8-byte value recorded every second for a period of 10 years will
only be 2.5 GB in size. This dataset can easily be contained by a commodity
4GB SD card, which can be purchased for less than a few dollars. It is also
worth mentioning that the comparative power usage of writing data to stor-
age is much lower than the power usage of using the radio to send the same
data to a neighboring node. The experiments done by the Antelope team
[TD11] show that the energy cost of sending a 100 byte packet of data is 20
times more than the energy cost to write the same data onto a flash storage
device. In summary, embedded devices exhibit the following characteristics:

− Extremely energy constrained. Embedded devices are often battery
powered, which limits the amount of power that the device can draw.
In many cases, the service life of the battery also determines the service
life of the device. This means that energy efficiency is paramount to
prolong the operating life of the device.

− CPU and memory constrained. The limited power available from the
battery also limits the processing capabilities and the memory amounts
that can be put onto an embedded device without negatively impacting
efficiency.

− Bandwidth is limited. Wireless transmission speeds are also tied to
energy consumption. Faster switching and signal modulation requires
higher transmit power and more powerful electronics.

− Storage is functionally infinite. Advancements in flash memory have
made commodity flash storage cheap, reliable, and dense. Inexpensive,
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off-the-shelf SD cards are available in capacities that have more than
enough space to fit the entire dataset an embedded device is expected
to generate over its lifetime.

2.7 Embedded Sensor Network Database
Architectures

Several database systems designed for use on sensor networks have been
developed and have been successfully deployed in commercial operations.
The design of these systems are mindful of the hardware and energy con-
straints that characterize the embedded devices which form the sensor net-
work nodes.

2.7.1 TinyDB

The TinyDB sensor network [MFHH05] popularized the idea to think
about sensor networks as a database to be queried rather than a set of basic
sensors whose only function is to relay information to a collection station,
where all the data processing happens. TinyDB advocates for Acquisitional
Query Processing (AQP) where data is retrieved as needed whenever a query
calls for it. TinyDB introduces a query processor that functions as a front-
end interface for developers to interact with the sensor network without
needing to query individual sensor nodes manually. The query processor also
implements filtering and aggregation capabilities within the sensor nodes to
minimize radio usage and thus improve energy efficiency.

2.7.2 Antelope

In the Antelope sensor network model [TD11], each individual sensor
node contains a database supporting dynamic querying and continuous data
insertion. Contrary to many sensor network models that came before it,
Antelope stores data on sensor nodes which can be used to optimize data
collection operations. This is useful in sensor network use cases that do
not rely on real time data to be sent at the time of querying, and instead
aggregate data from multiple rounds of sensor samples together. This process
of data aggregation where multiple data samples are sent to the head node at
the same time has been demonstrated to reduce network usage and thereby
lower the power consumption of the sensor node [TD11]. The data stored
inside the sensor nodes are not only limited to storing sensor readings. They
can also be used to store network performance metrics and routing tables
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that can be used to further optimize data transmission throughout the sensor
network. Antelope also introduces a SQL-like language called AQL to query
the stored data. Antelope has three types of indexes that it uses, depending
on the scenario. A novel MaxHeap index designed for use on NOR flash,
an inline index that makes use of a linear function, and a hashing index.
Additional details of these indexing methods can be found in Section 2.8.

2.7.3 Cougar

The Cougar sensor database system [BGS01] was developed to integrate
data taken from embedded sensor devices into a larger relational database.
This is achieved through the use of Abstract Data Types (ADTs), with every
ADT type representing a specific type of sensor (temperature, humidity,
seismic, etc), and every ADT object representing a physical sensor in the
real world. These ADTs are used to perform signal processing on the sensor
node, and transmit the resulting data back to the base station. Virtual
relations are also used to encapsulate the results of ADTs along with the
timestamps at which they were returned. This allows for data acquisition and
processing to happen asynchronously, alleviating concerns of data collisions
when collecting readings from multiple sensors at once, and also removes the
latency associated with wireless data acquisition.

2.7.4 LittleD

LittleD [DL14] is a database system designed specifically with low power
embedded devices in mind. Like the database used in the Antelope sensor
network model, the individual IO operations for the underlying memory
is abstracted. Developers are able to interact with the database using a
querying language instead of needing to manually access and process data
programmatically. Where Antelope introduced a bespoke querying language
called AQL, LittleD implements a SQL-compliant query engine. While AQL
is simple to learn and can streamline certain database operations, it has some
restrictive query processing limitations that limit the type of queries that can
be executed, and does not benefit from the ubiquity and standardization of
SQL. LittleD has also been demonstrated to use significantly less memory
than Antelope when running a benchmark of queries, with Antelope using
at least 500% more memory on intensive queries [DL14]. The drastically
lowered memory footprint of LittleD is thanks in large part to its novel
query parser that was written with the specific intent to lower energy cost,
coupled with a query translation system that can build query execution
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plans directly from the query itself without performing memory-consuming
intermediate steps like building parse trees and logical query trees.

2.7.5 IonDB

Similar to LittleD, IonDB [FHD+15] is a database system that was de-
signed for use on embedded systems. However, IonDB implements a key-
value storage system instead of an SQL-compliant database like the one in
LittleD. Key-value databases (also called NoSQL databases) do not imple-
ment the relational logic present in SQL databases, but are more memory
efficient and streamlined as a result. Values stored in a NoSQL database
are accessed using the key that was provided to the database at the time of
insertion. Developers who do not need the additional features provided by
a relational database may instead choose to use a NoSQL database for their
simplicity and lower hardware overhead. In the context of an embedded sys-
tem running on battery power, the lower overhead of a NoSQL may reduce
energy consumption and thus extend the operating life of the device.

IonDB implements four different data structure options under a unified
database API. These data structures are:

− Skip List

− Open Address Hash Map

− Flat File: This option does not use a data structure and appends data
in no particular order onto a flat file structure (for scenarios where
data values exceed or almost exceed the amount of available memory).

− File Based Open Address Hash Map

IonDB documentation provides a list of relative performance metrics used
to compare its included indexes (listed in Table 2.4), however it does not
include any performance comparisons to indexing structures that are unsup-
ported by IonDB.

Data Structure Memory Utilization Runtime
Skip List Fair Excellent
Open Address Hash Map Excellent Good
Flat File Good Fair
File Based Open Address Hash Map Excellent Fair

Table 2.4: Relative Performance of the Data Structures Used in IonDB
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Additional details of these indexing methods can be found in Section 2.8.

2.7.6 SBITS

In pursuit of faster response times, reduced network transmissions and
lower energy usage on IoT sensor networks, edge-side querying and data
analysis has been gaining in popularity. The Sequential Bitmap Indexing
for Time-series Technique (SBITS) [FOL21] is an index structure optimized
for the embedded devices commonly used as edge nodes in sensor networks.
SBITS prioritizes the efficiency of its index structure to ensure it can run
on embedded devices with limited memory and processing resources. Com-
pared to general database servers, the queries performed on an embedded
database are very well defined, and are known ahead of time. Outlier detec-
tion (determining if a value falls outside a specified range), and aggregation
operations (average, max, min, etc) are the two types of queries that are
typically fulfilled by embedded sensor nodes. This knowledge can be ex-
ploited to implement an indexing structure optimized for these queries. In
SBITS, each data page includes a header that describes pertinent aggregate
information about the records within the page. The items stored within the
header include:

− The largest and smallest timestamp values

− The minimum and maximum values

− The summed total of all values within the page

− A bitmap describing the general distribution of values

The page-level aggregate values are used to fulfill aggregation queries for
larger ranges without needing to read each stored value at query execution
time. The bitmap is capable of informing the existence of records that fall
within a configurable value range. If the bitmap is configured beforehand to
identify values that fall outside of an expected range, outlier detection queries
can use the bitmap to quickly process data pages without needing to read
each individual data value. When querying by timestamp, the ordered nature
of the dataset enables page retrieval to be calculated in O(1) time. This is
made possible by the use of consistent record sizes such that it is known
how many records fit into a data page. By applying a linear regression, the
location of any given timestamp can be calculated without conducting any
reads. When analyzing memory consumption and querying performance,
SBITS is able to match the memory footprint of the Antelope index, while
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adding support for value-based queries. SBITS can also lookup timestamp
indexes in constant time, whereas Antelope uses a binary search method
which has a complexity of O(log2N).

2.8 Conventional Indexes on Embedded Databases

For many database operations such as joins and other operations using
comparisons, indexes play a major role in the optimization and performance
of query execution. The TinyDB and Cougar architectures are purely ac-
quisitional, meaning that only the most recent data tuple is gathered at the
time of query execution. This architecture has no need for an index since
sensor nodes only hold a single tuple at a time. However, with architectures
that store relations filled with a large number of tuples, the existence of an
ordered index on an unordered list of data tuples can speed up performance
drastically. We can see this in the experimental benchmark results that were
performed in the work for LittleD [DL14], where Antelope outperforms Lit-
tleD due to its better indexing support, but exhibits equivalent performance
to LittleD when indexes are removed for both Antelope and LittleD. The
various indexes applied by Antelope, LittleD, IonDB, and SBITS will be
explored in this section, along with the rationale behind their usage.

2.8.1 Linear Hashing

The linear hashing data structure [FOM+19] has the desirable attribute
of being able to expand one data "bucket" at a time, compared with ex-
tendible hashing which must double its capacity at every expansion. This is
accomplished by splitting data buckets individually, so only one new bucket
is needed to store the split contents (assuming no overflow buckets). In
[FOM+19], two ways of optimizing the linear hashing data structure for use
on embedded devices have been evaluated against the base implementation.

− The Bucket Map optimization removes the need for a secondary file
to store overflow buckets by always appending overflow buckets to the
end of the file. An in-memory array is then used to map these overflow
buckets to their associated top-level bucket.

− The Serial Writing optimization expands upon the Bucket Map im-
plementation by also writing changed buckets to the end of the file in
addition to the overflow buckets. A similar in-memory array to keep
track of the top-level buckets is used.
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Surprisingly, the flash-aware optimizations did not result in a consistent
performance improvement over the base implementation. The increased in-
sert performance of the Bucket Map optimization led to a trade-off in other
areas, and the Serial Writing optimization resulted in large file sizes which
led to increased random writes (costly on the FAT16 file system used on the
embedded test platform).

2.8.2 B-Tree Index

B-Trees are a commonly used indexing structure in high performance
database applications, however they have large memory footprints that make
them impractical for used in an embedded system. An adaptation of the B-
Tree data structure to optimize memory usage [OFL21] aims to address this
issue while also maintaining indexing performance. This adaptation also
recognizes the possibility of unexpected power cycling that often occurs in
embedded environments, and thus stores data in persistent storage rather
than in RAM. This implementation of the B-Tree only requires two buffers,
one for reading pages, and the other for writing pages. The entire B-Tree
implementation can occupy less than 1.5 KB of memory and requires only
around 10 KB of storage, making it practical for use in embedded systems.
Additional memory buffers can also be used in this implementation for in-
creased performance, though it is not necessary to do so.

2.8.3 MaxHeap Index

MaxHeap is a general purpose index developed for use on SD cards and
NOR flash. Previous index types typically rely on balanced tree data struc-
tures, which must intermittently perform maintenance rebalancing opera-
tions. This operation requires rearranging elements on the tree structure,
which is unsuitable for the write restrictions of NAND flash. Consequently,
these structures use log structures which can have large memory footprints
that are hard to fit inside the limited RAM found on embedded devices.
MaxHeap aims to address this design consideration by implementing a data
structure designed for fewer writes. The binary maximum heap structure fits
these specifications, and it is used in the MaxHeap index to naturally map
a dynamically expanding dataset. The MaxHeap structure uses two files for
every indexed attribute. One file, called the bucket set container, contains
the key-value pairs that form the index. The other file, called the heap de-
scriptor, contains nodes that describe the range of keys stored inside the
nodes inside the bucket set container. The MaxHeap structure is populated
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from the top down, with new elements being inserted into the bucket that
has the narrowest range around the key to be inserted. Whenever a bucket
is filled to capacity, it is split into two separate buckets that are inserted as
children to the original bucket that reached capacity. This scheme can be-
have problematically when keys are presented in an ascending or descending
order, resulting in an unbalanced tree. This issue is addressed by using a
hashing function to generate the binary heap keys, but storing the un-hashed
key in the actual bucket. MaxHeap indexes accomplish their goal of being
a memory efficient indexing scheme that works well for general datasets and
can be operated within the RAM constraints of an embedded device.

2.8.4 Hash Index

Antelope and IonDB both implement hash indexes, which store a hash
table in RAM to quickly look up commonly accessed attributes that have
relatively low row counts. This approach is extremely fast, but is also very
memory hungry so it must be used sparingly and only in circumstances where
a few keys are accessed very frequently. The exact limit on the number
of keys that this index can successfully accommodate varies depending on
hardware and design limitations, so Antelope designates a default maximum
number of 100 tuples for its hash index. IonDB’s "Open Address Hash Map"
takes a different approach to hashing that stores buckets of data in flash
rather than keeping an dense table of tuple pointers in memory. This data
structure is discussed in detail in Section 2.3.3. In summary, a deterministic
hashing algorithm is used to assign incoming key-value pairs into buckets,
which allows other buckets to be omitted when querying using a search key.
IonDB can also use "File Based Open Address Hash Map" which is similar
to the regular Open Address Hash Map implementation, except the hash
map structure is stored in storage rather than memory.

2.8.5 Inline Index

While the MaxHeap and hash indexes implemented in Antelope cover a
wide range of usage scenarios, they assume that the distribution of keys to
be inserted will be in random order. This is useful when indexing attributes
that follow a normal distribution of values such as temperature sensor data,
however with embedded sensor networks the data collected tend to be time
series datasets resulting from the repeated sampling of a sensor throughout
a reporting period. Time series datasets have the unique characteristic of
using timestamps as index keys, which are generated in ascending order. A
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set of constantly increasing keys (such as the ones in a time series index) can
be exploited using the inline indexes found in Antelope and SBITS, which
do not use any data structure. Instead, the inline index uses the ordered
nature of the indexed keys to perform a binary search over the entire range
of keys when conducting a search. This results in a O(1) space overhead
while maintaining a O(logN) time complexity for search operations [TD11].
SBITS used a single linear approximation of the time series values to predict
the location of a given timestamp.

2.8.6 Skip List Index

IonDB includes the option to use skip list indexes in scenarios where the
average access time for all tuples is important. Additionally, skip list indexes
do not require in-place updates like balanced tree data structures. Imple-
mentations of tree structures on devices using flash storage also incorporate
separate data structures (usually a log structure [RO92]). This structure is
used to delay or batch writes together for the purpose of reducing expen-
sive in-place updates. These auxiliary data structures also take up valuable
memory within a memory-constrained embedded device, which leaves less
memory available for the tree structure itself. Skip lists do not require aux-
iliary data structures, as they can be implemented as append-only fashion
in scenarios where inserted data has keys that are monotonically increas-
ing. The skip list data structure is discussed in detail in Section 2.3.2. In
summary, skip lists use probabilistic models that link to the most commonly
accessed sections within a list, "skipping" over the less-frequently accessed
elements.

2.9 Time Series Indexes

When retrieving the data associated with a certain timestamp, the loca-
tion of the page containing the correct tuple must be determined.

A naive approach of conducting a binary search through all the data
pages will accomplish this, however this tends to be an expensive search
operation as each IO requires reading a data page and checking its contents,
which takes a considerable amount of time, adding to the overall latency
of the data retrieval operation. To minimize the number of required IO
operations needed to find the correct data page, an indexing structure can
be applied to the timestamps of the time series database.

One of the simplest database indexes is the linear approximation. This
is a simple linear regression that is fitted over the timestamps of the dataset.
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Despite its simplicity, this index has seen success in applications where the
time series records are equally spaced apart, such as in embedded sensor
networks configured to generate records with consistent sampling rates. The
SBITS [FOL21] index for embedded sensor networks applies a linear index
over its collected data, and the simplicity of the linear approximation index
allows it to run efficiently on an embedded device.

More conventional indexes are used in applications where the timestamps
are not guaranteed to be evenly spaced apart. B-Tree indexes are a well stud-
ied topic, and are commonly used in database management software. The
LittleTable [RWW+17] time series database makes good use of B-Tree in-
dexes, allowing it to group relevant data together so that it can be read
sequentially to improve performance. B-Tree indexes have a larger mem-
ory footprint than indexes based on a linear regression, making them more
difficult to implement on low power devices. B-Tree implementation for
embedded devices [OFL21] has good performance but is not optimized for
sorted timestamp keys.

Learned indexes attempt to retain the flexibility of conventional indexes
while reducing the memory footprint so that they can be used on a wider
variety of devices. In recent years, learned indexes have seen considerable
research, resulting in a number of different approaches which will be explored
in the following section.

2.10 Learned Indexes

Conventional database indexes typically utilize data structures that have
been optimized for a large variety of dataset types to ensure database perfor-
mance remains adequate in a wide range of usage scenarios. Contrarily, some
other database indexes use data structures that are optimized for a specific
type of dataset. These specialized database indexes outperform their more
general-use counterparts in specific use cases, but may have other use cases
in which they perform much worse or are wholly inapplicable. Learned in-
dexes seek to combine the versatility of general-use database indexes with
the performance of specialized indexes by devising an indexing scheme that
dynamically optimizes for each individual dataset, rather than a type of
dataset or a wide range of datasets. Machine Learning (ML) techniques are
commonly used in learned indexes, as they can train on samples of datasets
to learn the patterns and trends within a specific dataset. Database indexes
can be reformulated into common ML problems which have already seen ex-
tensive research and development, such that existing ML techniques can be
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applied. For example, B-Tree indexes can be reformulated as a regression
tree problem, as the main point of such indexes is to map keys to a position
within a larger range of values [KBC+17]. Figure 2.12 shows the structure of
a typical regression tree with ML models forming the nodes. ML models are
also able to train on the type of queries that are most commonly executed
in deployment. This allows for the model to further optimize for a specific
usage scenario by optimizing the indexing structure to favour the parts of the
dataset that are most frequently accessed in addition to the overall structure
of the dataset itself. The resulting generated model takes the place of the
data structure used in conventional database indexes.

Figure 2.12: Learned Indexes

Mathematical models can also be used in learned indexes. These models
can be built with guarantees of error and transparency of functionality that
are difficult to achieve with ML models. Learned indexes can be built from
the bottom up, or from the top down. Models created from the top down are
trained to capture the overall trend of a dataset as the top layer, then lower
layers are used to narrow down the search range and reduce error until the
required specificity is achieved. This has the benefit of being able to closely
optimize for datasets, but tend to be inflexible to changing data trends and
may need periodic retraining to maintain performance. Models created from
the bottom up first fit the bottom layer to the points within the dataset to
within a tuneable error bound. Additional upper layers are then built on
top of the bottom layer to optimize querying performance when searching
the bottom layer. Certain bottom up approaches have the capability to
dynamically fit their models to suit new data points as they are inserted
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into the database, resulting in a model that is more flexible to changing data
trends. In this work, the PGM and RadixSpline indexes will be benchmarked
and compared to gather performance data using real-world datasets.

2.10.1 RMI

The creation of the Recursive Model Index (RMI) [KBC+17] was moti-
vated by the lacklustre performance of implementing a learned index using
existing tools in Tensorflow and Python. These tools were designed to run
large, complex models and have significant invocation overhead when run-
ning the relatively simple models used in learned indexes. Additionally, naive
learned indexes composed of ReLU nodes are good at generalizing the overall
trend of an index distribution, but struggle when asked to produce precise
results with a narrow error range.

RMI addresses these limitations by incorporating a streamlined system
for executing learned models without the overhead associated with Tensor-
flow, Python, and other existing tools. Dubbed the Learning Index Frame-
work (LIF), this framework is capable of extracting the weights of a trained
Tensorflow model, and execute it efficiently in C++ without invoking an
actual instance of Tensorflow. Using this framework, a recursive hierarchy of
learned models is built, with each model selecting the next model to be used
on the next level down the hierarchy of models. The general structure of
RMI is shown in Figure 2.12. This approach recursively appoints a segment
of indexes that a single model is responsible for. Compared to using a larger,
more complex model to predict indexes with the same granularity and ac-
curacy, a hierarchical collection of models is able to decouple its overall size
and complexity from the execution cost. This is partially attributed to the
fact that only a few select models are evaluated with any given index query,
whereas a monolithic model must be evaluated in its entirety to fulfill an
index query. Additionally, the upper level models of the hierarchy are still
able to learn the overall shape of the distribution of indexes. This exploits
the ability of neural networks to fit general trends in the data and still retain
accuracy by leaving the precise predictions to other models that are trained
separately.

The RMI model is created using a recursive method from the top-down,
starting with a model trained on the complete dataset. Using the predictions
generated from this root-level model, the models to be used on the next level
down are chosen and the keys that this lower-level model is responsible for
are added to a list. This list is then used to perform the actual training on
the lower-level model. This process is repeated recursively for a specified
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number of models per level and total number of levels. The errors for the
models on the last levels are also stored so that the errors can be compared
against the error threshold set by the user. In the case of an exceptionally
hard-to-learn data distribution where a model’s error exceeds the threshold,
that model is replaced with a B-tree.

This recursive structure of models are able to significantly outperform
conventional B-tree indexes on a dataset composed of 200M log entries for
requests to a university website while being a fraction of the size of the B-
tree. While this is impressive, this indexing structure was developed with the
datacenter in mind, requiring the sequential computation of multiple neu-
ral networks with numerous hidden layers each. For systems with heavily
constrained hardware resources, other options are also available for consid-
eration.

2.10.2 PLA

The PLA (Piece-wise Linear Approximation) functions [EEC+09a] are
a set of two filtering techniques that are applicable to time series indexing.
These filters aim to compress the space requirements needed to store a time
series dataset within a given error bound, while minimizing memory usage
and maximizing the compression ratio. The two filters introduced are named
the Swing filter and the Slide filter. They are both approaches that utilize
linear functions to compress an input stream of data. This is similar to the
segmented linear regression problem, where linear functions of least squared
error are fitted to sub-divided segments of a larger data set. Ways to de-
termine the best segment sub-partitions have been the subject of previous
research in the past, where it has been solved using dynamic programming
techniques [Fed75]. However, unlike the segmented linear regression prob-
lem, an important distinction of PLAs is that it does not minimize the error
of the linear functions. PLAs fit the underlying data points with a guaran-
teed error bounds set by the user, and thus allow for more flexibility for use
as an index.

The Swing filter implementation proposed by the authors uses a series
of continuous linear line segments that approximate the input data. The
first element to be inserted into the swing filter forms the origin point of the
first linear line segment. After the first point is inserted, a pair of bounding
slope lines are created with their origins at the inserted point. One line
represents the maximum slope that the current line segment can possess
while still keeping the guaranteed error bounds, and the other line represents
the minimum slope. Subsequent points entered into the swing filter are
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evaluated to see if they land within the region bounded by these lines. If the
new point lands within the region, then this point is not recorded as it can be
represented by the current linear segment. Instead of recording the segment,
the slope lines “swing” up or down to reflect the new maximum and minimum
slopes of the current line segment (that now incorporates the newly inserted
point). If the new point falls outside of the region, the current line segment
ends. An optimization process determines the best slope that minimizes the
mean square error of all the points covered by the current line segment, then
ensures that it falls in between the upper and lower bounding slope lines.
This process uses a procedural summation process that can be generated
iteratively and does not require the buffering of any points. The generated
slope is then extrapolated to form an optimized point to be recorded. It is
also used as the starting point for the creation of a new line segment to cover
future insertions.

Similar to the Swing filter, the Slide filter maintains a set of upper and
lower hyperplanes. However unlike the Swing filter, the Slide filter is not
guaranteed to generate a set of continuous linear segments. This means
that the starting point of a given line and the ending point of the pre-
vious line are not guaranteed to be the same point. The Slide filter de-
scribes a method on how to choose upper and lower bounding hyperplanes.
In summary, given a set of points to be covered by a single line segment
(tk, xk), (tk+1, xk+1), (tk+2, xk+2), (tk+3, xk+3) . . . (tn, xn) the lines that pass
through (tk, xk), and (tk+1, xk+1) for all points such that i >= 1, and all
points are within ϵ in the x-axis should be considered as candidate bounding
upper and lower bounding lines. The candidate line with the lowest slope
should be chosen as the bounding line for the upper bound, and the line
with the highest slope should be chosen as the bounding line for the lower
bound. Another process further optimizes bounding line selection by proving
that only the points belonging to the outer hull of the points encountered
need to be evaluated for the bounding line candidacy, while the other points
can be safely added without selecting new upper and lower bounding lines.
Furthermore, the Slide filter also attempts to create continuous lines by off-
setting the starting point of a new line. This is only possible if an intersect
between the current line starting at (tk, xk) and the previous line ending at
(tk−1, xk−1) occurs between tk and tk−1. The slide filter algorithm uses these
upper and lower bounds to calculate an optimal series of lines using the same
slope optimization method used in the Swing filter. These line segments are
then recorded in place of points.
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2.10.3 PGM

The PGM index [FV20] operates in a similar manner to the PLA Slide
filter, as it also dynamically creates a series of linear models which gives an
approximate page location within a configurable guaranteed error margin.
However, instead of maintaining the minimum and maximum slope lines for
each linear segment, the PGM index forms linear line approximations using
a greedy method which attempts to fit a bounding box with a height of 2ϵ
around the incoming data points. This bounding box can be rotated to orient
itself along any slope to fit points. When PGM encounters a new point that
does not fit within the bounding box containing the previously encountered
points, the line representing the previous bounding box is added to the index
as a PGM linear segment, and a new bounding box is created. This process
also forgoes the optimization process described in the Slide filter, resulting in
a less optimal but also less resource intensive indexing scheme that is better
suited for resource constrained embedded devices. PGM linear segments
are represented by three components, a slope (float), a key (int), and a x-
intercept (int). The float and the x intercept are used to define the line
itself, and the key is used to specify the starting range when the linear line
segment should be used. To query this index, we conduct a binary search on
the keys of the PGM linear segments to find the correct linear segment that
services the range of timestamps being requested. After the correct linear
segment is found, the slope and x-intercept of the line segment are combined
with the queried timestamp to generate a page number that is guaranteed
to be within ϵ of the real page number. A PGM model fitted to a time series
dataset is shown in Figure 2.13, note the disjointed line segments generated
by the PGM model. Table 2.5 shows the approximate values of the linear
segments generated by PGM, and the calculations on Figure 2.13 uses this
table to compute the approximate page location of the record recorded with
a timestamp of 610k. The slope and intercept of the PGM entry with the
next lowest key (compared to the search key) is used to compute the line
equation which generates an approximate page location of the search key.

Key Intercept Slope
588k 0 6.63 ∗ 10−4

600k 9 9.87 ∗ 10−4

606k 16 1.37 ∗ 10−3

620k 37 1.83 ∗ 10−3

Table 2.5: PGM Index Points
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Figure 2.13: PGM Query

2.10.4 Spline

In the original work for the Radix Spline indexing model [KMvR+20],
the argument was made that an efficient build process is sufficient to replace
the functionality for supporting insert operations. This efficiency is very
advantageous in an embedded environment such as a distributed sensor net-
work, and the lack of insert support can be averted since the sensor network
will only append the latest readings into a time-series database. Like the
PGM model, the Spline model also creates a series of linear segments that
approximate the page locations for a certain timestamp with a configurable
guaranteed error. Unlike the PGM, spline does not create independent lines
that are fit over a defined range of timestamps. Rather, spline forms linear
line segments by connecting points to one another similar to the contigu-
ous linear segments generated by the PLA Swing filter. Unlike the Swing
filter, Spline does not keep track of the minimum and maximum bounding
slope lines. Instead, Spline points are chosen using a greedy method that
evaluates whether a new point would violate the error guarantees defined by
the user. Starting with a single origin point, a line is drawn from the origin
point to each new point as they are entered indexed by the spline model. If
the new point violates the error bounds, a spline linear segment is created
that connects the origin point with the last point which did not violate the
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error constraint. The last point then also becomes the new origin point, and
a new spline line segment is started. Much like PGM, the Spline process
also forgoes the optimization process described in PLA which attempts to
minimize the mean square error of the generated line, but also results in a
simpler algorithm that is well suited to run on hardware constrained embed-
ded devices. A Spline model fitted to a time series dataset is shown in Figure
2.14, note the continuous line segments generated by the Spline model. Ta-
ble 2.6 shows the approximate values of the linear segments generated by the
Spline index, and the calculations on Figure 2.14 uses this table to compute
the approximate page location of the record recorded with a timestamp of
610k. The two bounding spline points of the search key are located in the
spline table, and the slope between them are calculated. This slope is then
multiplied by the offset of the search key from the lower spline point, and
the min value is added as the intercept to generate the approximate page
location of the search key.

Key Min Value
599k 7
601k 10
605k 12
611k 24
616k 29
621k 39
627k 48

Table 2.6: Spline Points

In the original work, a Radix indexing scheme was applied on top of the
Spline model. This additional index is used to speed up access times on
very large datasets that generate a large number of spline points. In the
use case benchmarked in this work, the speed increases were minimal and
not worth the additional memory overhead required to store the radix index.
The querying process for the spline index is similar to that of the PGM
index. First, a binary search is conducted on the keys of the spline line
segments to find the correct segment that services the range of timestamps
that the queried timestamp resides within. The slope between the current
spline point and the next spline point is computed. This slope is then used
as a linear interpolation to return a page number guaranteed to be within
ϵ of the true page number which contains the data corresponding with the
queried timestamp.
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Figure 2.14: Spline Structure

2.10.5 Comparison between Spline and PGM

Both Spline and PGM create a series of linear line segments that provide
an approximate page number that contains the data for a given input key.
The advantage of PGM lies in the fact that it can create completely inde-
pendent line segments to represent the underlying data. The Spline model,
by comparison, must create lines that are formed by drawing lines between
existing data points of the data set. This generates less optimal linear line
segments compared to the lines generated by PGM, but in return, Spline is
able to use less data to store each individual line segment as it only needs
to store a key and a page number. By comparison, PGM must store a key
and page number, plus an additional slope variable for each line segment. In
the later experimental sections, we will explore the real world performance
of both indexing methods, along with the performance of binary search and
a simple linear model across the entire dataset.

When applied to time series datasets, both indexes are able to generate
a series of linear approximations fitted to the underlying data. A graphical
comparison between the two models is shown in Figure 2.15. Note the dis-
jointed nature of the PGM approximation, and the continuous nature of the
Spline approximation. This is a result of the PGM model being capable of
generating completely independent lines for each linear segment, whereas the
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linear segments generated by the Spline model must originate and terminate
on existing data points.

Figure 2.15: Spline and PGM Models Fitted Over Time Series Data
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Chapter 3

Methodology

To create an index structure for use in embedded sensor nodes, it is
important to understand the data operations that sensor nodes perform while
they are in use. Embedded sensor nodes collect sensor values and store
them for future retrieval and processing. Attached sensors are periodically
polled to generate new readings, which are stored in sequential order on a
storage device. This generates a dataset of sensor records that are naturally
ordered by the timestamp at which they were taken. These sensor records
are iteratively appended to storage as they are taken and are never modified,
resulting in an append-only database. An index applied on this data will
always access an ordered dataset, but will need to support iterative appends
as new sensor readings are taken at subsequent sampling intervals.

A learned index model adapted for use in embedded sensor nodes must
support append operations while keeping memory consumption low. Further,
learned indexes only apply to indexing the sensor data by timestamp as
records are stored in a sorted file by timestamp as they are collected. Learned
indexes do not directly apply to indexing the data (sensor values) in the
record, which are not stored in sorted order.

We focus on adapting bottom-up, eCDF based learned indexes. Indexes
that are built bottom-up such as the RadixSpline do not require all the data
in advance, in contrast to top-down modeling approaches such as RMIs that
require all data in advance and cannot be easily deployed for the time series
use case. We adapt and deploy two structures for indexing: the RadixSpline
and the PGM Index.

An ϵ value of 1 was chosen for both the PGM and Spline learned indexes.
This error bound represents a balance between memory usage and accuracy,
where a ϵ of 0 is very strict and generates a large number of index entries.
The size of the data sets used to generate experimental results (shown in
Table 5.2) did not necessitate any further reductions in memory consump-
tion. Further relaxations of the error bounds do translate into an additional
reduction in memory consumption, but these reductions are not as large as
the initial memory reduction from changing ϵ from 0 to 1 (as demonstrated
using the SEA data set in Table 5.4). The radix table was omitted from the
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RadixSpline index, as relatively small number of spline index points gener-
ated did not benefit from using an additional radix table to speed up lookup
operations for spline points. These tuning decisions will be further explored
in Section 5.

The indexing approach is based on SBITS [FOL21] and proceeds as fol-
lows:

− Each data record containing collected sensor values is stored in a
buffered page in memory until the page is full.

− A full data page is written to the sorted data file in sequential order.

− After the page is written, an index record is created storing the times-
tamp of the smallest record on the data page and the data page index.

− The index algorithm must maintain its index structure in memory with
a bounded size (often less than 1 KB) and may periodically flush index
pages to storage for persistence.

This procedure was implemented with efficiency in mind. By buffering
data records in memory until a full page can be written, we avoid needing
to update the same data page on the storage multiple times for multiple
data records, which helps to minimize the erase-before-write characteristics
of flash storage. These data pages are then stored in the order which they
are created, which is ordered by timestamp. This ordered set of pages are
then inserted into the indexing algorithm, which uses the minimum times-
tamp of each page as the search bounds for queries returned by the index.
Generated indexes often have less than 1 KB due to the efficiency of learned
indexing structures. This is beneficial to scale down hardware requirements
for deploying learned indexing structures on lower power embedded devices
which may have power consumption and cost advantages.

SBITS has been demonstrated to outperform conventional B-tree and
hashing indexes in time series data [OKFL22b], so comparisons with those
data structures are not performed. Additionally, when inserting records in an
ordered, ascending manner, the self-balancing characteristic of B-tree data
structures means that it must perform frequent re-balancing operations to
avoid becoming right-heavy. These re-balancing operations incur significant
overhead compared with linear indexes and the Spline and PGM learned in-
dexes being evaluated, since they are generated iteratively and do not require
such operations. Querying by timestamp is performed by using the index.
Querying by data value is unchanged from the previous SBITS implementa-
tion as learned indexes do not apply to the unsorted data values.
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3.1 Piece-wise Geometric Models

The Piece-wise Geometric Model index (PGM) is a learned index that
approximates the CDF via piecewise linear approximations (PLA) [FV20].
At the heart of the PGM lies a hyperparemeter ε that controls the error
bounds for the linear approximations.

The original PGM index is built from the bottom-up recursively. At the
first level, the PGM builds a PLA over the set of points {(xi, i)}i=0...n using
the optimal algorithm proposed by [O'R81] and rediscovered by [EEC+09b].
For subsequent levels, the PGM applies the same linear approximation strat-
egy using the keys from the previous level {(kj , j)}j=0...s as points for the
PLA. The recursion halts when there is a level with exactly one line.

We adapt the PGM by creating an append method described in Algo-
rithm 1. Notice that the method does not know the number of levels for the
PGM in advance and starts by appending a key to the linear approximation
at the bottom level and propagating the updates to the upper levels if nec-
essary. Another modification of our implementation is the use of the Swing
Filter algorithm also proposed by [EEC+09b]. The Swing Filter does not
yield an optimal number of lines, but requires only O(1) time and memory
to process a point. This is a benefit in the sensor use case, as the optimal
Slide Filter requires O(h) memory in its worst-case where h is the number
of points in the convex hull, which might not fit in-memory. Even though
we adapted the PGM to support appends, its procedure for finding a key
remains unchanged from the original PGM (see Algorithm 2).

3.2 RadixSpline

The RadixSpline is a learned index that approximates the CDF via a
linear spline and a radix table storing spline points [KMvR+20]. The two
hyperparameters that shape the RadixSpline are ε, the error bound for the
spline approximation, and r, the size of the prefix of the radix table entries.

The RadixSpline builds an error-bounded linear spline over the empirical
CDF using the greedy algorithm proposed by [NM08]. After the spline is
built, the prefixes of the spline points are inserted in a radix table. The radix
table is a flat array of size 2r where each entry in the table maps to a range
in the spline.

Querying for a point in a RadixSpline is done in three steps. The first
step is to look for the prefix of the key being searched in the radix table,
and find the corresponding spline point. Given the spline point, calculate a
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Algorithm 1: AppendPGMAdd(pgm, x)
L← pgm.countLevels();
K ← x;
for i← 0 to L− 1 do

c← pgm.levels[i].countPoints();
pgm.levels[i].add(K); // add implements the Swing Filter
if pgm.levels[i].countPoints() > c then

K ← pgm.levels[i].getLastKey();
else

return;
end

end
/* If the algorithm reached this step create a new level */
pgm.levels[L] = newPGMLevel();
firstK ← pgm.levels[L-1].getFirstKey();
lastK ← pgm.levels[L-1].getLastKey();
pgm.levels[L].add(firstK);
pgm.levels[L].add(lastK);
return;

Algorithm 2: QueryAppendPGM(pgm, x)
if x < pgm.levels[0].getFirstKey() then

return NotFound ;
end
L← pgm.countLevels();
m← 0; // index of the model at the i-th level
for i← L− 1 to 1 do

a← pgm.levels[i].getSlope(m);
b← pgm.levels[i].getIntercept(m);
pos ← ⌊a · x+ b⌋;
lo ← max{0, pos− ε− 1};
hi ← min{pgm.levels[i].countKeys()− 1, pos+ ε+ 1};
m ← smallest value of j such that x ≥ pgm.levels[i-1].getKey(j) and
lo ≤ j ≤ hi;

end
a← pgm.levels[0].getSlope(m);
b← pgm.levels[0].getIntercept(m);
pos ← ⌊a · x+ b⌋;
lo ← max{0, pos− ε− 1};
hi ← min{pos+ ε+ 1, pgm.levels[0].countKeys()− 1, };
/* Search is an implementation of binary search or linear

search over the original array containing the keys */
return Search(x, lo, hi);
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narrow range of size 2ε where the key could be using linear interpolation.
The last step is to find the key in the range using linear or binary search,
which is a quick operation because 2ε is constant.

We adapted the RadixSpline to support appends by implementing a
streaming version of the GreedySpline proposed in [NM08], as described
in Algorithm 3. After appending a point, we check if we can adjust the last
spline segment to correctly approximate the point position within ε. If that
is not the case, we create a new spline segment covering the new point and
propagate the new spline point to the radix table (see Algorithm 4).

Algorithm 3: RadixSplineAdd(rs, x)
c← rs.spline.countPoints();
rs.spline.add(x); // Add implements GreedySpline
if rs.spline.countPoints() > c then

K ← rs.spline.getLastKey(); RadixTableInsert(rs, K, c); // see
Algorithm 4

return;
end
return;

54



3.2. RADIXSPLINE

Algorithm 4: RadixTableInsert(rs, K, pos)
r ← rs.r; // radix prefix size
K ← K - rs.minKey;
nB ← mostSignificantBit(bitShiftRight(K, rs.shiftSize)); // number of

bits required to fit on the table
∆← max(nB - r, 0); // difference between the available and

required number of bits
if ∆ > 0 then

/* New key triggers table rebuild with new prefix size in
order to fit; we merge the old radix entries considering
the new bit shift */

rs.shiftSize ← rs.shiftSize + ∆;
newTable ← allocateTable( 2r );
for i← 0 to 2r do

j ← bitShiftRight(i, ∆);
newTable[j] ← min(rs.table[i], newTable[j]);

end
for i← 2r−∆ to 2r do

newTable[i] ← INT_MAX;
end
rs.table ← newTable;

end
// Update entry of the radix table with the new pos
T ← bitShiftRight(K, rs.prefixSize);
rs.table[T] ← min(rs.table[T], pos);
return;
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Chapter 4

Implementation

4.1 Radix Adaptation

As discussed, append support for the RadixSpline was implemented us-
ing the streaming GreedySpline [NM08]. To accommodate this feature, the
Radix portion of RadixSpline was also modified to support appends. The
Radix structure operates over a set of key-value pairs, mapping a specified
number of leading bits from keys to the values associated with the keys.
This results in a mapping structure where the value of the first encountered
key with a certain bit prefix is mapped to all subsequently encountered keys
that share the same bit prefix. Time series data is well suited for the Radix
structure as it naturally maps timestamps to the bounding search index in an
array of time series data. The approach for supporting appends on Radix was
similar to the approach for GreedySpline. In the base Radix implementation,
the first point inserted into the Radix structure is stored as the ‘minKey’
value that will be subtracted from future incoming values. Future incoming
points will then have minKey deducted from their values, the resulting value
will have its leading zeroes counted. This count is used to verify whether
the number of significant bits of the incoming key will fit within the number
bits that the Radix table was initialized with. The resulting value with the
leading zeroes removed is called the ‘prefix’, which will then be checked to
see if it will fit within the specified number of Radix bits and indexed accord-
ingly if it is. If the prefix does contain more bits than the specified number
of Radix bits, the least significant bits are discarded from the prefix (right
-shifted) until the prefix fits inside the Radix index. The base implemen-
tation of the Radix table did not support continuous appends, and as such
did not account for a variable number of significant bits from incoming keys.
This variability changes the number of right-shifts required on incoming keys
before they are indexed. To remedy this, the current number of right-shifts
are stored in memory and compared against the right shifts required by fu-
ture keys. If an incoming key has a higher number of significant bits, a
refactoring process is executed on the existing Radix table. This process
shifts all existing values in the Radix table by the difference in significant
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bits of the incoming key and the stored right-shift value. After this process,
all keys which share significant bits within the Radix table are discarded,
only leaving the first key-value mapping that matches the updated prefix.
This process repeats each time a new key is inserted into the Radix structure
with a higher number of significant bits, allowing for a continual insertion
of increasing keys. Figure 4.1 illustrates the refactoring process that occurs
when a new data entry (8 in this example) is inserted into a fully populated
radix table. Note the shifted prefixes, and how the radix becomes a sparse
index (having been a dense index before). A dotted line is used to indicate
that the new maximum value that can be stored using the refactored radix
table is 15, while the previous maximum value was 7.

Figure 4.1: Radix Table Expansion
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4.2 Memory

The PGM and Radix Spline index structures are both stored in a dy-
namically allocated block of contiguous memory. The location estimates
generated by the indexing mechanisms are then applied as byte offsets to
the storage pointer, where the corresponding index value can be retrieved.

4.3 SD Cards

SD cards are a popular choice for embedded devices due to their low cost
and compatibility with the SPI data communication interface. SD cards
consist of a NAND package, and a controller chip to handle FTL operations
within the chip that converts block addresses to physical flash addresses. SD
cards can be configured to operate in SPI mode, which eliminates the need
for an external SD controller to interface with the storage device. In this
mode, SD cards operate like a standard block device, using standardized
SPI commands for reading and writing data. In the sensor hardware test
platform, the test datasets are loaded from an SD card to be inserted into the
on-device database where the performance of the PGM and Spline indexes
are evaluated.

4.4 Dataflash

The sensor hardware platform used to gather experimental results records
all inserted data points onto dataflash storage1. Dataflash storage consists
of NOR memory instead of the NAND memory found in conventional flash
storage. NOR memory differs from NAND in its structure, which allows
for each data page to be individually cleared whereas NAND flash must
clear an entire block (consisting of multiple pages) at once [FPL16]. The
data inserted into storage in testing is append-only, and inserted data is
immutable. This storage type allows for records to be inserted one page
at a time as they are taken, whereas NAND implementations must buffer
an entire flash block at once before writing to storage to avoid incurring the
overwrite penalty associated with in-place updates. Like SD cards, Dataflash
also communicates with the sensor device using the SPI protocol.

1https://www.dialog-semiconductor.com/products/memory/dataflash-spi-memory
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4.5 SPI Protocol

Files stored on SD cards attached to the embedded device accessed via
Serial Peripheral Interface (SPI) are managed by the SdFat library. The
Dataflash storage are also attached using the SPI protocol.

4.6 FAT File System

The FAT file system is named after the File Allocation Tables it uses to
keep track of data clusters on a disk. It is a popular choice for embedded
applications due to its simplicity, maturity, and cost-effectiveness.

Compared with other file systems like NTFS or HFS, FAT has a sim-
pler design that is easy to implement, has a smaller memory footprint, and
requires less processing power. These characteristics make FAT very well
suited for low power embedded devices with limited hardware resources.

The FAT file system is also supported by most modern operating systems,
owing to its widespread usage as the default file system of the MS-DOS fam-
ily of operating systems. This wide support-base makes inter-compatibility
between different operating systems and devices much more convenient.

FAT is also open-source and royalty free, meaning that developers looking
to implement the FAT file system do not have to pay licensing fees to a
governing body. This makes FAT a cost effective solution for embedded
devices that are typically deployed in large fleets.

The FAT file system was chosen to facilitate cross compatibility and
easy transfer of datasets onto the hardware test platform when conducting
experiments.

4.7 Data Transfer From SD Cards

The full process for reading the contents of a file from an SD card is
as follows, all read operations are performed using the standardized SPI
commands.

1. The boot sector of the SD card is read to find the location of the File
Allocation Table (FAT).

2. The root file directory is read using the FAT table to find all the clusters
that the root file occupies, then reading those clusters.
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3. The root file directory contains information (including the location of
their first clusters) on all the files and sub file directories stored in the
root directory.

4. If the file of interest is not located in the root directory, sub file directo-
ries are traversed recursively until the correct sub directory is reached.

5. The file directory is read to find the starting cluster of the file of inter-
est, and the FAT table is again used to locate all the clusters pertaining
to the file being read.

6. Clusters are read one at a time into the host device, since limited
resources are available and it is not advisable to read the entirety of a
file into memory.

These operations are handled by the SdFat library. The process for
writing a file onto the SD card using SPI is similar to the process for reading
a file, the main difference being that the SPI command for write operations
are used instead of read operations when the correct file is located.

4.8 Data Transfer to Dataflash using SPI

No file system is used on Dataflash to maintain simplicity and reduce
overhead on the embedded device. Drivers for the Dataflash storage were
created as part of the IonDB project [FHD+15] which had the capability
to use the same type of NOR flash storage. The Dataflash drivers include
functions for:

− Initializing the flash structure

− Erasing the entire flash chip

− Reading bytes from a flash data page

− Writing bytes into a flash data page

Since only a single file was used to store records, a file system is not
necessary on the Dataflash storage. Compared to FAT, this streamlined raw
storage system is easy to implement and reduces overall overhead.
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4.9 Build Environment

All code is implemented in C due to its low abstraction, allowing direct
access to pointers for manipulating data structures. C is also widely sup-
ported by the majority of major hardware platforms, enabling portability to
systems manufactured by different vendors.

Figure 4.2: Custom Development Board With Integrated NOR Dataflash

Figure 4.3: Desktop Environment of Platform.io Extension on Visual Studio
Code
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Tests were evaluated on a SAMD21 processor and a development board
that has been modified to include onboard NOR dataflash storage (shown
in Figure 4.2). Compilers and build setup for this platform is handled by
Platform.io, which has a plugin for Visual Studio Code (pictured in Figure
4.3). It includes a library of compilers and needed build scripts for a variety
of embedded platforms (Atmel SAM, Raspberry Pi, Espressif32, etc). In the
case for the SAMD21 processor, the ARM GCC compiler is used.
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Chapter 5

Results

We choose to evaluate querying performance using the Spline and PGM
learned indexes as well as the linear index implemented in SBITS. The ex-
periments measure four core metrics: the query throughput, the number of
IOs per query, memory consumption, and insertion throughput. These met-
rics are relevant to common use cases of sensors such as querying by times-
tamp and ingesting new data. We report the average of the metrics based
on three separate runs. The real-world data sets evaluated are in Table 2.
The data sets cover a variety of sensor use cases including environmental
monitoring, smart watches, GPS phone data, and chemical concentration
monitoring. The environmental data sets sea and uwa were originally from
(Zeinalipour-Yazti et al., 2005) and have been used in several further exper-
imental comparisons (Fazackerley et al., 2021; Ould-Khessal et al., 2022).
We also present the eCDF for the datasets in Figure 1.

The experiments evaluated sensor time series indexing for multiple real-
world data sets. The sensor hardware platform has a 32-bit Microchip
ARM® Cortex® M0+ based SAMD21 processor with clock speed of 48
MHz, 256 KB of flash program memory and 32 KB of SRAM. The hardware
board has several different memory types including a SD card and serial NOR
DataFlash2 which supports in-place page level erase-before-write. This plat-
form is representative of embedded devices with commonly used 32-bit ARM
processors. The serial NOR DataFlash was used to test performance on raw
memory without a flash translation layer (FTL). Testing on raw memory
insures no overhead with FTL maintenance operations and allows for the
highest read performance. Platform performance characteristics are in Ta-
ble 5.1.

The experiments benchmark four indexes:

− Binary Search: A binary search over the sorted data. This is the
baseline for the benchmark and requires no additional memory.

2https://www.dialog-semiconductor.com/products/memory/
dataflash-spi-memory
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− SBITS: SBITS using linear interpolation requires 8 bytes to maintain
linear approximation. SBITS was optimized to default to binary search
if its predictions were off significantly.

− PGM: A modified version of the PGM Index with support for appends
and error-bound of ε = 1.

− RadixSpline: A modified version of the RadixSpline with support for
appends, error-bound set to ε = 1 and radix prefix size of r = 0 that
offered the best performance with smallest memory usage.

The experiments measure four core metrics: the query throughput, the
number of IOs per query, memory consumption, and insertion throughput.
These metrics are relevant to common use cases of sensors such as querying
by timestamp and ingesting new data. We report the average of the metrics
based on three separate runs. The real-world data sets evaluated are in Table
5.2. The data sets cover a variety of sensor use cases including environmen-
tal monitoring, smart watches, GPS phone data, and chemical concentration
monitoring. The environmental data sets sea and uwa were originally from
[ZYLK+05] and have been used in several further experimental comparisons
[FOL21, OKFL22a]. We also present the eCDF for the datasets in Figure
5.1. From the eCDF graphs, the phone and watch datasets are of particu-
lar interest since they have the most variable sampling rates out of all the
data sets used. Considering the ability of learned indexes to better fit an
underlying eCDF compared with conventional indexes, experimental results
generated using these data sets should be closely examined.

Reads (KB/s) Writes (KB/s)
Seq Random Seq Random Write-Read Ratio

M0+ SAMD21 (DataFlash) 475 475 38 38 12.5

Table 5.1: Hardware Performance Characteristics

Name Points Points Used Sensor Data Source
sea 100,000 100,000 temp, humidity, wind, pressure SeaTac Airport
uwa 500,000 500,000 temp, humidity, wind, pressure ATG rooftop, U. of Wash.

hongxin 35,064 35,000 PM2.5, PM10, temp [ZGD+17]
ethylene 4,085,589 100,000 ethylene concentration [FSHM15]
phone 18,354 18,000 smartphone X/Y/Z magnetic field [BCRP16]
watch 2,865,713 100,000 smartwatch X/Y/Z gyroscope [SBB+15]

Table 5.2: Experimental Data Sets
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Figure 5.1: eCDFs for the experimental datasets.

5.1 Query Performance

One common use case of processing data in edge devices is to query
timestamps. We measure the query throughput for searching timestamps.
After the sensor data was inserted, 10,000 random timestamp values were
queried in the timestamp range. Data was collected on the time to execute
all queries and the number of IO operations performed.
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Figure 5.2: Average query throughput among the indexes for each dataset in
the benchmark. Higher rates indicate better results. The RadixSpline and
PGM consistently outperform SBITS and binary search.

The query throughput results are in Figure 5.2. Applying learned indexes
to sensor time series is very effective. The PGM and the RadixSpline always
outperform SBITS with significant improvements on highly variable datasets.

For the hongxin and uwa datasets, the gains are more modest ranging
from 1.05x-1.20x for the PGM and 1.06x-1.31x for the RadixSpline. These
datasets are highly linear such that an interpolation search achieves its best-
case scenario. Since the PGM and RadixSpline use PLAs to model the
dataset, they also perform well just like the interpolation search.

However, datasets such as watch, ethylene, and phone prove to be
more challenging for SBITS. Its performance is affected and becomes closer to
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the throughput of the binary search baseline. Learned indexes, on the other
hand, extend their lead and stay resilient to the change in data distribution.
The performance gains range from 1.8x-8.9x for the PGM and 1.8x-10x for
the RadixSpline. This indicates that the learned indexes have more flexible
models that describe the data distribution better. For the smart watch and
smartphone devices that generated the watch and phone data sets, this
increase in querying speeds will help enable more complex applications to run
on these devices to efficiently process larger amounts of data. Additionally,
this enables event driven and threshold driven data sampling, which has
power consumption benefits as the device can remain in a low power state
when it is not taking sensor readings. This is in contrast to fixed sampling,
where the device must periodically take sensor readings at specified times
regardless if the gathered data is meaningful. Learned indexes are able to
index data sets with highly variable sampling rates, so a fixed sampling
rate (that works best with conventional indexes) is no longer necessary to
efficiently process data.

The query throughput difference between RadixSpline and PGM is within
10% for all data sets. Since both approaches use linear approximations, the
difference relates to how the linear approximations are themselves indexed.
For these experiments, the radix table for RadixSpline was allocated no
space, and only a binary search was used on the spline points. This is
effective as there are very few points. Performance testing with using a
radix table of size r = 4 and r = 8 demonstrated no query performance
benefit while consuming precious RAM. This makes sense as the radix table
is only saving a few comparisons when searching the spline points in memory,
and the search time is dominated by the IOs performed to the flash memory.
PGM produces a multi-level index, which takes some more space and a little
longer to query. Overall, both approaches are effective and greatly improve
on binary search or single linear interpolation. The trade-off between the
query performance and memory space is discussed further in Section 5.2.

Another relevant metric for querying is the number of IOs per query. The
number of IOs performed dominates the query response time and is especially
important in embedded systems were predictable real-time performance is
desirable. Figure 5.3 displays the average number of IOs performed per
timestamp query. Binary search performs O(logN) IOs and has significantly
more IOs than the other approaches. SBITS’ single linear interpolation is
effective in many cases, however data sets like phone are poorly approximated
by one linear approximation and the algorithm frequently defaults to binary
search due to poor prediction accuracy. Both PGM and RadixSpline have
guaranteed error bounds in their construction. With ε = 1, at most 2 IO
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Figure 5.3: Average number of IOs per query among the indexes for each
dataset in the benchmark. Lower rates are better. Learned indexes signifi-
cantly reduce the number of required IOs.

are performed for any lookup with the average often around 1.3 to 1.5. This
predictable performance is a major benefit for using these learned indexes.

5.2 Memory Space Efficiency

It is critical for learned indexes to have a small memory footprint in or-
der to be useful for embedded systems. Many traditional techniques cannot
be applied to embedded systems because of the RAM constraints [FOL21],
which prompts adaptations that trade memory and performance. The mem-
ory results are in Table 5.3.
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Memory Consumption (in KB)
PGM RadixSpline

uwa 0.04 0.09
sea 1.88 0.96

watch 7.80 2.43
hongxin 0.10 0.07
ethylene 0.40 0.12
phone 1.09 0.25

Table 5.3: Memory consumption comparison among the learned indexes for
each dataset in the benchmark.

All indexes fit in memory, with the maximum amount of memory used
being 7.80 KB. The results indicate that the RadixSpline consumes less mem-
ory than the PGM. This is to be expected, as both the spline and the bottom
level of the PGM contain a very similar set of linear approximations. The
key difference between the two is their approach to finding the linear ap-
proximation to use. The RadixSpline uses a small radix table to index spline
points. The PGM uses a recursive approach building additional PLAs. Since
the size of the table from the RadixSpline is parametrized by r, it is possible
to sacrifice a little query performance to achieve less memory usage.

For our choice of r = 0, the difference in memory consumption is signif-
icant, and the difference in query performance is negligible as performance
is dominated by the number of IOs not comparisons in memory. The PGM
uses two to four times the amount of memory as the RadixSpline for five out
of the six datasets, with the exception being the easiest dataset uwa.

By modifying the error bound (ϵ), both approaches can reduce their mem-
ory footprint at the sacrifice of more query IOs and lower query throughput.
Table 5.4 shows statistics on the index size in bytes, IOs performed per
query, and query throughput in queries/second for the sea data set for mul-
tiple different values of ϵ. There is a quite significant index size reduction for
increasing ϵ to 2 or 3. Even though the IOs per query increases, it is always
bounded by ϵ. This allows designers to determine the exact performance
trade-offs in terms of space and query IOs in a predictable fashion.

5.3 Insertion Performance

Adding indexes benefits query performance, but they can also impact
the insertion time. It is critical for sensors to keep ingesting data; hence the
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RadixSpline PGM
Test Index Size Query IO Throughput Index Size Query IO Throughput

SEA ϵ = 1 932 1.40 588 1920 1.42 557
SEA ϵ = 2 436 1.85 461 856 1.91 440
SEA ϵ = 3 260 2.23 386 664 2.26 376
SEA ϵ = 5 212 3.12 281 496 3.41 256
SEA ϵ = 10 132 5.37 166 232 4.94 179

Table 5.4: Index Size in bytes, IOs per Timestamp Query, and Query
Throughput (queries/sec.) for Different Error Bounds ϵ

need to monitor the insertion throughput to ensure they match the sensors
required sampling rate. For insertion performance, the N records used for
each data set were inserted at the maximum possible rate of the hardware.
The insertion performance is dominated by the IOs for writing the data
pages to storage, but the index construction time may have some overhead.
The insertion rates in Figure 5.4 show the maximum rates possible on the
hardware for each data set and index.

The baseline for insertion performance is the binary search case which
consists of a simple data record append and no indexing overhead. The aver-
age throughput was 1967 inserts per second. Since the incoming timestamps
are strictly increasing and because binary search does not store any addi-
tional information to help on the search, this represents the upper bound for
insertion performance.

SBITS and RadixSpline were the indexes that had the highest insertion
throughput at 1966 and 1965 inserts per second, respectively. They almost
match the scenario with no index at all. The results are consistent with
earlier experiments for SBITS [OKFL22a], showing that the number of IOs
to keep the index up to date is minimal. Perhaps the most surprising result
is for the RadixSpline, because it needs to calculate spline points and update
the radix table. Our benchmark shows that the overhead for these operations
are small.

On embedded devices, an insertion rate of 2000 is high for the limited
hardware resources available. As shown in Figure 5.4, both the learned in-
dexes support >1951 inserts per second which represents a less than 1%
overhead. This small overhead indicates that the PGM and RadixSpline
learned indexes were implemented efficiently, without straining the limited
processing capacity of the embedded device. The PGM has a slightly lower
insert rate because some insertions trigger changes on multiple levels of the
PGM, while RadixSpline triggers at most one change in the spline and radix
table. The PGM insertion throughput remains competitive beating tradi-
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tional embedded indexes such as B-Trees [OKFL22a].
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Figure 5.4: Average insertion throughput among the indexes for each dataset
in the benchmark. Higher rates indicate better results. The insertion
throughout is slightly lower for the PGM, but overall learned indexes re-
main competitive.

5.4 Results Discussion

Overall, the experimental results demonstrate that there are significant
advantages to using learned indexes adapted for embedded time series data.
The most significant advantage is the predictable and bounded timestamp
query performance. By specifying a given error bound (ε), the maximum
number of IOs per query is 2ε + 2. The query performance is significantly
higher than SBITS linear interpolation search or binary search. The overhead
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of the index in terms of insertion throughput is minimal. To handle the
limited memory, the index size can be reduced by increasing the error bound.
In the experiments tested, the index size was usually less than a few KB.
The index algorithms support real-time sensor data collection of almost 2000
records/second on the experimental hardware, which is significantly above
collection rates for most applications.
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Chapter 6

Conclusion

Databases employ indexes to improve query performance. Many indexes
were originally developed before the prevalence of commercially viable flash
storage, and thus their original implementations do not account for the hard-
ware characteristics that flash storage exhibits.

Embedded devices use flash memory as the storage medium of choice,
thus database systems running on embedded devices must also adopt design
principles suitable for flash memory. These devices also have their own design
considerations that must be accounted for, in addition to the considerations
for flash memory.

By adapting the PGM and Spline learned indexes to support continuous
appends, we demonstrate that learned indexes are well-suited for time series
indexing. Learned indexes have traditionally been developed in the con-
text of being used as in-memory indexes running on large data centers, but
this work demonstrates the viability of such indexing methods on hardware-
constrained embedded systems performing frequent append operations. Ex-
perimental results further express the practicality of using learned indexes in
an embedded environment, where we observe lower memory footprints and
IO load compared with conventional indexes.

The PGM and Spline indexes both easily fit within the 256 KB of avail-
able memory on our embedded development platform (typical of commer-
cially available embedded devices), with 7.8 KB being the largest recorded
memory consumption (used to index 100,000 entries in the watch dataset).
As both the PGM and Spline indexes use linear approximations for their in-
dexing structures, they also exhibit similar performance. The querying per-
formance of the Spline and PGM indexes are within 10% of each other, with
the difference mainly being due to the multi-level structure of the PGM index
taking slightly longer to search. Insertion performance was also impressive,
with both PGM and Spline demonstrating an almost negligible performance
impact versus the simple linear index used in SBITS. This demonstrates ap-
plicability in scenarios where a high throughput is required, such as real time
monitoring with high sampling rates.
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6.1 Future Work

Future work will explore methods for auto-tuning the hyperparameters
of the learned indexes to optimize performance with less user input. An
additional challenge presents itself when considering the limited hardware
resources available to embedded devices, as any tuning operation must not
consume impractical amounts of memory or processing power. It may also
be worth investigating whether a system can continuously monitor the pat-
tern of the data being inserted. This could potentially allow for the system
to automatically recognize when the indexing method it is currently using
becomes sub-optimal and change the indexing method used for future data
samples to one that is better suited to fit the detected data pattern. This
functionality would also be subject to the limited hardware resources avail-
able, and care should be placed to minimize the burden on memory usage.

74



Bibliography

[AA14] Manos Athanassoulis and Anastasia Ailamaki. Bf-tree: Ap-
proximate tree indexing. Proceedings of the VLDB Endowment,
7:1881–1892, 10 2014. → pages 14

[ALAB+20] Hussam Abu-Libdeh, Deniz Altınbüken, Alex Beutel, Ed H.
Chi, Lyric Doshi, Tim Kraska, Xiaozhou, Li, Andy Ly, and
Christopher Olston. Learned indexes for a google-scale disk-
based database, 2020. → pages 2

[BCRP16] Paolo Barsocchi, Antonino Crivello, Davide La Rosa, and Fil-
ippo Palumbo. A multisource and multivariate dataset for in-
door localization methods based on WLAN and geo-magnetic
field fingerprinting. In 2016 International Conference on Indoor
Positioning and Indoor Navigation (IPIN), pages 1–8. IEEE,
October 2016. → pages 64

[BFCJ+17] Michael A. Bender, Martín Farach-Colton, Rob Johnson, Si-
mon Mauras, Tyler Mayer, Cynthia A. Phillips, and Helen
Xu. Write-optimized skip lists. In Proceedings of the 36th
ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of
Database Systems, PODS ’17, page 69–78, New York, NY, USA,
2017. Association for Computing Machinery. → pages 16

[BGS01] Philippe Bonnet, Johannes Gehrke, and Praveen Seshadri. To-
wards sensor database systems. In Proceedings - 2001 2nd In-
ternational Conference on Mobile Data Management, volume
1987, 01 2001. → pages 33

[CFT07] Abdellah Chehri, Paul Fortier, and Pierre-Martin Tardif. Secu-
rity monitoring using wireless sensor networks. In Fifth Annual
Conference on Communication Networks and Services Research
(CNSR ’07), pages 13–17, 2007. → pages 27

75

https://doi.org/10.1109/ipin.2016.7743678
https://doi.org/10.1109/ipin.2016.7743678
https://doi.org/10.1109/ipin.2016.7743678
https://doi.org/10.1145/3034786.3056117


Bibliography

[CJY10] Kai Cui, Peiquan Jin, and Lihua Yue. Hashtree: A new hybrid
index for flash disks. In 2010 12th International Asia-Pacific
Web Conference, pages 45–51, 04 2010. → pages 17

[CMB+10] Mustafa Canim, George Mihaila, Bishwaranjan Bhattacharjee,
Christian Lang, and Kenneth Ross. Buffered bloom filters on
solid state storage. Proceedings of the 1st International Work-
shop on Accelerating Data Management Systems Using Modern
Processor & Storage Architectures (ADMS), pages 1–8, 2010.→
pages 17

[Com79] Douglas Comer. Ubiquitous b-tree. ACM Comput. Surv.,
11(2):121–137, jun 1979. → pages 9

[DB10] Atanu Das and Rajib Bag. Wireless sensor network based
monitoring systems: A review and state-of-the-art appli-
cations. INTERNATIONAL JOURNAL OF COMPUTER
APPLICATIONS IN ENGINEERING, TECHNOLOGY AND
SCIENCES (IJ-CA-ETS), 3:142–151, 10 2010. → pages 26

[DL14] Graeme Douglas and Ramon Lawrence. Littled: A sql database
for sensor nodes and embedded applications. In Proceedings of
the 29th Annual ACM Symposium on Applied Computing, SAC
’14, page 827–832, New York, NY, USA, 2014. Association for
Computing Machinery. → pages 33, 36

[DSl+11] Biplob Debnath, Sudipta Sengupta, Jin li, David Lilja, and
David Du. Bloomflash: Bloom filter on flash-based storage. In
2011 31st International Conference on Distributed Computing
Systems, pages 635–644, 06 2011. → pages 17

[EEC+09a] Hazem Elmeleegy, Ahmed K. Elmagarmid, Emmanuel Cecchet,
Walid G. Aref, and Willy Zwaenepoel. Online piece-wise linear
approximation of numerical streams with precision guarantees.
Proc. VLDB Endow., 2(1):145–156, aug 2009. → pages 43

[EEC+09b] Hazem Elmeleegy, Ahmed K. Elmagarmid, Emmanuel Cecchet,
Walid G. Aref, and Willy Zwaenepoel. Online piece-wise linear
approximation of numerical streams with precision guarantees.
Proc. VLDB Endow., 2(1):145–156, aug 2009. → pages 52

76

https://doi.org/10.1145/356770.356776
https://doi.org/10.1145/2554850.2554891
https://doi.org/10.1145/2554850.2554891
https://doi.org/10.14778/1687627.1687645
https://doi.org/10.14778/1687627.1687645
https://doi.org/10.14778/1687627.1687645
https://doi.org/10.14778/1687627.1687645


Bibliography

[FABM19] Athanasios Fevgas, Leonidas Akritidis, Panayiotis Bozanis, and
Yannis Manolopoulos. Indexing in flash storage devices: a sur-
vey on challenges, current approaches, and future trends. The
VLDB Journal, 29:273–311, 2019. → pages 11

[FABM20] Athanasios Fevgas, Leonidas Akritidis, Panayiotis Bozanis, and
Yannis Manolopoulos. Indexing in flash storage devices: a sur-
vey on challenges, current approaches, and future trends. The
VLDB Journal, 29, 01 2020. → pages ix, 19

[Fed75] Paul I. Feder. On asymptotic distribution theory in segmented
regression problems– identified case. The Annals of Statistics,
3(1):49–83, 1975. → pages 43

[FHD+15] Scott Fazackerley, Eric Huang, Graeme Douglas, Raffi Kudlac,
and Ramon Lawrence. Key-value store implementations for ar-
duino microcontrollers. In 2015 IEEE 28th Canadian Confer-
ence on Electrical and Computer Engineering (CCECE), pages
158–164, 2015. → pages 34, 60

[FOKM+20] Andrew Feltham, Nadir Ould-Khessal, Spencer MacBeth, Scott
Fazackerley, and Ramon Lawrence. Linear hashing implemen-
tations for flash memory. In Joaquim Filipe, Michał Śmi-
ałek, Alexander Brodsky, and Slimane Hammoudi, editors,
Enterprise Information Systems, pages 386–405, Cham, 2020.
Springer International Publishing. → pages 9

[FOL21] Scott Fazackerley., Nadir Ould-Khessal., and Ramon Lawrence.
Efficient flash indexing for time series data on memory-
constrained embedded sensor devices. In Proceedings of the
10th International Conference on Sensor Networks - SENSOR-
NETS,, pages 92–99. INSTICC, SciTePress, 2021. → pages 35,
40, 51, 64, 68

[FOM+19] Andrew Feltham, Nadir Ould-Khessal, Spencer MacBeth, Scott
Fazackerley, and Ramon Lawrence. Linear Hashing Implemen-
tations for Flash Memory. In 21st International Conference
Enterprise Information Systems Selected Papers, volume 378 of
Lecture Notes in Business Information Processing, pages 386–
405. Springer, 2019. → pages 36

77

http://www.jstor.org/stable/2958079
http://www.jstor.org/stable/2958079


Bibliography

[FPL16] Scott Fazackerley, Wade Penson, and Ramon Lawrence. Write
improvement strategies for serial nor dataflash memory. In 2016
IEEE Canadian Conference on Electrical and Computer Engi-
neering (CCECE), pages 1–6, 2016. → pages 58

[FSHM15] Jordi Fonollosa, Sadique Sheik, Ramón Huerta, and Santiago
Marco. Reservoir computing compensates slow response of
chemosensor arrays exposed to fast varying gas concentrations
in continuous monitoring. Sensors and Actuators B: Chemical,
215:618–629, August 2015. → pages 64

[FV20] Paolo Ferragina and Giorgio Vinciguerra. The PGM-index: a
fully-dynamic compressed learned index with provable worst-
case bounds. PVLDB, 13(8):1162–1175, 2020. → pages 45,
52

[Gra93] Goetz Graefe. Query evaluation techniques for large databases.
ACM Comput. Surv., 25(2):73–169, Jun 1993. → pages 8

[JRvS11] Martin V. Jørgensen, René B. Rasmussen, Simonas Šaltenis,
and Carsten Schjønning. Fb-tree: A b+-tree for flash-based
ssds. In Proceedings of the 15th Symposium on International
Database Engineering & Applications, IDEAS ’11, page 34–42,
New York, NY, USA, 2011. Association for Computing Ma-
chinery. → pages 14

[JWZ+15] Zhiwen Jiang, Yongji Wu, Yong Zhang, Chao Li, and Chunxiao
Xing. Ab-tree: A write-optimized adaptive index structure on
solid state disk. Proceedings - 11th Web Information System
and Application Conference, WISA 2014, pages 188–193, 03
2015. → pages 14

[JYW+18] Peiquan Jin, Chengcheng Yang, Xiaoliang Wang, Lihua Yue,
and Dezhi Zhang. Sal-hashing: A self-adaptive linear hashing
index for ssds. IEEE Transactions on Knowledge and Data
Engineering, PP, 12 2018. → pages 17

[KBC+17] Tim Kraska, Alex Beutel, Ed H. Chi, Jeffrey Dean, and Neoklis
Polyzotis. The case for learned index structures, 2017. → pages
2, 41, 42

78

https://doi.org/10.1016/j.snb.2015.03.028
https://doi.org/10.1016/j.snb.2015.03.028
https://doi.org/10.1016/j.snb.2015.03.028
https://pgm.di.unipi.it
https://pgm.di.unipi.it
https://pgm.di.unipi.it
https://doi.org/10.1145/152610.152611
https://doi.org/10.1145/2076623.2076629
https://doi.org/10.1145/2076623.2076629
https://arxiv.org/abs/1712.01208


Bibliography

[KMvR+20] Andreas Kipf, Ryan Marcus, Alexander van Renen, Mihail
Stoian, Alfons Kemper, Tim Kraska, and Thomas Neumann.
RadixSpline: a single-pass learned index. In Proceedings of the
Third International Workshop on Exploiting Artificial Intelli-
gence Techniques for Data Management, pages 1–5, 2020. →
pages 46, 52

[LDD11] Guanlin Lu, Biplob Debnath, and David Du. A forest-
structured bloom filter with flash memory. In 2011 IEEE
27th Symposium on Mass Storage Systems and Technologies
(MSST), pages 1 – 6, 06 2011. → pages 17

[LDM08] X. Li, Z. Da, and X. Meng. A new dynamic hash index for flash-
based storage. In Web-Age Information Management, Interna-
tional Conference on, pages 93–98, Los Alamitos, CA, USA, jul
2008. IEEE Computer Society. → pages 17

[LHY+10] Yinan Li, Bingsheng He, Jun Yang, Qiong Luo, and Ke Yi.
Tree indexing on solid state drives. Proceedings of the VLDB
Endowment, 3:1195 – 1206, 2010. → pages 13

[LL10] Hyun-Seob Lee and Dong-Ho Lee. An efficient index buffer
management scheme for implementing a b-tree on nand flash
memory. Data & Knowledge Engineering, 69:901–916, 09 2010.
→ pages 13

[MFHH05] Samuel R. Madden, Michael J. Franklin, Joseph M. Heller-
stein, and Wei Hong. Tinydb: An acquisitional query process-
ing system for sensor networks. ACM Trans. Database Syst.,
30(1):122–173, mar 2005. → pages 32

[NM08] Thomas Neumann and Sebastian Michel. Smooth interpolat-
ing histograms with error guarantees. In Lecture Notes in Com-
puter Science, pages 126–138. Springer Berlin Heidelberg, 2008.
→ pages 52, 54, 56

[OCGO96] Patrick O’Neil, Edward Cheng, Dieter Gawlick, and Elizabeth
O’Neil. The log-structured merge-tree (lsm-tree). Acta Inf.,
33(4):351–385, jun 1996. → pages 13

[OFL21] Nadir Ould-Khessal, Scott Fazackerley, and Ramon Lawrence.
An efficient b-tree implementation for memory-constrained em-

79

https://doi.ieeecomputersociety.org/10.1109/WAIM.2008.53
https://doi.ieeecomputersociety.org/10.1109/WAIM.2008.53
https://doi.org/10.1145/1061318.1061322
https://doi.org/10.1145/1061318.1061322
https://doi.org/10.1007/978-3-540-70504-8_12
https://doi.org/10.1007/978-3-540-70504-8_12
https://doi.org/10.1007/s002360050048


Bibliography

bedded systems. In The 19th Int’l Conf on Embedded Systems,
Cyber-physical Systems, and Applications (ESCS’21), 2021. →
pages 37, 40

[OHLX09] Sai Tung On, Haibo Hu, Yu Li, and Jianliang Xu. Lazy-update
b+-tree for flash devices. In Proceedings - 2009 10th Interna-
tional Conference on Mobile Data Management, pages 323–328,
October 2009. 2009 10th International Conference on Mobile
Data Management: Systems, Services and Middleware, MDM
2009 ; Conference date: 18-05-2009 Through 20-05-2009. →
pages 13

[OKFL22a] Nadir Ould-Khessal, Scott Fazackerley, and Ramon Lawrence.
Performance Evaluation of Embedded Time Series Indexes Us-
ing Bitmaps, Partitioning, and Trees. In Invited and revised pa-
pers of SENSORNETS 2021, volume 1674 of Sensor Networks,
pages 125–151. Springer, 2022. → pages 64, 70, 71

[OKFL22b] Nadir Ould-Khessal, Scott Fazackerley, and Ramon Lawrence.
Performance evaluation of embedded time series indexes us-
ing bitmaps, partitioning, and trees. In Andreas Ahrens, Ran-
gaRao Venkatesha Prasad, César Benavente-Peces, and Nirwan
Ansari, editors, Sensor Networks, pages 125–151, Cham, 2022.
Springer International Publishing. → pages 51

[O'R81] Joseph O'Rourke. An on-line algorithm for fitting straight lines
between data ranges. Communications of the ACM, 24(9):574–
578, September 1981. → pages 52

[RKKP09] Hongchan Roh, Woo-Cheol Kim, Seung-Woo Kim, and
Sanghyun Park. A b-tree index extension to enhance response
time and the life cycle of flash memory. Inf. Sci., 179:3136–
3161, 08 2009. → pages 13

[RO92] Mendel Rosenblum and John K. Ousterhout. The design and
implementation of a log-structured file system. ACM Trans.
Comput. Syst., 10(1):26–52, feb 1992. → pages 39

[RPSL14] Hongchan Roh, Sanghyun Park, Mincheol Shin, and Sang-Won
Lee. Mpsearch: Multi-path search for tree-based indexes to
exploit internal parallelism of flash ssds. IEEE Data Eng. Bull.,
37:3–11, 2014. → pages 13

80

https://doi.org/10.1145/358746.358758
https://doi.org/10.1145/358746.358758
https://doi.org/10.1145/146941.146943
https://doi.org/10.1145/146941.146943


Bibliography

[RWW+17] Sean Rhea, Eric Wang, Edmund Wong, Ethan Atkins, and Nat
Storer. Littletable: A time-series database and its uses. In Pro-
ceedings of the 2017 ACM International Conference on Man-
agement of Data, SIGMOD ’17, page 125–138, New York, NY,
USA, 2017. Association for Computing Machinery. → pages
21, 40

[SBB+15] Allan Stisen, Henrik Blunck, Sourav Bhattacharya, Thor Siiger
Prentow, Mikkel Baun Kjærgaard, Anind Dey, Tobias Sonne,
and Mads Møller Jensen. Smart devices are different: Assessing
and mitigating mobile sensing heterogeneities for activity recog-
nition. In Proceedings of the 13th ACM Conference on Embed-
ded Networked Sensor Systems, SenSys ’15, page 127–140, New
York, USA, 2015. ACM. → pages 64

[TD11] Nicolas Tsiftes and Adam Dunkels. A database in every sen-
sor. In Proceedings of the 9th ACM Conference on Embed-
ded Networked Sensor Systems, SenSys ’11, page 316–332, New
York, NY, USA, 2011. Association for Computing Machinery.
→ pages 27, 30, 31, 32, 39

[Vig12] Stratis D. Viglas. Adapting the b + -tree for asymmetric i/o.
In Tadeusz Morzy, Theo Härder, and Robert Wrembel, editors,
Advances in Databases and Information Systems, pages 399–
412, Berlin, Heidelberg, 2012. Springer Berlin Heidelberg. →
pages 13

[WF17] Huiying Wang and Jianhua Feng. Flashskiplist: Indexing on
flash devices. In Proceedings of the ACM Turing 50th Cele-
bration Conference - China, ACM TUR-C ’17, New York, NY,
USA, 2017. Association for Computing Machinery. → pages 15

[WHQ+20] Chen Wang, Xiangdong Huang, Jialin Qiao, Tian Jiang, Lei
Rui, Jinrui Zhang, Rong Kang, Julian Feinauer, Kevin Mc-
Grail, Peng Wang, Diaohan Luo, Jun Yuan, Jianmin Wang, and
Jiaguang Sun. Apache iotdb: time-series database for internet
of things. Proceedings of the VLDB Endowment, 13:2901–2904,
08 2020. → pages 23

[WKC07] Chin-Hsien Wu, Tei-Wei Kuo, and Li Ping Chang. An efficient

81

https://doi.org/10.1145/3035918.3056102
https://doi.org/10.1145/2809695.2809718
https://doi.org/10.1145/2809695.2809718
https://doi.org/10.1145/2809695.2809718
https://doi.org/10.1145/2070942.2070974
https://doi.org/10.1145/2070942.2070974
https://doi.org/10.1145/3063955.3063978
https://doi.org/10.1145/3063955.3063978
https://doi.org/10.1145/1275986.1275991
https://doi.org/10.1145/1275986.1275991


Bibliography

b-tree layer implementation for flash-memory storage systems.
ACM Trans. Embed. Comput. Syst., 6(3):19–es, jul 2007. →
pages 13

[Wol02] W. Wolf. What is embedded computing? Computer, 35(1):136–
137, 2002. → pages 25

[XYLW08] Xiaoyan Xiang, Lihua Yue, Zhanzhan Liu, and Peng Wei. A
reliable b-tree implementation over flash memory. In Proceed-
ings of the 2008 ACM Symposium on Applied Computing, SAC
’08, page 1487–1491, New York, NY, USA, 2008. Association
for Computing Machinery. → pages 13

[ZGD+17] Shuyi Zhang, Bin Guo, Anlan Dong, Jing He, Ziping Xu, and
Song Xi Chen. Cautionary tales on air-quality improvement
in Beijing. Proceedings of the Royal Society A: Mathemat-
ical, Physical and Engineering Sciences, 473(2205):20170457,
September 2017. → pages 64

[ZYLK+05] Demetrios Zeinalipour-Yazti, Song Lin, Vana Kalogeraki, Dim-
itrios Gunopulos, and Walid Najjar. MicroHash: An Efficient
Index Structure for Flash-Based Sensor Devices. In Proceedings
of the FAST ’05 Conference on File and Storage Technologies,
pages 31–43. USENIX Association, 2005. → pages 64

82

https://doi.org/10.1145/1275986.1275991
https://doi.org/10.1145/1275986.1275991
https://doi.org/10.1145/1363686.1364036
https://doi.org/10.1145/1363686.1364036
https://doi.org/10.1098/rspa.2017.0457
https://doi.org/10.1098/rspa.2017.0457
http://dl.acm.org/citation.cfm?id=1251031
http://dl.acm.org/citation.cfm?id=1251031

	Abstract
	Lay Summary
	Preface
	Table of Contents
	List of Tables
	List of Figures
	Acknowledgements
	Dedication
	1 Introduction
	2 Background
	2.1 Database Systems
	2.2 Database Indexes
	2.3 Flash Indexes
	2.3.1 B-tree Based Flash Indexes
	2.3.2 Skip-List-Based Indexes
	2.3.3 Hash-Based Indexes
	2.3.4 Flash Indexes Performance Summary

	2.4 Time Series Databases
	2.4.1 LittleTable
	2.4.2 Apache IoTDB

	2.5 Embedded Databases and Sensor Networks
	2.6 Design Considerations for Embedded Sensor Networks
	2.7 Embedded Sensor Network Database Architectures
	2.7.1 TinyDB
	2.7.2 Antelope
	2.7.3 Cougar
	2.7.4 LittleD
	2.7.5 IonDB
	2.7.6 SBITS

	2.8 Conventional Indexes on Embedded Databases
	2.8.1 Linear Hashing
	2.8.2 B-Tree Index
	2.8.3 MaxHeap Index
	2.8.4 Hash Index
	2.8.5 Inline Index
	2.8.6 Skip List Index

	2.9 Time Series Indexes
	2.10 Learned Indexes
	2.10.1 RMI
	2.10.2 PLA
	2.10.3 PGM
	2.10.4 Spline
	2.10.5 Comparison between Spline and PGM


	3 Methodology
	3.1 Piece-wise Geometric Models
	3.2 RadixSpline

	4 Implementation
	4.1 Radix Adaptation
	4.2 Memory
	4.3 SD Cards
	4.4 Dataflash
	4.5 SPI Protocol
	4.6 FAT File System
	4.7 Data Transfer From SD Cards
	4.8 Data Transfer to Dataflash using SPI
	4.9 Build Environment

	5 Results
	5.1 Query Performance
	5.2 Memory Space Efficiency
	5.3 Insertion Performance
	5.4 Results Discussion

	6 Conclusion
	6.1 Future Work

	Bibliography

