
Improving Hash Join
Performance By Exploiting

Intrinsic Data Skew
by

Bryce Cutt

BSc(Hons), University of British Columbia, 2007

A THESIS SUBMITTED IN PARTIAL FULFILMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF SCIENCE

in

The College of Graduate Studies

(Interdisciplinary Studies)

THE UNIVERSITY OF BRITISH COLUMBIA (Okanagan)

March, 2009

c© Bryce Cutt 2009

Abstract

Large relational databases are a part of all of our lives. The government uses them and almost
any store you visit uses them to help process your purchases. Real-world data sets are not
uniformly distributed and often contain significant skew. Skew is present in commercial
databases where, for example, some items are purchased far more often than others. A
relational database must be able to efficiently find related information that it stores. In
large databases the most common method used to find related information is a hash join
algorithm. Although mitigating the negative effects of skew on hash joins has been studied,
no prior work has examined how the statistics present in modern database systems can allow
skew to be exploited and used as an advantage to improve the performance of hash joins.
This thesis presents Histojoin: a join algorithm that uses statistics to identify data skew and
improve the performance of hash join operations. Experimental results show that for skewed
data sets Histojoin performs significantly fewer I/O operations and is faster by 10 to 60%
than standard hash join algorithms.

ii

Table of Contents

Abstract . ii

Table of Contents . iii

List of Tables . iv

List of Figures . v

Acknowledgements . vi

Dedication . vii

1 Introduction . 1

2 Background . 4
2.1 Relational Databases . 4

2.1.1 Joins . 6
2.1.2 Keys . 6
2.1.3 Cardinality . 7

2.2 Hash Join . 8
2.2.1 In-Memory Hash Join . 8
2.2.2 Hash Partitioning . 11
2.2.3 Grace Hash Join . 13
2.2.4 Hybrid Hash Join . 14
2.2.5 Dynamic Hash Join . 16
2.2.6 Hash Join Performance Enhancements 17

2.3 Skew . 17
2.4 Statistics and Histograms . 18

2.4.1 Histograms and Hash Joins . 20
2.5 Example Database . 20
2.6 Relational Algebra Query Plan Diagrams 20

3 Histojoin . 24
3.1 General Approach . 24

3.1.1 Theoretical Performance Analysis 25
3.2 Histojoin Algorithm . 26

iii

3.2.1 Algorithm Overview . 26
3.2.2 Selecting In-Memory Tuples . 29
3.2.3 Partitioning . 31

3.3 Using Histojoin . 32
3.3.1 Join Cardinality . 32
3.3.2 Histogram Inaccuracies . 33
3.3.3 Query Optimizer Modifications . 36

4 Experimental Results . 38
4.1 Stand-Alone Evaluation . 38

4.1.1 Primary-to-Foreign Key Joins . 38
4.1.2 Many-to-Many Joins . 40
4.1.3 Histogram Inaccuracies . 41
4.1.4 Joins on String Keys . 42
4.1.5 Multi-Way Joins . 42

4.2 PostgreSQL Implementation . 43
4.2.1 Primary-to-Foreign Key Joins . 45
4.2.2 Multi-Way Joins . 45
4.2.3 Effect of Number of MCVs . 45

4.3 Results Summary . 46

5 Discussion and Conclusion . 49

Bibliography . 51

iv

List of Tables

2.1 Part Relation . 5
2.2 Purchase Relation . 5
2.3 Part-Purchase Join Result . 7
2.4 Part-Purchase Hash Join Result . 14
2.5 An Accurate Histogram on the partid Attribute of the Purchase Relation . . 18
2.6 An Aggregate Histogram on the partid Attribute of the Purchase Relation . 19

3.1 Absolute Reduction in Total I/Os of Skew-Aware Partitioning versus Random
Partitioning for Various Values of f and g and |R| = |S| = 1000 26

3.2 Histogram Partitioning Example . 30
3.3 Join Cardinality Cases . 33

v

List of Figures

2.1 The Parts of a Relation . 4
2.2 Chained Hash Table Example (mod5 hash function) 10
2.3 Partition 0 of Part and Purchase Relations 12
2.4 Partition 1 of Part and Purchase Relations 12
2.5 Partition 2 of Part and Purchase Relations 12
2.6 Partition 3 of Part and Purchase Relations 13
2.7 Partition 4 of Part and Purchase Relations 13
2.8 DHJ Partitioning Example Part 1 . 21
2.9 DHJ Partitioning Example Part 2 . 22
2.10 TPC-H Schema from [1] . 23
2.11 Example Relational Algebra Diagram . 23

3.1 Two Level Partitioning . 24
3.2 Total I/Os Percent Difference . 27
3.3 Partkey Histogram for Lineitem Relation TPC-H 1 GB Zipf Distribution (z=1) 27
3.4 Histojoin Flowchart . 28
3.5 Example Multiple Join Plans . 36

4.1 Lineitem-Part Join (1GB, z=1) . 39
4.2 Lineitem-Part Join (1GB, z=2) . 40
4.3 Percentage Improvement in Total I/Os of Histojoin vs. Hash Join (1GB) . . 40
4.4 Total I/Os for Wisconsin Many-to-Many Join (1GB, z=1) 41
4.5 Total I/Os for Lineitem-Part Join with Histogram Inaccuracies (1GB) 42
4.6 Total I/Os for Lineitem-Supplier Join on String key (1GB, z=1) 43
4.7 Total I/Os for Lineitem-Supplier-Part Join (1GB) 43
4.8 PostgreSQL Lineitem-Part Join (10GB, z=1) 45
4.9 PostgreSQL Lineitem-Part Join (10GB, z=2) 46
4.10 PostgreSQL Percentage Improvement in Total I/Os of Histojoin vs. Hash Join

(10GB) . 46
4.11 Total I/Os for PostgreSQL Lineitem-Supplier-Part Join (10GB) 47
4.12 PostgreSQL Lineitem-Part Join With Various Amounts of MCVs (10GB, z=1) 48

vi

Acknowledgements

I would like to thank my supervisor Dr. Ramon Lawrence for providing me with the op-
portunity to do a Master’s degree under his supervision. Dr. Lawrence has been a valuable
instructor, mentor, and most of all friend during this journey. His feedback, insight, and
passion for the subject matter has been invaluable in re-igniting my own obsession with data
management and in bringing my thesis to its current form.

I am forever greatful for the patience my wife and family have had for me when my mind
is engrossed in a subject. Angela has always provided love and support no matter what
mental state I was in. My parents Ken and Sue have always provided a safe harbour when
nothing seems to be going right.

I would also like to thank Dr. Patricia Lasserre and Dr. Yves Lucet for mentoring
me throughout my previous degree and providing many opportunities for me to build the
confidence and skills needed to pursue a Master’s degree.

Many people have provided feedback and support regarding my thesis and I would like
to express my appreciation to them and acknowledge their contribution to my success.

vii

Dedication

To my family

viii

1. Introduction

The world contains enormous stores of information for various uses, be they academic, gov-
ernment, financial, commercial, etc. For this information to be useful it must be stored
and retrieved efficiently. For many years the method of choice for storing large amounts
of information has been database systems. Most modern commercial database systems are
relational database systems. A relational database consists of tables of information (called
relations) that are related to each other according to various rules (Section 2.1).

A relational database system provides methods for storing, retrieving, sorting, searching,
and comparing information. It does so while limiting a user’s need to understand the under-
lying system. The operations performed by a database are largely automated and the user
interacts with the database primarily through queries in a very natural English-like language
called SQL (Structured Query Language) [6].

When a user queries a database the actual operations performed and the algorithms
used are hidden from the user. The database must carefully manage its memory usage as
most large database systems contain far more information than will fit in the memory of a
computer at one time. Databases choose how to search relations for information and how
to compare information in multiple relations so that related information can be returned to
the user. Returning related information from multiple relations requires that the database
compare parts of the different relations and join the matching parts together. This is done
by specialized algorithms called join algorithms (Section 2.1.1).

Hash join is the standard join algorithm used in database systems to process large join
queries (Section 2.2). Any performance improvement for hash joins is significant due to
the cost and prevalence of hash-based joins, especially in the large queries present in data
warehouses and decision-support systems. We are increasingly dependent on large govern-
mental, educational, and commercial database systems that are queried regarding our tax
information, our student records, and whenever we purchase an item.

With a centralized database system the primary concern of a join algorithm (other than
producing an accurate join) is to produce a result quickly by efficiently using the limited
memory available and only using disk resources when absolutely necessary as the speed of
a disk is an order of magnitude slower than the speed of memory. Parallel and distributed
database systems attempt to load balance the work of a join across many nodes. Although
parallel databases attempt to avoid partition skew for load balancing, no parallel join algo-
rithm has examined maximizing the in-memory results produced by keeping frequent data
memory-resident.

Real data sets often contain skew. Skew occurs in data when certain values occur more
frequently than others (Section 2.3). Partition skew is when a data set is split into multiple

1

partitions and some partitions contain more information than the others. Many data sets
follow the “80/20 rule” where a small subset of the data items occur much more frequently.
For example, consider a company that sells many products and has a database that stores
information on customer purchases. This information is valuable for determining which
products to re-stock, which sales will be most beneficial, and which products need to be
featured in advertising. If a few products are sold far more often than other products then
the database will contain far more entries related to those products. This is a very common
example of skew.

Traditionally skew has been seen as a negative for join algorithms. Prior work has focused
on how to maximize the performance of join algorithms by avoiding the negative effects of
skew and using memory more efficiently. Avoiding and mitigating partition skew has been
considered in centralized and distributed databases for hash joins [10]. More recently in [19]
various approaches were used to lower the negative effect of skew on the performance of
sort-merge join algorithms. In each of these cases skew was seen as a problem to be avoided.
It is a major issue for the largest databases used by corporations and government where data
sizes are in terabytes and queries may take hours.

Modern relational databases contain statistics on the underlying data set that can be
used to detect skew before a join algorithm is used. This research examines how skew can
be detected and exploited by a modified hash join algorithm to improve performance. There
has been no prior work that detects data skew in the relations and uses that skew as an
advantage to maximize the number of in-memory results produced by a hash join. By using
the features of a modern database system skew can finally be seen as an advantage and used
to greatly increase database performance when properly exploited.

By detecting intrinsic data skew in the data set and preferentially buffering the most
useful data, memory is used more efficiently, I/O operations are decreased, and join and
database performance is improved. This thesis is confirmed by research that produced the
Histojoin algorithm. Histojoin is a modification to hash join that exploits data skew to
improve hash join performance. The Histojoin algorithm implementation uses statistics to
detect skew in the input relations. Statistics such as histograms [13] are commonly produced
by a database system for query optimization and can be exploited at no cost by the join
algorithm. The algorithm has better performance than standard hash joins for skewed data.
The improvements made to hash join allow it to finally take advantage of statistics that have
been available in commercial database systems for years.

The contributions are as follows.

• An analysis of the advantage of exploiting data skew to improve hash join performance.

• A modification of hash join called Histojoin that uses statistics to detect data skew
and adapt its memory allocation to maximize its performance.

• An implementation of Histojoin in a stand-alone Java database system and an imple-
mentation of Histojoin in the popular PostgreSQL open source database system.

2

• An experimental evaluation that demonstrates the benefits of Histojoin for large data
warehouse queries using the TPC-H data set.

This thesis expands on the presentation in [4, 5]. The PostgreSQL implementation is
currently being evaluated for inclusion in the main production branch of PostgreSQL where
it will have an impact on many real world databases and millions of users.

The organization of this thesis is as follows. In Chapter 2 the database and many of
its operations are described in enough detail to provide a base of understanding necessary
to appreciate the purpose and benefits of Histojoin. In Chapter 3 the Histojoin algorithm’s
operation and functionality are explained in detail. In Chapter 4 Histojoin is compared to a
standard hash join in many experiments. The results demonstrate significant performance
improvements with Histojoin vs. hash join that increase as the data skew increases. In
Chapter 5 the content of this thesis is summarized and conclusions are drawn from the
experimental results.

3

2. Background

2.1 Relational Databases

A modern relational database consists of tables of information that are related to each other
according to various rules. These tables are referred to as relations.

Figure 2.1: The Parts of a Relation

A relation consists of columns and rows where each row is an entry in the relation and
each column specifies a piece of information that each row contains. A row is referred to as
a tuple and a column is referred to as an attribute. In the example Part relation given in
Figure 2.1 and Table 2.1, the attributes are (partid, name, mfgr, and price) and one of the
tuples is (1, jeans, Manufacturer#1, $10.00). As can be seen the tuple contains a piece of
information (a value) for each attribute in the relation and if multiple tuples are examined
it is apparent that values in the same attribute of different tuples are of a similar type. The
Purchase relation given in Table 2.2 follows a similar format. These relations will be used
as examples throughout the thesis.

4

partid name mfgr price
1 jeans Manufacturer#1 $10.00
2 shoes Manufacturer#1 $2.00
3 linens Manufacturer#1 $20.00
4 chocolate Manufacturer#3 $30.00
5 firebrick Manufacturer#1 $12.00
6 moccasin Manufacturer#2 $100.00
7 saddle Manufacturer#2 $50.00
8 khakis Manufacturer#1 $32.00
9 soap Manufacturer#3 $52.00
10 shampoo Manufacturer#3 $55.00

Table 2.1: Part Relation

purchaseid partid quantity tax shipdate shipmode
1 1 10000 $0.02 1993-10-10 MAIL
2 2 50000 $0.08 1995-10-28 RAIL
3 2 5000 $0.03 2001-04-19 TRUCK
4 2 3300 $0.02 1998-07-24 AIR
5 2 8300 $2.00 2004-01-14 MAIL
6 2 1000 $0.08 1993-10-11 RAIL
7 2 2000 $0.02 1995-10-29 TRUCK
8 2 3100 $0.03 2001-04-20 AIR
9 2 1900 $0.03 1998-07-25 MAIL
10 3 1800 $0.02 2004-01-15 RAIL
11 3 1500 $0.08 1993-10-12 TRUCK
12 3 1100 $0.08 1995-10-30 AIR
13 4 500 $0.02 2001-04-21 MAIL
14 4 1500 $0.03 1998-07-26 RAIL
15 5 100000 $0.02 2004-01-16 TRUCK
16 6 200000 $0.05 1993-10-13 AIR
17 7 1300 $0.08 1995-10-31 MAIL
18 8 10000 $0.02 2001-04-22 RAIL
19 9 5000 $0.02 1998-07-27 TRUCK
20 10 100000 $0.02 2004-01-17 AIR

Table 2.2: Purchase Relation

5

A relational database also models the relationships between the data the relations rep-
resent. The example database containing the Part and Purchase relations models types of
parts that are for sale and individual purchases made of those parts. Each type of part can
be purchased one or more times and each purchase is a purchase of one and only one type
of part. This relationship can be seen by examining the partid attribute in the Part and
Purchase relations. Each value in the partid attribute of the Purchase relation exists in one
and only one tuple of the partid attribute in the Part relation. This is commonly referred
to as a one-to-many relationship (see Section 2.1.3). The partid attribute contains unique
values in the Part relation in that every tuple has its own value for this attribute and none
are the same.

2.1.1 Joins

When a user retrieves information about a part they may want to also know all the individual
purchases that have been made for that part. Also when they retrieve information about
an individual purchase they may want to know about the part that was purchased. Using
the relationship between Part and Purchase we can find the part that was sold by taking
the partid of the purchase and looking it up in the Part relation. We can also find all the
purchases made of a part by taking the part’s partid and looking for all matching tuples in
the Purchase relation.

If the database completed this process as described above the user would do the first
query, make a note of the partid, and then do another query. As the data in a real database
is usually far more complex and abundant than this example (perhaps millions of tuples) it
is more efficient to allow the database to do this second lookup using specifically designed
algorithms called join algorithms wherein the database joins the tuples of one relation with
the tuples of another relation according to their relationship and some join condition.

The result of joining two relations is a collection of tuples where for each tuple in the
first relation and each matching tuple in the second relation we have a result tuple whose
values are a concatenation of the values from the first relation tuple and the second relation
tuple. If the first relation has the attributes (partid, name, mfgr, and price) and the second
relation has the attributes (purchaseid, partid, quantity, tax, shipdate, and shipmode) then
each result tuple has the attributes (partid, name, mfgr, price, purchaseid, partid, quantity,
tax, shipdate, and shipmode). In this simple database example it contains a duplicate of the
join attribute (partid) because it is a simple concatenation.

The SQL statement for this join would be “SELECT * FROM Part, Purchase WHERE
Part.partid = Purchase.partid” and the result returned by the query is shown in Table 2.3.

2.1.2 Keys

In a database system it is important to be able to find an individual tuple in a relation.
Keys are a means for a database to find and compare individual tuples in its relations.
Usually when joins are performed on relations those joins are performed using key attributes

6

partid name mfgr price purchaseid partid quantity tax shipdate shipmode
1 jeans Manufacturer#1 $10.00 1 1 10000 $0.02 1993-10-10 MAIL
2 shoes Manufacturer#1 $2.00 2 2 50000 $0.08 1995-10-28 RAIL
2 shoes Manufacturer#1 $2.00 3 2 5000 $0.03 2001-04-19 TRUCK
2 shoes Manufacturer#1 $2.00 4 2 3300 $0.02 1998-07-24 AIR
2 shoes Manufacturer#1 $2.00 5 2 8300 $2.00 2004-01-14 MAIL
2 shoes Manufacturer#1 $2.00 6 2 1000 $0.08 1993-10-11 RAIL
2 shoes Manufacturer#1 $2.00 7 2 2000 $0.02 1995-10-29 TRUCK
2 shoes Manufacturer#1 $2.00 8 2 3100 $0.03 2001-04-20 AIR
2 shoes Manufacturer#1 $2.00 9 2 1900 $0.03 1998-07-25 MAIL
3 linens Manufacturer#1 $20.00 10 3 1800 $0.02 2004-01-15 RAIL
3 linens Manufacturer#1 $20.00 11 3 1500 $0.08 1993-10-12 TRUCK
3 linens Manufacturer#1 $20.00 12 3 1100 $0.08 1995-10-30 AIR
4 chocolate Manufacturer#3 $30.00 13 4 500 $0.02 2001-04-21 MAIL
4 chocolate Manufacturer#3 $30.00 14 4 1500 $0.03 1998-07-26 RAIL
5 firebrick Manufacturer#1 $12.00 15 5 100000 $0.02 2004-01-16 TRUCK
6 moccasin Manufacturer#2 $100.00 16 6 200000 $0.05 1993-10-13 AIR
7 saddle Manufacturer#2 $50.00 17 7 1300 $0.08 1995-10-31 MAIL
8 khakis Manufacturer#1 $32.00 18 8 10000 $0.02 2001-04-22 RAIL
9 soap Manufacturer#3 $52.00 19 9 5000 $0.02 1998-07-27 TRUCK
10 shampoo Manufacturer#3 $55.00 20 10 100000 $0.02 2004-01-17 AIR

Table 2.3: Part-Purchase Join Result

as the join attributes. Many database systems also automatically generate statistics for key
attributes which will be important in later sections of this thesis.

Primary Keys

A tuple contains values for each of its attributes. A tuple can be uniquely identified by
finding the tuple that has exactly these values. A primary key (PK) is a minimal set of
attributes that uniquely identifies a tuple in a relation. For example, in the Part relation
the PK is partid. Inspection of Table 2.1 shows that every tuple in the Part relation has a
different value in this attribute. In the Purchase relation the PK is purchaseid.

Foreign Keys

When two relations are related the database must store some information in these relations
so that for each tuple in one relation all of the related tuples in the other relation can be
found. A foreign key (FK) is a set of attributes in a relation whose values can be used to
find related tuples in another relation. For example, in the case of the Purchase relation the
partid attribute for each Purchase tuple contains a value that is equal to the partid value for
the related Part tuple. In the Part relation (Table 2.1) there is a tuple with the value 5 in
its partid attribute. In the Purchase relation (Table 2.2) all tuples with the value 5 in their
partid attribute are related to that single tuple from the Part relation.

Often a database system will enforce that a foreign key value is not valid unless that value
exists in the primary key attribute for at least one tuple in the relation that the foreign key
references.

2.1.3 Cardinality

If there is a relationship between two relations in a database then that relationship has a
cardinality. The possible cardinalities are one-to-one (1:1), one-to-many (1:M), and many-

7

to-many (M:N).
In a one-to-one relationship each tuple in one relation is related to (shares attribute values

with) one and only one tuple in the related relation. For this relationship to exist the values
in the key attributes must be unique and therefore those attributes can be a primary key of
the relation.

In a one-to-many relationship each tuple in the “one” side relation can share the same
key values as many tuples in the “many” side relation while each tuple in the “many” side
contains the same value as one and only one tuple in the “one” side relation. Usually this
type of relationship is implemented as a primary-to-foreign key relationship where the joins
are perfomed using the values in the primary key of the “one” relation and a foreign key
of the “many” relation. The key attributes of the “one” side relation must contain unique
values and can therefore be a primary key of the relation. The key attributes of the “many”
side relation are not unique and are foreign key attributes of the relation. The Part and
Purchase relations follow this type of relationship. It is possible that a tuple in the “one”
side relation may not be related to any tuples in the “many” relation.

A many-to-many relationship exists when each tuple in one of the relations can share the
same attribute values as many tuples in the other relation and vice versa. The set of join
attributes in each relation cannot be a primary key simply because it cannot be required to
be unique.

2.2 Hash Join

There are numerous join algorithms [11]. The three general types are nested loop join,
sort-based join, and hash-based join. In a nested loop join each tuple in the first relation is
compared linearly to each tuple in the second relation and any matching tuples generate a
result tuple. A sort-based join first sorts each of the input relations on the join attributes
and then linearly scans through both relations simultaneously, generating a result tuple each
time the same join attribute values are encountered in both underlying relations. A hash-
based join is one that uses a hash function (Section 2.2.1) on the join attributes of the input
relations and only compares the tuples of the first relation with the tuples of the second
relation that hash to the same value as only those tuples have a chance of matching and
generating result tuples.

In a hash join the smaller relation of the two (in a one-to-many join it is usually the “one”
side of the join) is called the build relation and the other relation is called the probe relation.
The build relation is the relation whose tuples are used to build and fill the in-memory data
structures while the probe relation is the relation whose tuples are used to probe and search
the in-memory data structures.

2.2.1 In-Memory Hash Join

An in-memory hash join is a join algorithm that uses a hash function and in-memory hash
table to simplify the comparison of join attribute values and limit the number of tuple

8

comparisons necessary to find all the result tuples of a join.

Hash Function

A hash function is a function (y = f(x)) that takes an input value and returns an output
value that falls within an acceptable range of possible values. The input values could be
lines of text and the output values could be all valid 8 digit hexadecimal numbers. The
input values could be all positive integer numbers and the output values could be all integers
between (and including) 0 and 4.

The process of calling a hash function on a value is often called hashing, and the output
value is often referred to as the hash of the input value. Often a hash function is used to
take a set of input values and map those into locations where they are to be stored.

As a function, if two input values are the same, then the output values generated must
be the same. For instance if the hash of 5 is 0 the first time the hash function is called
then the hash of 5 must be 0 the second time. It is not required that different input values
produce different output values.

One use of a hash function would be to separate a large unordered set of unsigned integers
(positive whole numbers) into five groups of roughly equal size making sure that all numbers
that are equal fall in the same group without first sorting those numbers. If we use a
hash function that outputs five possible values we can have a group for each value the hash
function produces.

A very simple hash function that can be performed on unsigned integers is an arithmetic
modulo operation. If there are five groups then performing a modulo 5 (mod5) on the input
values would produce output values in the range 0 to 4 which is exactly 5 possible values.
Assign these possible values to the groups much like the indexes of an array. Starting at 0
we have group 0, group 1, group 2, group 3, and group 4. The hash of the number is the
group to place the number in.

A data structure that uses a hash function to determine the location that each value is
to be stored and uses that same hash function to find values that are already stored in the
data structure is called a hash table. In the example above each location in the hash table
stores multiple values. To store a new value is an O(1) operation as it requires only the
hash function to be computed on the value and then the value can be stored directly in the
appropriate location. To find and retrieve a value in this hash table is not O(1) however as
once the correct location is found from the hash value all values in that location must be
searched to find the correct one. A perfect hash table is one that maps each input value to
a unique location which would make retrieval an O(1) operation. Finding the perfect hash
function that creates a perfect hash table is often impossible. Database hash functions must
be fast but not perfect. Further discussion of hashing as well as how to find a good hash
function is discussed in Section 6.4 of [17].

9

Separate Chaining Hash Table

One common form of hash table is a separate chaining hash table (or chained hash table).
In a chained hash table you start by determining a rough estimate of the number of entries
the table needs to store. Then a hash bucket is created for each value the hash table is to
store and an array of pointers to those hash buckets is also created. The index of the array is
the hash value that will be placed in that bucket so any input value that hashes to 3 will be
placed in bucket 3. For example, if the hash table must store 5 values then 5 hash buckets
are necessary and indexed from 0 to 4 as shown in Figure 2.2a.

As we assume our hash function is not perfect, a hash bucket must be able to accomodate
multiple input values that hash to the same hash value. It is also possible that an input
value could occur multiple times. A hash bucket can be as simple as a linked list. Each
bucket in Figure 2.2a initially contains an empty linked list.

To insert an input tuple into the chained hash table the hash value of the input tuple is
calculated and then the input tuple is appended to the corresponding hash bucket. This is
an O(1) operation as long as appending to the hash bucket is O(1), and it is for any well
built linked list. For example, the Part tuple with partid 1 hashes to bucket 1 (with a mod5
hash function) and is appended to the linked list for bucket 1 as shown in Figure 2.2b. If the
tuples with partid 2, 4, 5, and 7 are also inserted, the hash table would look like Figure 2.2c.
Both 2 and 7 hash to the same bucket but because the bucket can accomodate multiple
tuples this situation is handled.

(a) Initial Table (b) After Inserting Tuple With
partid 1

(c) After Inserting All Tuples

Figure 2.2: Chained Hash Table Example (mod5 hash function)

To retrieve or find an entry in the chained hash table, the hash value of the input value
is calculated and then the corresponding hash bucket is linearly searched for any tuples that
match the input value. For example, to find a tuple with partid 7 in the hash table, 7
is hashed and found to match with bucket 2. The tuples in that bucket are then linearly
scanned and the tuple that contains partid 7 is returned. If the hash function generates
relatively unique hash values for input tuples and there are no duplicate partid values then
most hash buckets will contain only one tuple and this operation is in practice close to O(1).
However this operation could be O(N) in the worst case where all input tuples happen to

10

hash to the same bucket. Hash tables usually implement a feature that detects and corrects
this problem by adapting the hash function and rehashing the input tuples. For a chained
hash table this could be as simple as creating a new hash table that is multiple times larger
than the current hash table. Rehashing is an expensive operation. Additional information
on hashing and hash tables is in [11].

Probing A Hash Table

Probing a hash table of tuples is the process of searching the hash table for any tuples that
will join with a given tuple and producing result tuples from any matches. It is possible for
one probe to return multiple result tuples if multiple tuples in the hash table match with
the given tuple. Finding matching tuples in a hash table can be done while comparing very
few tuples which is far more efficient than comparing each probe tuple to every build tuple
as in a nested loop join.

If the hash table in Figure 2.2c is probed with the Purchase tuple (17, 7, 1300, $0.08,
1995-10-31, MAIL) the partid value 7 is hashed and found to match to bucket 2. Bucket 2
is then linearly scanned and any tuples that have the partid 7 are joined with the Purchase
tuple to produce a result tuple. The first tuple in bucket 2 does not match but the second
one does which produces the result tuple (7, saddle, Manufacturer#2, $50.00, 17, 7, 1300,
$0.08, 1995-10-31, MAIL). If multiple tuples in bucket 2 had matched with the probe tuple
then multiple result tuples would have been generated.

Hash Join Algoritm

An in-memory hash join is performed by storing the build relation tuples in an in-memory
hash table and then probing those tuples with all probe relation tuples. A hash table is
created in memory and then filled with build relation tuples. For each probe relation tuple
the hash table is probed and any matches are returned as result tuples. If there are more
build tuples than will fit in memory at one time then an in-memory hash join can not be
used. To solve this problem hash join algorithms that partition the build relation into smaller
chunks have been developed.

2.2.2 Hash Partitioning

If there are more build relation tuples than can fit in available memory, one approach is
to partition the relations into smaller partitions of tuples so that all of the build relation
tuples in a partition can fit in memory. The number of partitions necessary is determined by
calculating what percentage of the build relation will fit in available memory. For example,
if 20% of the build relation will fit, then 5 partitions are necessary.

When splitting the input relations into partitions the build relation is partitioned first.
The hash value of the join attribute value of each tuple is calculated and used to determine
which partition the tuple will be placed in. If a join of the Part and Purchase relations
is being performed, the join attribute in each relation is the partid attribute. Note this

11

attribute is an unsigned integer (always positive whole number) so a hash function could
be an arithmetic modulo operation as described in Section 2.2.1. If the database chooses to
partition the join into five partitions then the hash function could be modulo five (mod5).

The build and probe relations have their own partitions, but these partitions are related.
To see this take a look at the hash function and the attribute values being hashed on. If
the hash function is mod5 then an attribute value of 5 would hash to 0 for both relations.
Therefore any tuple in the build relation with a partid attribute value of 5 would end up in
partition 0 for the build relation and any tuple in the probe relation with a partid attribute
value of 5 would end up in partition 0 for the probe relation. Other tuple values (such as
10) will hash to this same partiton, but we can at least guarantee that all tuples with the
same value will be in corresponding partitions.

Figures 2.3a, 2.4a, 2.5a, 2.6a, and 2.7a represent the contents of the five partitions of the
Part relation when partitioned using mod5 as the hash function. Notice how all tuples in
partition 0 (Figure 2.3a) have values in the partid attribute that hash to 0 with the given
hash function.

Similarly Figures 2.3b, 2.4b, 2.5b, 2.6b, and 2.7b represent the contents of the five parti-
tions of the Purchase relation using the given hash function. All values of the partid attribute
in partition 0 (Figure 2.3b) hash to 0.

partid name mfgr price
5 firebrick Manufacturer#1 $12.00
10 shampoo Manufacturer#3 $55.00

(a) Part Partition 0

purchaseid partid quantity tax shipdate shipmode
15 5 100000 $0.02 2004-01-16 TRUCK
20 10 100000 $0.02 2004-01-17 AIR

(b) Purchase Partition 0

Figure 2.3: Partition 0 of Part and Purchase Relations

partid name mfgr price
1 jeans Manufacturer#1 $10.00
6 moccasin Manufacturer#2 $100.00

(a) Part Partition 1

purchaseid partid quantity tax shipdate shipmode
1 1 10000 $0.02 1993-10-10 MAIL
16 6 200000 $0.05 1993-10-13 AIR

(b) Purchase Partition 1

Figure 2.4: Partition 1 of Part and Purchase Relations

partid name mfgr price
2 shoes Manufacturer#1 $2.00
7 saddle Manufacturer#2 $50.00

(a) Part Partition 2

purchaseid partid quantity tax shipdate shipmode
2 2 50000 $0.08 1995-10-28 RAIL
3 2 5000 $0.03 2001-04-19 TRUCK
4 2 3300 $0.02 1998-07-24 AIR
5 2 8300 $2.00 2004-01-14 MAIL
6 2 1000 $0.08 1993-10-11 RAIL
7 2 2000 $0.02 1995-10-29 TRUCK
8 2 3100 $0.03 2001-04-20 AIR
9 2 1900 $0.03 1998-07-25 MAIL
17 7 1300 $0.08 1995-10-31 MAIL

(b) Purchase Partition 2

Figure 2.5: Partition 2 of Part and Purchase Relations

12

partid name mfgr price
3 linens Manufacturer#1 $20.00
8 khakis Manufacturer#1 $32.00

(a) Part Partition 3

purchaseid partid quantity tax shipdate shipmode
10 3 1800 $0.02 2004-01-15 RAIL
11 3 1500 $0.08 1993-10-12 TRUCK
12 3 1100 $0.08 1995-10-30 AIR
18 8 10000 $0.02 2001-04-22 RAIL

(b) Purchase Partition 3

Figure 2.6: Partition 3 of Part and Purchase Relations

partid name mfgr price
4 chocolate Manufacturer#3 $30.00
9 soap Manufacturer#3 $52.00

(a) Part Partition 4

purchaseid partid quantity tax shipdate shipmode
13 4 500 $0.02 2001-04-21 MAIL
14 4 1500 $0.03 1998-07-26 RAIL
19 9 5000 $0.02 1998-07-27 TRUCK

(b) Purchase Partition 4

Figure 2.7: Partition 4 of Part and Purchase Relations

2.2.3 Grace Hash Join

The Grace Hash Join (GHJ) [16] is a hash join algorithm that partitions the input relations
into multiple temporary disk files using hash partitioning as described in Section 2.2.2 and
then performs an in-memory hash join (Section 2.2.1) on each build and probe pair of disk
files.

The first step of a GHJ is to partition the build and probe relations as described in
Section 2.2.2. A file is created on disk for each build relation partition, and another file is
created on disk for each probe relation partition.

The tuples of the build relation (given in Table 2.1) are read one at a time, their hash
value is calculated from the join attribute value (partid), and they are appended to the
corresponding build relation file on disk. The order that tuples are read from the underlying
relations cannot be guaranteed but for convenience we will assume they are read in the order
that they appear in Tables 2.1 and 2.2 for this example. Looking at Table 2.1 the first build
tuple read is (1, jeans, Manufacturer#1, $10.00) and it is placed in partition 1 (Table 2.4a).
This process is continued for all other build relation tuples.

Once the build relation is partitioned a tuple is read from the probe partition and the
hash value of its join attribute value is calculated. The tuple is then appended to the
corresponding probe relation file on disk. Looking at Table 2.2 the first probe tuple that
would be retrieved from the Purchase relation is (1, 1, 10000, $0.02, 1993-10-10, MAIL) and
its hash value is 1 so it would be placed in partition 1 (Table 2.4b).

After partitioning, both relations there are pairs of related partitions on disk. The build
relation partition 0 is related to probe relation partition 0 because they were partitioned
using the same hash function on the common join attribute. Any tuples in probe partition
0 will join with only tuples from build partition 0.

The next step is to load tuples from the first build relation partition (partition 0) into
memory and then probe them with tuples from the first probe partition. An efficient data
structure must be used for it to be efficient to store the build tuples in memory and search
them for tuples that match a given probe tuple. A hash table such as a separate chaining

13

hash table (as discussed in Section 2.2.1) is created in memory and then filled with tuples
from the build relation partition. Once this is complete a tuple is read from the corresponding
probe relation partition. The hash value of the tuples join attributes is calculated, and then
the probe tuple is compared to all build tuples in the corresponding hash table bucket. If
any build tuples are found in the hash bucket that share the same join attribute value (not
hash value) as the probe tuple then a result tuple is generated for each match. The first
tuple in probe partition 0 is (15, 5, 100000, $0.02, 2004-01-16, TRUCK). It matches with
the build relation tuple (5, firebrick, Manufacturer#1, $12.00) because they both have partid
equal to 5. The result tuple is a concatenation of the values of both tuples and is exactly (5,
firebrick, Manufacturer#1, $12.00, 15, 5, 100000, $0.02, 2004-01-16, TRUCK). This process
continues for each tuple in probe relation partition 0. The disk files for build partition 0 and
probe partition 0 are then deleted, and the in-memory hash table is removed from memory.
The above process is continued for each build/probe partition pair on disk until all files have
been deleted.

The result of joining these two relations can be seen in Table 2.4.

partid name mfgr price purchaseid partid quantity tax shipdate shipmode
5 firebrick Manufacturer#1 $12.00 15 5 100000 $0.02 2004-01-16 TRUCK
10 shampoo Manufacturer#3 $55.00 20 10 100000 $0.02 2004-01-17 AIR
1 jeans Manufacturer#1 $10.00 1 1 10000 $0.02 1993-10-10 MAIL
6 moccasin Manufacturer#2 $100.00 16 6 200000 $0.05 1993-10-13 AIR
2 shoes Manufacturer#1 $2.00 2 2 50000 $0.08 1995-10-28 RAIL
2 shoes Manufacturer#1 $2.00 3 2 5000 $0.03 2001-04-19 TRUCK
2 shoes Manufacturer#1 $2.00 4 2 3300 $0.02 1998-07-24 AIR
2 shoes Manufacturer#1 $2.00 5 2 8300 $2.00 2004-01-14 MAIL
2 shoes Manufacturer#1 $2.00 6 2 1000 $0.08 1993-10-11 RAIL
2 shoes Manufacturer#1 $2.00 7 2 2000 $0.02 1995-10-29 TRUCK
2 shoes Manufacturer#1 $2.00 8 2 3100 $0.03 2001-04-20 AIR
2 shoes Manufacturer#1 $2.00 9 2 1900 $0.03 1998-07-25 MAIL
7 saddle Manufacturer#2 $50.00 17 7 1300 $0.08 1995-10-31 MAIL
3 linens Manufacturer#1 $20.00 10 3 1800 $0.02 2004-01-15 RAIL
3 linens Manufacturer#1 $20.00 11 3 1500 $0.08 1993-10-12 TRUCK
3 linens Manufacturer#1 $20.00 12 3 1100 $0.08 1995-10-30 AIR
8 khakis Manufacturer#1 $32.00 18 8 10000 $0.02 2001-04-22 RAIL
4 chocolate Manufacturer#3 $30.00 13 4 500 $0.02 2001-04-21 MAIL
4 chocolate Manufacturer#3 $30.00 14 4 1500 $0.03 1998-07-26 RAIL
9 soap Manufacturer#3 $52.00 19 9 5000 $0.02 1998-07-27 TRUCK

Table 2.4: Part-Purchase Hash Join Result

2.2.4 Hybrid Hash Join

In the previous hash join example, none of the build partitions were more important than
the others. All partitions were initially written to disk and then loaded back into memory to
be joined a partition at a time. For any significantly large join in a real database it is likely
that there is not enough memory to store all of the build relation tuples in memory at one
time, but there is often enough memory to store some of the build tuples in memory while
partitioning the build relation. Thus, less tuples must be written to disk while partitioning
and then read back while probing. The speed of storing data on and retrieving data from disk
is on the order of a million times slower than storing and retrieving data from a computer’s
main memory. It is immediately apparent that limiting how much data must be stored on
disk during the join is vitally important to the performance of a join algorithm. If some

14

build tuples can be maintained in memory while partitioning then those tuples do not need
to be written to disk and then re-read later during the join.

Hybrid hash join (HHJ) [7] is a standard hash join algorithm used in database systems.
HHJ works by partitioning the build relation as described in Section 2.2.2 except the first
partition (partition 0) is stored in memory and all other partitions are stored on disk. The
number of partitions is determined just like in hash join by calculating what percentage of
the build relation will fit in memory. If 20% of the build relation will fit then one fifth of the
relation will fit in memory and 5 partitions are used.

At the start of the join a file is created on disk for each partition other than the first
one. A hash table is created in memory to store the build tuples of build relation partition
0. When tuples are read during partitioning of the build relation any tuples that do not fall
into partition 0 are appended to the end of the on-disk file for the corresponding partition.
Any tuples that fall into partition 0 are placed in the in-memory hash table.

After the build relation tuples are partitioned a file is created on disk for each of the
probe relation partitions except the first one. Probe tuples are then read one at a time from
the probe relation and the hash value of their join attribute value is calculated. If the probe
tuple falls into the first partition then the in-memory hash table is probed with that probe
tuple and any matches are returned as result tuples exactly as in the previous example.
The probe tuple can then be discarded. It is not necessary to write it to disk as all result
tuples it would create have been generated. If the tuple falls in any other partition then it
is appended to the end of the corresponding partition file on disk for the probe relation.

When all of the probe tuples have been read from the probe relation the cleanup phase
begins. All tuples and the hash table are deleted from memory. An in-memory hash table
is created and the tuples in the disk file for the second build relation partition (partition 1)
are then loaded into it. Probe tuples are then read one at a time from the disk file for the
second probe relation partition (partition 1) and used to probe the hash table. Any matches
are returned as result tuples as above. All tuples and the hash table are then removed from
memory and the two files that were just read are deleted from disk. This process is repeated
for each partition that has a file on disk (partitions 2, 3, and 4). After this process the join
is finished.

The partitioning process assumes that an equal amount of tuples will fall into each build
partition. This assumption makes sense if the data set is uniform. If, for example, it turns
out that more than 20% of the build tuples hash to partition 0 then too much memory will
be used to store these tuples. Various database systems handle this issue differently. The
HHJ implementation in the PostgreSQL database system repartitions with twice as many
partitions until it is no longer using too much memory.

If almost no build tuples hash to partition 0 then the algorithm is not making proper use
of its memory and could perform faster if it kept more build tuples in memory. The solution
to this problem is an algorithm called Dynamic Hash Join.

15

2.2.5 Dynamic Hash Join

Dynamic hash join (DHJ) [8, 21] is similar to hybrid hash join except that it dynamically
selects memory-resident partitions during execution. Instead of picking only one partition
to remain memory-resident before the join begins, DHJ allows all partitions to be memory-
resident initially and then flushes partitions to disk as required when memory is full.

Although DHJ adapts to changing memory conditions, there has been no research on
determining what is the best partition to flush to maximize performance. Various approaches
select the largest or smallest partition, a random partition, or use a deterministic ordering.
No approach has considered using data distributions to determine the optimal partition to
flush. In the examples a deterministic ordering will be assumed because it is the simplest.
The highest numbered partitions will be flushed first.

The DHJ algorithm is similar to HHJ. DHJ determines what percentage of tuples can fit in
memory and then creates a number of partitions. If 20% of the tuples can fit in memory then
assuming a uniform distribution of tuples (an equal amount will hash to each partition) the
algorithm will need at least 5 partitions. Often because a database system knows a uniform
distribution of tuples is unlikely it will create more partitions than the above estimation in
an effort to compensate for data that is not uniform. In this example, 10 partitions may be
used. It is also possible that the tuples are not evenly divided among the partitions due to
the hash function used (partition skew). When joining Part and Purchase the build tuples
from Part are uniformly distributed which is acceptable for this example: 20% of the Part
relation (the maximum amount that fits in memory) is equivalent to 2 tuples.

While partitioning the build relation DHJ starts with all build partitions in memory. A
hash table is stored in memory for each build partition. It reads the tuples in order from the
Part relation and flushes a partition to disk only when more than 2 tuples will be stored in
memory. When a partition is flushed to disk its hash table is removed from memory as well.

Tuple 1 (the tuple with partid 1) is read from the Part relation and placed in partition
1 (Figure 2.8a). The build partitions are now using 10% of memory. Tuple 2 is read and
placed in partition 2 (Figure 2.8b); 20% of memory is now used. Tuple 3 is read and placed
in partition 3 (Figure 2.8c). Because memory is over-full, partition 4 is flushed and its tuples
written to disk (Figure 2.8d). This has been referred to as a frozen [8, 18] partition in
previous work. It is marked as frozen so that any further tuples that would fall into that
partition are immediately placed on disk. This did not free up any memory so partition 3 is
also flushed. The disk file for partition 3 now contains tuple 3 and memory is again only 20%
full (Figure 2.8e). Tuple 4 is read and written to disk because partition 4 was previously
frozen (Figure 2.8f). Tuple 5 is read and placed in partition 0 (Figure 2.9a). Memory is
over-full again so partition 2 is flushed to disk which puts the partitions back at the memory
limit (Figure 2.9b). Tuple 6 is read and placed in partition 1 (Figure 2.9c) which causes
partition 1 to be flushed to disk (Figure 2.9d). Only 10% of memory is now in use. Tuples
7, 8, and 9 are all read and written to disk (Figure 2.9e). Tuple 10 is read and placed in
partition 0 in memory (Figure 2.9f). All build tuples have now been partitioned and the
build partitions are not over-using memory.

Reading tuples from the probe relation is handled exactly as for HHJ, except if multiple

16

partitions had been kept in memory after partitioning the build relation then any probe
tuples that hashed to an in-memory partition could have generated result tuples before the
cleanup phase. The cleanup phase is handled exactly as for HHJ.

2.2.6 Hash Join Performance Enhancements

It is possible for the database optimizer to poorly estimate the size of the underlying relations
and choose the larger one to be the build relation. After partitioning the relations, a hash
join knows the exact size of its inputs. If the build input is larger than the probe input hash
join can swap them and use the probe input as the build input instead. This is called role
reversal [12].

An optimization that can be used during the cleanup phase after the input relations have
been partitioned is to process multiple partitions at the same time. In this optimization,
instead of performing one cleanup iteration per partition, each cleanup iteration operates on
as many partitions that can fit in memory.

When a single partitioning step is not sufficient to construct partitions that fit in memory,
multiple rounds of recursive partitioning are used. Recursive partitioning avoids having many
(hundreds) of open files during partitioning which increases the impact of random I/Os while
writing to those files.

2.3 Skew

Skew can be classified [23] as either partition skew or intrinsic data skew. Partition skew
is when the partitioning algorithm constructs partitions of non-equal size (often due to
intrinsic data skew but also due to the hash function itself). Minimizing partition skew
has been considered for distributed databases [10] and DHJ [15, 21]. Partition skew can
be partially mitigated by using many more partitions than required, as in DHJ, and by
producing histograms on the data when recursive partitioning is required.

Consider two relations R(A) and S(B,A) where attribute A is the join attribute between
R and S. The underlined attributes are the primary key attributes of the relations. Assume
that the number of tuples of R, denoted as |R|, is smaller than the number of tuples of S
(i.e. |R| < |S|). Assume S.A is a foreign key to R.A. In a hash join of R and S the build
relation is R and the probe relation is S.

When performing a hash join most systems have no intelligent way of selecting which
partition remains memory-resident. PostgreSQL simply selects the first partition. This
assumption makes sense if the data set is uniform. In that case, each tuple in R is equally
likely to join to tuples in S, so it does not matter what tuples in R are left in memory. If
the data is skewed such that certain tuples in R join to many more tuples in S than the
average, it is preferable that those tuples of R remain in memory.

Intrinsic data skew is when data values are not distributed uniformly. Intrinsic data skew
may cause partition skew for hash joins when the join attribute on the build relation is not
the primary key attribute. Data skew causes values to occur with different frequencies in

17

the relations. In the example that joins R.A = S.A (primary-to-foreign key join), data skew
may cause the distribution of values of S.A (probe relation) to vary dramatically.

Histograms have been previously used during recursive partitioning [12] to detect data
skew and minimize partition skew. However, no previous work has discussed using existing
histograms in the database system to estimate and exploit skew in the probe relation while
partitioning the build relation.

2.4 Statistics and Histograms

Most commercial database systems create and maintain some form of aggregate statistics on
their relations to be used for optimizing query processing. A database will keep an accurate
count of how many tuples are in each relation and the average size of a tuple so that when a
query is performed it can correctly calculate the amount of memory necessary at each step
in the query and which order of operations will perform the fastest.

When a selection or filter is performed on a relation as part of a query, a database can
make educated guesses as to how many tuples will make it past the filter based on the filter
being used. If the database knows that there are roughly 10 distinct values in the attribute
being filtered on and the filter is something of the form “attribute = value” then it could
assume that one tenth of the relation tuples will match the filter.

partid Frequency
1 1
2 8
3 3
4 2
5 1
6 1
7 1
8 1
9 1
10 1

Table 2.5: An Accurate Histogram on the partid Attribute of the Purchase Relation

When there is a uniform distribution of values in an attribute this is a safe estimate, but
this is not always the case. The partid attribute of the Purchase relation in Table 2.2 is a
perfect example of a case when this estimate would be quite incorrect. There are 10 distinct
values in the partid attribute, but they are not uniformly distributed. While the average
frequency of each value is 2 the value 2 occurs 4 times as often. A histogram of the partid
attribute of the Purchase relation is provided in Table 2.5. Generally a histogram bucket is
defined by the range of values that fall into the bucket and the aggregate frequency of all
those values (how many times those values occur). The first column of this histogram is the
attribute value and the second column is how frequently that value occurs in all the tuples
of the relation. Not all histograms are organized this way (see [13]).

18

With a pre-generated histogram on the partid attribute the query optimizer can more
accurately estimate the result of a filter. If the filter is “partid = 2” the database would
estimate that 8 tuples would pass the filter. The histogram in Table 2.5 is ideal because
every distict value in the partid attribute has its frequency stored.

In a large relation with millions of tuples a histogram aggregates attribute values so that
one bucket contains many values. A simple example of how this affects the accuracy of
the histogram can be seen in Table 2.6 where the bucket value ranges now contain 2 values
each. The frequency column of the histogram specifies the sum of all the frequencies of the
individual values in the bucket. Since no individual frequencies are maintained a uniform
assumption must be made where it is assumed that each value in the bucket corresponds to
an equal portion of the frequency of the bucket. With the filter “partid = 2” and this second
histogram the database would estimate that 5 (rounded up from 4.5) tuples would pass the
filter because the frequency of the bucket is 9 and the number of distinct values in the range
of the bucket is 2.

partid Range Frequency
1-2 9
3-4 5
5-6 2
7-8 2
9-10 2

Table 2.6: An Aggregate Histogram on the partid Attribute of the Purchase Relation

To compensate for the bad estimates caused by aggregate histograms many specialized
histogram types are used by various database systems. For example, an end-biased histogram
maintains the most frequent values individually from the rest of the buckets. It keeps track of
the frequency of those individual values as well as the frequency of each bucket. End-biased
histograms take up only slighly more space than our example histograms but allow the most
frequent values to be known and exploited. Equi-depth histograms arrange the buckets so
that each contains the same number of values and consequently the frequency of all buckets
is the same but the width of the bucket (number of values in its range) varies.

When the input to a join is not a base relation (it could be another join or a selection for
example) the base relation statistics may not accurately reflect the distribution of tuples on
that input. One method to compensate for this is SITs (Statistics on Intermediate Tables) [2].
When a database system supports SITs it occasionally runs common queries that involve
joins and other operators and stores the statistics of the intermediate results of these queries.
The query optimizer would then use these statistics to improve any estimates for queries that
are equivalent to the common queries or when one of the common queries is a sub query of
the current query being estimated.

For a further discussion of histograms see [13, 14, 22].

19

2.4.1 Histograms and Hash Joins

In the preceding discussion of HHJ and DHJ it was apparent that keeping some of the build
tuples in memory while partitioning the build relation not only kept those build tuples from
having to be written to and re-read from disk, it also kept the related probe tuples from
having to be written to and re-read from disk. The histograms in Tables 2.5 and 2.6 show
that some of the build tuples are related to more probe tuples than the other build tuples
are. If the hash join knew this information when it was choosing which build tuples to keep
in memory during the build phase, it could save many more tuple disk writes and reads.

If the histogram for the partid attribute of the Purchase relation was examined before
partitioning the Part relation, the order that DHJ freezes partitions could be changed so
that partition 1 stays in memory and partition 0 is flushed to disk. If this could be done the
number of result tuples generated during the probe phase would increase significantly and
the number of probe tuples written to disk during the probe phase and re-read during the
cleanup phase would decrease.

2.5 Example Database

In this thesis, the TPC-H database benchmark standard is used as an example database.
TPC-H is a decision-support and data warehouse benchmark developed by the Transaction
Processing Performance Council (TPC). More information about the TPC-H benchmark can
be found at [1]. The TPC-H schema diagram is in Figure 2.10. The SF in the diagram repre-
sents the scale factor of the relations. Scale factors 1 and 10 will be used which produce total
database sizes of approximately 1 and 10 GB respectively. The largest relation, LineItem,
has just over 6 million tuples for SF=1 and 60 million tuples for SF=10.

2.6 Relational Algebra Query Plan Diagrams

In this thesis relational algebra (RA) diagrams are used to describe the order in which
multiple relations are joined in a single database query. RA diagrams can contain many
operators but in this thesis only joins and relations are represented in these diagrams. In
Figure 2.11 the example RA diagram LI represents the LineItem relation, S represents the
Supplier relation, and P represents the Part relation of the TPC-H database benchmark
described in Section 2.5. The transposed hourglass symbol represents a join of the relations
connected below it. In Figure 2.11 Supplier is joined with LineItem and then the result of
this join is joined with Part.

20

(a) After Inserting Tuple 1 (b) After Inserting Tuple 2

(c) After Inserting Tuple 3 (d) After Freezing Partition 4

(e) After Freezing Partition 3 (f) After Inserting Tuple 4

Figure 2.8: DHJ Partitioning Example Part 1

21

(a) After Inserting Tuple 5 (b) After Freezing Partition 2

(c) After Inserting Tuple 6 (d) After Freezing Partition 1

(e) After Inserting Tuples 7, 8, and 9 (f) After Inserting Tuple 10

Figure 2.9: DHJ Partitioning Example Part 2

22

Legend:

PARTKEY

NAME

MFGR

BRAND

TYPE

SIZE

CONTAINER

COMMENT

RETAILPRICE

PARTKEY

SUPPKEY

AVAILQTY

SUPPLYCOST

COMMENT

SUPPKEY

NAME

ADDRESS

NATIONKEY

PHONE

ACCTBAL

COMMENT

ORDERKEY

PARTKEY

SUPPKEY

LINENUMBER

RETURNFLAG

LINESTATUS

SHIPDATE

COMMITDATE

RECEIPTDATE

SHIPINSTRUCT

SHIPMODE

COMMENT

CUSTKEY

ORDERSTATUS

TOTALPRICE

ORDERDATE

ORDER-

PRIORITY

SHIP-

PRIORITY

CLERK

COMMENT

CUSTKEY

NAME

ADDRESS

PHONE

ACCTBAL

MKTSEGMENT

COMMENT

PART (P_)

SF*200,000

PARTSUPP (PS_)

SF*800,000

LINEITEM (L_)

SF*6,000,000

ORDERS (O_)

SF*1,500,000

CUSTOMER (C_)

SF*150,000

SUPPLIER (S_)

SF*10,000

ORDERKEY

NATIONKEY

EXTENDEDPRICE

DISCOUNT

TAX

QUANTITY

NATIONKEY

NAME

REGIONKEY

NATION (N_)

25

COMMENT

REGIONKEY

NAME

COMMENT

REGION (R_)

5

Figure 2.10: TPC-H Schema from [1]

Figure 2.11: Example Relational Algebra Diagram

23

3. Histojoin

3.1 General Approach

The Histojoin algorithm is designed to use statistics and histograms as currently implemented
in the database system. The algorithm does not assume any histogram method and will
work with any method. Commercial systems typically implement equi-depth [20] or maxdiff
(Microsoft SQL server) histograms. An overview of histograms can be found in [13, 14, 22].
The actual construction of the histograms is orthogonal to this work.

The general approach is to use the extra memory available to the hash join to buffer
the tuples that participate in the most join results. Consider a primary-to-foreign key join
between R(A) and S(B,A) on A, where R is the smaller relation and some subset of its
tuples are buffered in memory. Unlike hybrid hash join that selects a random subset of the
tuples of R to buffer in memory, the tuples buffered in memory will be chosen based on the
values of A that are the most frequently occurring in relation S.

For example, let R represent a Part relation, and S represent a Purchase relation. Every
company has certain parts that are more commonly sold than others. A common part may be
associated with thousands of purchases and a rare part only a handful. If a single part tuple
ordered thousands of times is kept in memory when performing the join, every matching
tuple in Purchase does not need to be written to disk and re-read during the cleanup phase.

Hash partitioning randomizes tuples in partitions. This is desirable to minimize the effect
of partition skew, but data skew is also randomized. Traditional hash joins have no ability
to detect data skew in the probe relation or exploit it by intelligent selection of in-memory
partitions.

Level 1

44

200

110

4799

9
8
7
6
5
4
3
2
1
0

(100−199)

(500−599)

c

b

(0−39,740−799)a

Level 2

Figure 3.1: Two Level Partitioning

This approach uses two levels of partitioning. The first level performs range partitioning
where ranges of values of R.A are selected to be memory-resident. Tuples that do not fall

24

into the ranges are partitioned using a hash function as usual. The data structures used are
shown in Figure 3.1.

In Figure 3.1 there are 3 in-memory partitions (a, b, c) and 10 hash partitions numbered
0 to 9. For Level 1 partitions, each partition is defined by one or more join attribute value
ranges. For example, partition a consists of values from 0 to 39 and 740-799. Ideally, these
attribute values are the most frequently occurring in S. The maximum partition size is
bounded by the memory size available to the join. The Level 2 partitions are regular hash
partitions. If a tuple does not fall into any of the Level 1 partitions, it is placed in a Level
2 partition by hashing the join attribute value. In general, there may be multiple Level 1
memory-resident partitions each defined by multiple ranges of values. The only constraints
are that each partition must fit in the available memory during a cleanup phase at the end
of the join, and the total memory used by in-memory partitions is always below the memory
available.

3.1.1 Theoretical Performance Analysis

This section provides the theoretical maximum improvement of skew-aware partitioning using
data distributions versus random partitioning (dynamic hash join). Let f represent the
fraction of the smaller relation (R) that is memory-resident: f = M/|R| (approximately),
where M is the memory size. The number of tuple I/O operations performed by dynamic
hash join is 2 ∗ (1 − f) ∗ (|R| + |S|). The factor 2 represents the two I/Os performed for
each non-memory-resident tuple: one to flush to disk if not memory-resident and then one
to read again during the cleanup phase of the join. Note that this does not count the cost
to read the tuple initially.

Let g represent the fraction of the larger relation (S) that joins with the in-memory
fraction f of R. If the distribution of the join values in S is uniform, then f = g. Data
skew allows g > f if memory-resident tuples are chosen properly. The number of I/Os
performed by Histojoin is 2 ∗ (1 − f) ∗ |R| + 2 ∗ (1 − g) ∗ |S|. The absolute difference in
I/Os performed between DHJ and Histojoin is 2 ∗ (1− f) ∗ (|R|+ |S|)− (2 ∗ (1− f) ∗ |R|+
2 ∗ (1 − g) ∗ |S|) which simplifies to 2 ∗ (g − f) ∗ |S|. A negative number indicates DHJ is
outperforming Histojoin, while a positive number indicates Histojoin performs better than
DHJ. The percentage difference in I/Os is (g−f)∗|S|

(1−f)∗(|R|+|S|) .
The absolute difference in total I/Os performed given selected values of f and g is given

in Table 3.1. The percentage difference in total I/Os performed is given in Figure 3.2. The
absolute difference is directly proportional to the difference between f and g. The table
shown is for a 1:1 ratio of R and S where |R| = |S| = 1000. The difference between f and g
is bounded above by the intrinsic skew in the data set and is limited by how we exploit that
skew during partitioning.

Properly exploiting data skew allows g > f , but if the in-memory tuples are chosen poorly,
it is possible for g < f . This is worse than the theoretical average of the uniform case for
dynamic hash join. Tuples may be chosen improperly if the statistics used for deciding which
tuples to buffer in memory are incorrect causing the algorithm to buffer worse than average

25

tuples.
As an example, consider a data set following the “80/20 rule”. If we can keep 20% of

tuples of R in-memory (f = 20%) that join with 80% of the tuples in S (g = 80%), then
a skew-aware join will perform 68% fewer tuple I/Os than hybrid hash join. However, if
the data had “80/20 skew”, but the 20% of tuples of R buffered in-memory were the least
frequently occurring in S, then it may be possible for g = 5%, resulting in skew-aware join
performing 17% more I/Os than hash join.

g
f 5% 10% 20% 50% 80% 90% 100%

5% 0 100 300 900 1500 1700 1900
10% -100 0 200 800 1400 1600 1800
20% -300 -200 0 600 1200 1400 1600
50% -900 -800 -600 0 600 800 1000
80% -1500 -1400 -1200 -600 0 200 400
90% -1700 -1600 -1400 -800 -200 0 200

Table 3.1: Absolute Reduction in Total I/Os of Skew-Aware Partitioning versus Random
Partitioning for Various Values of f and g and |R| = |S| = 1000

3.2 Histojoin Algorithm

A low cost technique for performing skew-aware partitioning is by using histograms. His-
tograms [13] are used in all commercial databases for query optimization and provide an
approximation of the data distribution of an attribute. A histogram divides the domain into
ranges and calculates the frequency of the values in each range. An example histogram pro-
duced by Microsoft SQL Server 2005 for the TPC-H relation Lineitem on attribute partkey
is provided in Figure 3.3.

The advantage of using histograms is that they are readily available, calculated and
maintained external to the join algorithm, and require no modification to the query optimizer
or join algorithm to use. On examination of the histogram, the query optimizer can determine
if the Histojoin algorithm will be beneficial. An imprecise or out-of-date histogram limits
Histojoin’s ability to exploit the data skew.

3.2.1 Algorithm Overview

The Histojoin algorithm works by implementing a set of privileged partitions in addition to
the partitions dynamic hash join would normally use. These privileged partitions are the
last partitions to be flushed from memory to disk and are arranged so that they are flushed
in a specific order, whereas the non-privileged partitions are flushed in a randomized order.
The privileged partitions correspond to the Level 1 partitions shown in Figure 3.1.

26

Figure 3.2: Total I/Os Percent Difference

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 25000 50000 75000 100000 125000 150000 175000 200000

F
re

qu
en

cy

Partkey value

Figure 3.3: Partkey Histogram for Lineitem Relation TPC-H 1 GB Zipf Distribution (z=1)

27

The differences between Histojoin and dynamic hash join are isolated in the hash table.
Histojoin’s hash table is a two layered table that is aware of which partitions are privileged,
how to determine if tuples fall in the privileged partitions, and how to optimally flush
the partitions by first randomly flushing non-privileged partitions and then flushing the
privileged partitions in order of worst to best.

The key difference between Histojoin and dynamic hash join is that Histojoin attempts
to isolate frequently occurring tuples in the privileged partitions which are the last ones
flushed. Dynamic hash join spreads out frequently occurring tuples across all partitions and
provides no special handling for frequent tuples.

A flowchart describing the Histojoin algorithm is in Figure 3.4. The first step is to load
the histogram and determine which tuple value ranges are in the privileged partitions. At
this point, if insufficient skew is detected or there is limited confidence in the histogram, a
decision is made on the maximum size of the privileged partitions. If no skew is detected,
Histojoin will allocate no memory to the privileged partitions, and the algorithm behaves
identically to dynamic hash join. Determining the privileged partitions is discussed in Section
4.2.

PARTITION BUILD RELATION

PARTITION PROBE RELATION

Start

Load Histogram and Select Privileged Ranges

Build Tuples Left?

Is Tuple Privileged?

Yes

Create ChainHash Tables For In-Memory Partitions

No

Insert Into Privileged Partitions

Yes

Insert Into Non-Privileged Partitions

No

Memory Used < Memory Available ?

Yes

Freeze Next Partition

No

Probe Tuples Left?

Tuple Matches To In-Memory Partition?

Yes

Frozen Partitions Left?

No

Output Result Tuple

Yes

Write Tuple To On-Disk Partition File

No

Load Frozen Partition Into Memory And Create ChainHash Table

Yes

End

No

Probe Partition Using On-Disk Probe Tuples

Figure 3.4: Histojoin Flowchart

Given sufficient detected skew, the privileged partition ranges are organized into efficient
data structures to allow rapid determination of privileged tuples. Each build and probe tuple
requires a range check to determine if they belong in a privileged partition. The range check
operation is discussed in Section 4.3.

Histojoin processes the join in a similar manner to dynamic hash join. Tuples are read
from the build relation. When a tuple is read, the range check is performed. If the tuple falls
into a privileged partition, it is placed there. Otherwise, the tuple’s partition is determined
using a hash function similar to DHJ. Whenever memory is full while the build relation is

28

being read, a partition flush is performed. Non-privileged partitions are flushed first. If all
non-privileged partitions are flushed, the privileged partitions are flushed in reverse order
of benefit. When flushing the non-privileged partitions, we flush in random order. Once a
partition is flushed, a single disk buffer is allocated to the partition to make writing tuples
to the disk file more efficient. A flushed partition cannot receive any new tuples in memory.

Once the build relation is completely read, there will be some build partitions in memory
and others in disk files. Partitions that are memory-resident have main memory (chained)
hash tables constructed to store their tuples. These hash tables will be probed using tuples
from the probe relation.

The probe relation tuples are then read. The range check is performed on each tuple.
If the tuple corresponds to an in-memory build partition (privileged or not), it probes the
chained hash table for that partition to potentially generate results. If the corresponding
build partition is not in-memory, the probe tuple is written to the probe partition file on
disk. Once all probe relation tuples are read, there will be pairs of build and probe partitions
on-disk. Main memory is cleared, and each partition pair is read from disk and processed.
Typically, the build relation partition is read, a chained hash table produced, and then
results are generated by probing using probe relation tuples. However, common practices
such as those described in Section 2.2.6 can be applied.

In summary, Histojoin behaves like dynamic hash join except that its hash table structure
allows for the identification and prioritization of frequently occurring tuples in the probe
relation. The differences between DHJ and Histojoin are embedded in the distribution of
tuples between the two layers of the hash table and the order in which partitions are frozen to
disk to free up memory. All other hash join techniques are unaffected by these modifications.

3.2.2 Selecting In-Memory Tuples

Given a histogram that demonstrates skew, Histojoin must determine a set of join attribute
range(s) that constitute the most frequently occurring values in S. Tuples of R with these
frequently occurring values are the ones in the privileged partitions. For instance in Figure
3.3 there are several ranges of part keys that occur frequently in LineItem. The challenge
is that the join partition size is determined independently from histogram partitioning. For
example, let |R| = 1000 and M = 100. Thus, at least 10 partitions of R are required. The
in-memory partition can have 100 tuples. It may require multiple independent ranges in the
histogram to define a set of attribute ranges that contain up to 100 distinct values of R and
have high frequency in S.

The greedy algorithm reads the histogram for S on the join attribute, sorts its buckets by
frequency, and selects as many buckets that fit into memory in the order of highest frequency
first. The detailed steps are:

• Assume each histogram bucket entry is a 6-tuple of the form (MINVAL, MAXVAL,
ROWCOUNT, EQROWS, DISTINCT ROWS, ROWS R). MINVAL and MAXVAL
are the lower and upper (inclusive) values defining the bucket range. ROWCOUNT is
the number of rows in S with a value in the range of [MINVAL,MAXVAL). EQROWS is

29

the number of rows in S whose value is exactly equal to MAXVAL. DISTINCT ROWS
is the distinct number of values in S in the bucket range. ROWS R is a derived value
(not present in the histogram) that is the estimate of the number of rows in R that
have a value in the histogram bucket range. The estimation of ROWS R is given in
Section 4.2.1.

• A bucket frequency is calculated as:
(ROWCOUNT + EQROWS) / ROWS R.

• Sort the buckets in decreasing order by frequency.

• The sorted list is traversed in order. Assume the size of memory in tuples is M , and
count is the number of tuples currently in the in-memory partition. A histogram bucket
range is added to the in-memory partition if count + ROWS R <= M .

• The previous step is repeated until the histogram is exhausted, there is no memory left
to allocate, or the current bucket does not fit entirely in memory.

Consider the histogram in Figure 3.2, and a join memory size of 400 tuples. The first
histogram bucket added has range 751-1000 (250 tuples) as its frequency is 4.6. The second
histogram bucket added has range 101-200 with frequency 3.1. The remaining memory
available can be allocated in various ways: leave as overflow, find next bucket that fits, or
divide a bucket. With integer values, it is possible to take the next best bucket and split the
range. In this case, the range from 1-100 can be divided into a subrange of 1-50.

MINVAL MAXVAL ROWCOUNT EQROWS DISTINCT ROWS ROWS R FREQ
1 100 300 5 100 100 3.05

101 200 300 10 100 100 3.1
201 350 150 100 150 150 1.67
351 500 200 40 150 150 1.6
501 750 244 6 250 250 1
751 1000 650 500 250 250 4.6

Table 3.2: Histogram Partitioning Example

Not all histograms will separate out the frequency of a boundary value (such as EQROWS)
in that case the frequency is calculated as ROWCOUNT/ROWS R. When a histogram
does separate out the frequency of a boundary value (such as with maxdiff histograms), these
values can be used as separate bucket ranges as they typically have very high frequencies.
These single, high-frequency values are referred to as premium values. Premium values have
a high payoff as they occupy little memory (one tuple each) and match with many rows in
the probe relation. Premium values tend to be good values to keep in-memory even when
the accuracy in the histogram is low, especially when they are significantly more common
than the average value.

Note in the example that value 350 occurs 100 times even though on average the other
values in the range of 201-349 only occur once. Tuple with key 350 should be memory-
resident. The algorithm creates separate one value ranges for each separation value. When

30

sorted, these ranges may be selected independently of the rest of their histogram bucket.
For example, with a memory size of 400 tuples, the algorithm selects the following ranges:
1000, 350, 500, 200, 750, 100, 751-999, 101-199, and 1-46. (The last range is a partial range
of 1 to 100.) A tuple is in the in-memory partition if it falls in one of these ranges.

Estimating Cardinality Of Value Ranges

A histogram estimates the number of distinct values and number of tuples in a histogram
bucket (DISTINCT ROWS and ROWCOUNT respectively). If the histogram is on the probe
relation S, then the histogram provides the number of tuples in each bucket for relation S.
However, Histojoin also requires an estimate of the number of tuples in R that have a value in
a histogram bucket. This estimate is used to determine approximately how many histogram
buckets can be memory-resident for the build relation R. This value is also used to determine
the relative value of each bucket. Histogram buckets with few rows in R and numerous rows
in S are prime candidates for privileged partitions.

Given the number of distinct values in S, DISTINCT ROWS, the estimate of the
number of rows in R with values in that range, ROWS R, is determined as follows:

• For integer values, it is calculated using the bucket low and high range values. That
is, ROWS R = MAXV AL−MINV AL + 1.

• For non-integer values, it is estimated as ROWS R = DISTINCT ROWS.

There will be inaccuracy in estimating ROWS R for non-integer values. For one-to-
many joins, ROWS R will be underestimated due to primary key values not appearing in
the foreign key relation. For many-to-many joins, it is impossible to determine exactly how
many rows in R will have values in the range without having a histogram on R as well.
Some heuristics can be used based on the size of relation R, but in general, the estimate
may be imprecise. Thus, it is critical that Histojoin adapts its memory management to
flush even privileged partitions in case of inaccurate estimates. This is discussed further in
Section 3.2.3.

3.2.3 Partitioning

Histojoin partitions tuples in two layers. The first layer contains privileged partitions with
join attribute ranges that are defined as described in Section 4.2. A tuple is placed in a
privileged partition if its join attribute value falls into one of the privileged partition ranges.
This is performed using a range check function. A range check is performed for each tuple
by comparing its join attribute value with the ranges calculated in Section 3.2.2. In this
example, the ranges are 1000, 350, 500, 200, 750, 100, 751-999, 101-199, 1-46.

For efficiency, the range check is implemented in two steps. The first step uses a hash
table to record all ranges of size one. Each hash table entry maps the join attribute to a
partition number. This step is used for very frequently occurring values such as premium
values. The size of this hash table is very small, usually less than 200 entries, as the number

31

of premium values is limited based on the number of histogram buckets. The second step
processes all ranges of size greater than one by storing them in a sorted array. This sorted
array is searched using a binary search to detect if a value is in one of the ranges.

When a range check is performed the value is first tested against the hash table. If it
is in the hash table then the mapped partition is returned. If not then a binary search
is performed on the sorted array, and if the correct range is found the related partition is
returned. If the value is not found in either of these two structures then it does not fall in a
privileged partition, and the value is hashed to find which non-privileged partition it belongs
in. For tuples with join values that do not fall into privileged partition ranges, the tuples
are placed in hash partitions using a hash function. This hash partitioning works exactly
the same as in dynamic hash join.

This hash table and search array method works for all types and combinations of values.
A further speed optimization for integer values is to enter every value that falls in a range
into the hash table and not use the binary search. This works for integer values because the
possible values in a range can be discretely enumerated.

3.3 Using Histojoin

This section contains a discussion of some of the issues in using Histojoin. These issues
include handling different join cardinalities, tolerating inaccuracy in histograms, and sup-
porting joins where the input relations are from selection or other join operators.

3.3.1 Join Cardinality

Although the previous examples considered primary-to-foreign key joins, Histojoin works for
all join cardinalities. Histojoin is useful when there is a histogram on the join attribute of the
probe relation, and the probe relation has skew. If due to filtering the foreign key relation is
the smaller (build) relation, Histojoin is not usable because the probe (primary key) relation
is uniform, and there is no skew to exploit. However, it may be possible to reverse the roles
and still make the larger foreign key relation the probe relation if there is skew to exploit
that improves performance.

Histojoin adds no benefit over dynamic hash join for one-to-one joins due to the uniform
distribution of the probe relation. In this case, Histojoin behaves exactly as dynamic hash
join and allocates no privileged partitions.

For many-to-many joins, Histojoin only requires the histogram on the probe relation.
The algorithm behaves exactly as in the one-to-many case, but execution of the algorithm
may result in flushing privileged partitions as the size estimates of the privileged build
partitions are less accurate. For example, a histogram may indicate that the values from
5 to 10 have high frequency in the probe relation. Histojoin will estimate that there are 6
tuples in the build relation in that range. However, there may be multiple occurrences of
each value such that there are actually 30 tuples in the build relation with values in that
range. This may force Histojoin to flush some privileged partitions to compensate for the

32

over-allocation of memory. A histogram on the build relation may mitigate some of these
estimation concerns, but may be hard to exploit as independently produced histograms may
have widely differing bucket ranges. Even when Histojoin over-allocates privileged partition
ranges, dynamic flushing based on frequency improves performance over dynamic hash join
while avoiding memory overflows.

The join cardinality cases are enumerated in Table 3.3.

Type Larger Side Approach Special Notes
1-1 Either behave like DHJ No skew in relations.
1-M 1 behave like DHJ No skew in probe.

Evaluate role reversal if skew on many-side.
1-M M use probe histogram Skew can be exploited.
M-N M or N use probe histogram Skew can be exploited.

Table 3.3: Join Cardinality Cases

3.3.2 Histogram Inaccuracies

In the ideal case, the join algorithm would know the exact distribution of the probe relation
and be able to determine exactly the skew and the frequently occurring values. Without
pre-sampling the inputs, this requires a pre-existing summary of the distribution as provided
by histograms. Histograms are not perfect because they summarize the information, which
results in lack of precision. Also, the histogram may be inaccurate as it may be constructed
by only using a sample of the data or was constructed before some modifications occurred
on the table.

Note that skew-aware partitioning, as implemented by Histojoin, can be used with a sam-
pling approach as well as with pre-defined histograms. The advantage of using histograms is
that there is no overhead during join processing as compared to sampling. The disadvantage
is the accuracy of the distribution estimation may be lower. Histograms are valuable because
they require no pre-processing for the join and are kept reasonably up-to-date for other pur-
poses by the optimizer. Non-random sampling has been experimented with by examining the
first few thousand tuples of the probe relation before processing the build relation. Although
it is sometimes possible to determine very frequent values using this approach, in general,
most relational operators produce a set of initial tuples that is far from a random sample.
True random sampling incurs cost that is too high for the potential benefit.

There are two key histogram issues. First, the histogram may not be a precise summary of
a base relation distribution due to issues in its construction and maintenance in the presence
of updates. Second, if the join is performed on relations that are derived from other relational
operators (selection, other joins), then a histogram on the base relation may poorly reflect
the distribution of the derived relation. Without an approach to derive histograms through
relational operators, we must decide on our confidence in the histogram when allocating
memory in the operator.

33

This approach assigns a confidence value to the histogram. The confidence value reflects
the confidence in the accuracy of the histogram in relation to the data it is designed to
represent. Histograms derived after selections have lower confidence than those recently
built on the base relation.

The confidence value is used to determine how many privileged partitions are used. With
a high confidence value, privileged partition ranges are defined such that almost all of the
memory is allocated to the privileged partitions, as we are reasonably certain that the best
tuples in the histogram are actually the best tuples in the relation. For a low confidence
value, only the absolute best values as determined by the histogram are used as the range
partitions. The result is that the algorithm can control its benefit or penalty as compared
to DHJ based on the confidence of the estimates. This improves the stability, robustness,
and overall performance of the algorithm.

For example, consider M=1000 (1000 tuples can fit into memory). Let the join attribute
value range be 1 to 2000. With a high confidence histogram, the algorithm would define
privileged partition ranges to occupy all 1000 tuples of memory available. For instance, it may
allocate 4 ranges 100-199, 300-599, 1000-1199, and 1500-1899 that would correspond to 1000
tuples in the build relation. With a low confidence histogram, the algorithm only allocates
the very best ranges, which may result in only 2 ranges such as 100-199 and 1000-1199 (300
total tuples). The algorithm determines the ranges to allocate based on the frequency of
occurrence and the confidence value. With the low confidence histogram, the range 100-
199 must have been significantly more common than average. The number of privileged
partitions is reduced with a low confidence histogram to reduce the penalty of error. For
instance, the range of values 100-199 may turn out to be very infrequently occurring in the
probe relation. Buffering build tuples in the range 100-199 then would produce fewer results
than buffering random tuples.

There are multiple possibilities for determining how many tuples to put in the privileged
partition based on the histogram confidence level. One approach is to select ranges whose
frequencies are one or more standard deviations better than the mean frequency of all ranges.
The amount that the ranges must be better than the mean is increased for lower confidence
histograms. A high confidence histogram will fill up memory with histogram buckets that
are above the mean. A low confidence histogram will only accept buckets that are multiple
standard deviations better than the mean.

The approach chosen to measure the quality of the histogram depends on the database
system and its optimizer. The two experimental implementations (see Chapter 4) use dif-
ferent approaches to selecting ranges based on the confidence level. The stand-alone Java
implementation that only performs the joins and does not have an optimizer operates in two
modes. Histograms on base relations with or without a selection operator are considered high
confidence and all privileged ranges better than the average are selected. A low confidence
histogram is when a base relation histogram is used to estimate the distribution of a relation
produced by an intermediate join operator. In this case, only single premium values are
used and no ranges. The PostgreSQL implementation exploits PostgreSQL’s statistics that
capture the most common values (MCVs) of an attribute. All MCVs are kept regardless of

34

the histogram confidence and the equi-depth histogram is not used to select ranges. This is
an effective approach as the penalty for being incorrect with MCVs is minimal, the payoff is
potentially very high, and there is a high probability that MCVs of a base relation remain
MCVs in derived relations. More details are in Section 6.

There are two potential “costs” in using this approach. The first is a lost opportunity
cost that occurs when due to low confidence in the histogram we do not select ranges with
frequently occurring values as privileged partitions. In this case, the performance of the
algorithm could have been improved had it been more aggressive on selecting privileged
partition ranges. However, the performance would be no worse than dynamic hash join as any
tuples that are not privileged get flushed randomly as in DHJ. The second cost, inaccuracy
cost, is much more important. Inaccuracy cost occurs when a value range is selected as
privileged and turns out to be less frequently occurring than average. For example, if the
100 build tuple values in the range 100-199 map to 2 tuples on average in the probe relation,
and the average build tuple maps to 3 tuples on average, then skew-aware partitioning will
have worse average performance than dynamic hash join. For low confidence histograms, it
is better to be conservative in selecting privileged ranges, as there is a penalty for being too
aggressive. By selecting no privileged ranges, Histojoin behaves exactly as DHJ.

Handling Selections

The discussion so far has considered joins where both inputs are base relations. It is common
that a selection is performed before a join. A selection on the probe relation may change the
distribution of join values and result in lower confidence in the histogram. The confidence
can be changed based on the attribute correlation. If the selection attributes are highly
correlated with the join attribute, then the histogram will most likely be very inaccurate.
If there is low correlation, then the histogram is more usable and the uniform assumption
can be applied. For example, the uniform assumption assumes that if a selection reduces
the cardinality of the entire relation by 90%, then the cardinality of each histogram bucket
is also reduced by 90%. If present, multi-dimensional histograms on both the selection and
join attributes may be used to estimate the distribution after selection. SITs may be used
as well. See Section 2.4 for more information about database statistics.

Selections on the build relation are less problematic. A selection on the build relation
may affect the number of build tuples in a privileged partition range. For instance, if the
algorithm determines that the range 100-199 is valuable, it expects 100 unique values in
the build relation. However, a selection may cause the actual number of build tuples to be
50. This is another example of a lost opportunity cost because given this knowledge, the
algorithm may have been able to select more privileged partitions (since memory is available)
or select different ones because the value of the partition range may be lowered since not
all of its build tuples participate in the join. Note that since we do not allocate a static
amount of memory to privileged partitions, the extra memory for the 50 tuples is available
for other partitions (most likely non-privileged hash partitions) to use. The algorithm will
still outperform dynamic hash join if the build tuples actually in the privileged partition
range join with more probe tuples than the average build tuple.

35

Multiple Join Plans

When a query consists of multiple joins, Histojoin can be used with each join as long as a
histogram is available or can be estimated for the probe relations. Histojoin can be used
for star joins, where multiple relations are joined to one common relation, which are very
common in data warehouses.

For example, consider a star join of the tables Part, Supplier, and LineItem as shown in
Figure 3.5a. With histograms on LineItem.partkey and LineItem.suppkey and no selection
operations, Histojoin will have high confidence histograms for both joins. The bottom join
of LineItem and Supplier will use the histogram on LineItem.suppkey. The second join
will use the histogram on LineItem.partkey which will accurately reflect the distribution of
LineItem.partkey in the intermediate join result LineItem-Supplier as the intermediate result
was produced using a primary-to-foreign key join. In general, star joins with no selections
and histograms on all join attributes of the fact table are accurately estimated and result in
large performance improvements for skewed data.

(a) Part Supplier LineItem (b) Customer Order LineItem

Figure 3.5: Example Multiple Join Plans

In contrast, consider a join of the tables Customer, Orders, and LineItem as shown in
Figure 3.5b. The join of LineItem and Orders can exploit the histogram on
LineItem.orderkey. However, the top join has no base histogram that can model the distri-
bution of custkey in the intermediate relation LineItem-Orders. It is possible to estimate the
histogram from one on Orders.custkey, but it would be a low confidence histogram. When
selections are added with joins, the confidence of the histograms decreases, especially with
selections on the probe relations.

3.3.3 Query Optimizer Modifications

There are minimal query optimizer modifications required to use Histojoin. Histojoin can be
used as a drop-in replacement to hybrid or dynamic hash join, or the concepts used to modify
an existing hash join implementation. If Histojoin is implemented separately from hybrid
hash join, then when costing a potential join, Histojoin will return a high, not-applicable
cost for joins where a histogram does not exist or cannot be estimated for the probe relation.

36

As a drop in replacement for hybrid hash join the cost for Histojoin when it cannot make use
of histograms would be exactly equal to that of hybrid hash join. The cost of Histojoin will
be the same formula as given in Section 3.1. In estimating the term g in the formula from
the histogram we first calculate which histogram buckets will be in the privileged partitions.
The histogram tells us how many probe tuples are related to each histogram bucket so using
this we can estimate the number of results we will get from the in-memory build tuples. In
practice this can be done in one step as the estimate of result tuples can be calculated while
choosing privileged build tuple ranges.

Given the list of privileged partitions, g is estimated by summing up the FREQ∗ROW R
or alternatively ROWCOUNT + EQ ROWS (see Section 4.2) then dividing by S. That is,

g =
∑

ROWCOUNT+EQ ROWS

|S| .
Using the example histogram given in Figure 3.2, without separating out the max values,

the ranges in sorted order are 751-1000 (W=4.6), 101-200 (W=3.1), 1-100 (W=3.05), 201-
350 (W=1.67), 351-500 (W=1.6), and 501-750 (W=1). In the example, the build relation
R has 1000 tuples, and the probe relation S has 2505 tuples. With 350 tuples of memory
(f = 35%) the first two ranges 751-1000 and 101-200 would be selected as privileged and
E = 250 ∗ 4.6 + 100 ∗ 3.1 = 1460. g = E/|S| = 1460/2505 = 58%. Using the formulas in
Section 3.1.1 we expect DHJ to perform 4556 I/Os during this join and Histojoin to perform
3405 I/Os (25% less).

Using Histojoin this way will allow a query optimizer to only use the algorithm when
Histojoin indicates that it will have a performance benefit (by exploiting the skew it poten-
tially sees). A major benefit is that no major changes to the optimizer are required. The
only issue is the DBMS must make the histograms available to the Histojoin operator when
costing and initializing.

Histojoin’s performance and applicability are increased according to the database system
support for statistics collection. For instance, Histojoin works best when provided with a list
of the most frequent values and their frequencies. It is this list of values and their associated
tuples that must remain memory-resident. Some statistics systems collect this data explicitly
either separate from the histogram (PostgreSQL’s most common values) or as part of the
histogram (end-biased histograms). Note that histogram bucket ranges are a less accurate
approximation to the most frequent value list.

The challenge of using Histojoin on derived operators (selections, joins, etc.) can also
be mitigated by better statistics collection. For example SITs [2] and statistics collection
on views allow the optimizer to have improved distribution estimates for relations of inter-
mediate operators. Instead of base histograms and uniform assumptions, these approaches
can provide Histojoin with more accurate data when deciding on privileged ranges/values.
Any technique to improve the histogram accuracy will improve Histojoin’s performance. In
summary, Histojoin will always produce a correct result that is robust and optimal according
to the distribution estimate given. The more accurately the histogram reflects the actual
data distribution, the better actual performance Histojoin will have.

37

4. Experimental Results

This chapter presents two separate experimental evaluations for Histojoin. The first eval-
uation is a stand-alone Java application performing the joins. The second evaluation is an
implementation of the algorithm in PostgreSQL. The Histojoin algorithm was tested with
the TPC-H data set. The TPC-H generator produced by Microsoft Research [3] was used
to generate skewed TPC-H relations. Skewed TPC-H relations have their attribute values
generated using a Zipf distribution, where the Zipf value (z) controls the degree of skew.
The data sets tested were of scale 1 GB and 10 GB and labeled as skewed (z=1) and high
skew (z=2).

4.1 Stand-Alone Evaluation

The dynamic version [8] of hybrid hash join [7] (DHJ) was compared to Histojoin. Both
algorithms were implemented in Java and used the same data structures and hash algorithms.
The only difference between the implementations is that Histojoin allocated its in-memory
partitions using a histogram and DHJ flushed partitions to free memory without regard
to the data distribution. DHJ typically flushes partitions in a deterministic ordering, but
this implementation flushes randomly such that a more accurate average case is found. For
instance, a deterministic ordering may always flush the exact worst partition for a join first.
A random ordering will flush the worst partition first with probability 1/P (where P is the
number of partitions).

The data files were loaded into Microsoft SQL Server 2005, and histograms were gener-
ated. The histograms were exported to disk, and the data files converted to binary form.
Data files were loaded from one hard drive and a second hard drive was used for tempo-
rary files produced during partitioning. The experimental machine was an Athlon 64 3700+
(2.2Ghz) with 1.5GB RAM running Windows XP Pro and Java 1.6. All results are the
average of 10 runs. These results use TPC-H scale 1 GB and demonstrate the applicability
of the algorithm in various scenarios.

4.1.1 Primary-to-Foreign Key Joins

The joins tested were LineItem-Part on partkey and LineItem-Supplier on suppkey for z=1
and z=2. Memory fractions, f , were tested ranging from 10% to 100%.

Histojoin performs approximately 20% fewer I/O operations with the z=1 data set which
results in it being about 20% faster overall. This is a major improvement for a standard

38

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 20 40 60 80 100

I/O
s

(x
 1

00
0)

Memory Fraction (%)

DHJ
Histojoin

(a) Total I/Os

 0

 50

 100

 150

 200

 250

 0 20 40 60 80 100

T
im

e
(s

ec
)

Memory Fraction (%)

DHJ
Histojoin

(b) Total Time

Figure 4.1: Lineitem-Part Join (1GB, z=1)

operation like hash join. An improvement occurs over all memory sizes until full memory is
available for both joins.

For the z=2 data set, the performance difference is even more dramatic. In the 10%
memory case Histojoin performs 60% fewer I/Os resulting in 60% faster execution. The
results by total I/Os and by time are in Figures 4.2a and 4.2b respectively.

DHJ is slower because random partitioning causes the most important tuples to be dis-
tributed across all partitions. Regardless what partitions are flushed (or conversely what
partition(s) remain in memory), hash join is guaranteed to not keep in memory all of the
most beneficial tuples. Even worse, for highly skewed data sets, it is very likely that it will
evict the absolute best partition. For instance, with 10% memory and 10 partitions, hash
join has only a 10% probability of keeping the partition in memory with the key value that
is most frequently occurring. The performance of dynamic hash join is unpredictable for
skewed relations and is highly dependent on the partition flushing policy. For highly skewed
relations and low memory percentages the likelihood of DHJ flushing the best values is very
high.

For the z=1 data set and LineItem-Supplier, Histojoin performs about 10-20% fewer total
I/Os and executes 10-20% faster. For the z=2 data set, Histojoin performs between 20-60%
fewer total I/Os and executes 20-60% faster. A summary of the percentage total I/O savings
of Histojoin versus dynamic hash join for all joins is in Figure 4.3.

Experiments with uniform data show that the performance of Histojoin and hash join
is identical, as there are no tuples that occur more frequently than any other, and the
performance is independent of the tuples buffered in memory. For totally uniform data,
Histojoin selects no privileged partitions. For mostly uniform data, such as generated by
the standard TPC-H generator, there are still some join attribute ranges that are marginally
better and are used by Histojoin to improve performance slightly.

39

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 20 40 60 80 100

I/O
s

(x
 1

00
0)

Memory Fraction (%)

DHJ
Histojoin

(a) Total I/Os

 0

 20

 40

 60

 80

 100

 120

 0 20 40 60 80 100

T
im

e
(s

ec
)

Memory Fraction (%)

DHJ
Histojoin

(b) Total Time

Figure 4.2: Lineitem-Part Join (1GB, z=2)

 0

 10

 20

 30

 40

 50

 60

 70

 0 20 40 60 80 100

%
 I/

O
 Im

pr
ov

em
en

t o
f H

is
to

jo
in

 v
s.

 D
H

J

Memory Fraction (%)

LI-P Z1
LI-P Z2
LI-S Z1
LI-S Z2

Figure 4.3: Percentage Improvement in Total I/Os of Histojoin vs. Hash Join (1GB)

4.1.2 Many-to-Many Joins

The many-to-many join tested combined a randomized version of the Wisconsin relation
[9] with a randomized and Zipfian skewed (z=1) version of the Wisconsin relation on the
tenPercent attribute. Both relations contained 1,000,000 tuples. The tenPercent attribute
has a domain that is 10% the size of the relation. For 1,000,000 tuple relations, the domain
of tenPercent is 100,000. Memory fractions, f , were tested ranging from 10% to 100%.

For this test, the build relation (randomized Wisconsin) contains 1,000,000 tuples, and
the tenPercent attribute contains values in the range 0 to 99,999, each value being shared by
10 tuples. The probe relation has a domain of 0 to 99,999 as well with a Zipfian distribution
of the values. In the generated Zipfian relation, the top 2 values occur in 127,380 of the
1,000,000 tuples (12.7%) and 31,266 of the 1,000,000 tuples (3.7%) respectively. Beyond the
top 200 values, the average value occurs in approximately 5.7 of the 1,000,000 tuples. A

40

histogram on the probe relation attribute is misleading because it shows an integer domain
of 100,000 tuples which underestimates the size of each privileged relation partition by a
factor of 10.

This underestimation causes Histojoin to allocate too much memory for privileged parti-
tions because it thinks the partitions contain far fewer tuples than they really do. However,
these privileged partitions are dynamically flushed as required with no harm to the perfor-
mance. The Wisconsin results by total I/Os (includes cost of reading each relation) for this
join are in Figure 4.4. For all memory sizes, Histojoin performs approximately 10% fewer
I/O operations than DHJ.

 0

 1000

 2000

 3000

 4000

 5000

 6000

 0 20 40 60 80 100

I/O
s

(x
 1

00
0)

Memory Fraction (%)

DHJ
Histojoin

Figure 4.4: Total I/Os for Wisconsin Many-to-Many Join (1GB, z=1)

4.1.3 Histogram Inaccuracies

To demonstrate the effect of histogram inaccuracies on join performance, a modified TPC-H
LineItem relation was created to show the worst case scenario for Histojoin and how the use
of histogram confidence mitigates this scenario. The new LineItem relation contains only
every 10000th partkey (1, 10000, 20000, ..., 200000) and each of these values occurs as often
as the others. A histogram was created that indicates to Histojoin that these 10000th values
never occur in LineItem so that in all cases except the 100% memory case Histojoin will
not store any of the corresponding build tuples from the Part relation in memory but will
instead fill memory with build tuples whose partkey values never occur within LineItem.

Histojoin was compared to DHJ using the join LineItem-Part on partkey. Memory frac-
tions, f , were tested ranging from 10% to 100%. Histojoin executed the join under two
confidence levels. In the high confidence level, it assumed the histogram was very accurate
and fully allocated privileged partitions to memory. In Figure 4.5, this corresponds to the
HJ Bad Histogram plot. Histojoin does considerably worse than DHJ by trusting a totally
wrong histogram. In comparison, when executed under a low confidence level, Histojoin only
selects premium values from the histogram (in the diagram as HJ Bad Premium Values).

41

Since the histogram is completely inaccurate, the premium values give no performance im-
provement, but also result in little cost compared to DHJ due to the minimal amount of
memory occupied. If the histogram is only 10% correct (10% of the premium values are
good), Histojoin in low confidence mode outperforms DHJ. In summary, executing Histo-
join in low confidence mode has little risk and considerable reward if the histogram is even
marginally accurate.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 20000

 0 20 40 60 80 100

I/O
s

(x
 1

00
0)

Memory Fraction (%)

DHJ
HJ Bad Histogram

HJ Bad Premium Values
HJ 10% Good Premium Values

Figure 4.5: Total I/Os for Lineitem-Part Join with Histogram Inaccuracies (1GB)

4.1.4 Joins on String Keys

With string keys Histojoin is less accurate in predicting the size of build partition ranges for
privileged partitions. To test joining on string keys, versions of the LineItem and Supplier
relations were generated with the suppkey replaced by randomly generated strings. Once
again memory fractions, f , were tested ranging from 10% to 100%. Much like the join of
LineItem-Part on partkey using integer keys Histojoin performs around 20% fewer Total I/Os
than DHJ for the z=1 dataset. The results are in Figure 4.6.

4.1.5 Multi-Way Joins

As described in Section 3.3.2, Histojoin can be used on multi-way star joins when a histogram
exists on the join attributes of the fact relation. A star join of the tables Part, Supplier, and
LineItem as shown in Figure 3.5a falls into this category.

If the memory for the entire query is split evenly between the two joins then for a
memory percentage above 10% the first join of LineItem-Supplier would be done completely
in memory as Supplier is quite small in comparison to Part. For this reason Histojoin was
compared to DHJ using memory fractions ranging from 3% to 10%. The total I/Os for the
entire join using a z=1 dataset are shown in Figure 4.7a. For all memory sizes Histojoin
performs about 20% fewer I/Os than DHJ. For memory sizes above 10%, Histojoin is faster
than DHJ but only one join requires disk I/Os. Results for the z=2 dataset are shown in

42

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 0 20 40 60 80 100
I/O

s
(x

 1
00

0)
Memory Fraction (%)

DHJ
Histojoin

Figure 4.6: Total I/Os for Lineitem-Supplier Join on String key (1GB, z=1)

Figure 4.7b. Due to the high skew, Histojoin dramatically improves on the performance of
DHJ.

 0

 5000

 10000

 15000

 20000

 25000

 30000

 3 4 5 6 7 8 9 10

I/O
s

(x
 1

00
0)

Memory Fraction (%)

DHJ
Histojoin

(a) z=1

 0

 5000

 10000

 15000

 20000

 25000

 30000

 3 4 5 6 7 8 9 10

I/O
s

(x
 1

00
0)

Memory Fraction (%)

DHJ
Histojoin

(b) z=2

Figure 4.7: Total I/Os for Lineitem-Supplier-Part Join (1GB)

4.2 PostgreSQL Implementation

Histojoin was implemented in PostgreSQL 8.4 to test its performance for large-scale data
sets in a production system. PostgreSQL implements hybrid hash join (HHJ). Its HHJ
implementation requires that the number of partitions be a power of two, and it always
keeps the first partition in memory. Thus, experimental data was only collected for memory
fractions: 3.1% (1/32), 6.2% (1/16), 12.5% (1/8), 25% (1/4), 50% (1/2), and 100%.

PostgreSQL collects statistics on its tables. Statistics on an attribute of a table include
the most common values (MCVs) and an equi-depth histogram. The user is able to control

43

on a per table basis the number of MCVs. The user can also initiate statistics re-calculations.
The query optimizer has access to the histograms and a list of most common values (MCVs)
that are automatically generated for foreign key attributes.

Histojoin was added to the PostgreSQL HHJ implementation. Using environment flags
that PostgreSQL uses to control which joins are available, Histojoin can be turned on and
off from the standard HHJ implementation. Thus, the existing HHJ implementation was
altered instead of having two hash join algorithms for the optimizer to choose between.

Histojoin requires the ability to use the existing statistics which were available in the
planner. The code uses the join attributes of the probe relation to find statistics for that
attribute. If no statistics were available, Histojoin would not be used. If the optimizer
determines that the build relation will completely fit in memory then Histojoin is not used
as it would have no positive effect and add unnecessary overhead. If statistics are available,
Histojoin only uses the MCVs (not the histogram) as the MCVs are more precise. However,
this means that the privileged partitions do not occupy very much of the memory available
for build relation tuples. The MCVs were determined and allocated into an in-memory
hash table when the join operator was initialized. The default number of MCVs is 10,
which produces a small hash table (less than 1KB), however the database administrator can
increase this number to as many as 10,000 MCVs. The hash table size is at least 4 times the
number of MCVs (load factor is less than or equal to 25%) to make collisions unlikely.

During the partitioning of the build relation, a build tuple’s join attributes are hashed
according to the small MCV hash table to determine if its value is one of the MCVs. If it
is, then the tuple is put into the hash table, otherwise it is processed using the regular hash
function as usual. While partitioning the probe relation, a probe tuple’s join attribute is
hashed and a lookup performed in the MCV table. If there is a match, the tuple is joined
immediately, otherwise it proceeds through the hash join as normal. In effect, the MCV
lookup table is a small mini-hash table for the most frequent values.

The equi-depth histograms are not used as it is preferable to increase the number of
MCVs rather than allocate ranges from the histogram. The experiments all use the default
of 10 MCVs unless otherwise specified. Results are improved when MCVs are set to 100 or
more.

The experimental machine for the PostgreSQL implementation was an Intel Core 2 Quad
Q6600 (2.4Ghz) with 8GB RAM running 64bit Debian Linux with a 2.6.25 kernel. These
results use TPC-H scale 10 GB. Note that even for machines with large main memories, a
join operator is allocated only a small fraction of the memory available as it must compete
with other operators and other queries for system resources. The default join memory size
for PostgreSQL is 1 MB. The experiments alter that memory size to produce the desired
memory fraction based on the build table size.

There are a couple of differences from the Java experiments that should be noted. First,
the execution times more accurately reflect the number of I/Os performed. This is due to
increased stability and performance of PostgreSQL on Linux versus a Java implementation
on Windows. The Java I/O counts are exact, but the execution times are more variable.
There is less I/O performance improvement for the PostgreSQL implementation compared to

44

the Java implementation because the PostgreSQL implementation has very small privileged
partitions (just the MCVs) where the Java implementation uses all available memory for
privileged partitions by filling them with valuable histogram bucket ranges.

4.2.1 Primary-to-Foreign Key Joins

The LineItem-Part results by total I/Os (includes cost of reading each relation) and by
time for the z=1 data set are in Figures 4.8a and 4.8b respectively. Histojoin is around
10% faster and performs 10% less I/Os than HHJ. With the z=2 dataset, Histojoin performs
approximately 50% faster (Figures 4.9a and 4.9b). The percentage improvement of Histojoin
is shown in Figure 4.10. Note that the sudden improvement of HHJ for the z=2 50% memory
case is because HHJ manages to get the best tuples from the build partition in its in-memory
partition by chance.

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 200000

 0 20 40 60 80 100

I/O
s

(x
 1

00
0)

Memory Fraction (%)

HHJ
Histojoin

(a) Total I/Os

 0

 100

 200

 300

 400

 500

 600

 0 20 40 60 80 100

T
im

e
(s

ec
)

Memory Fraction (%)

HHJ
Histojoin

(b) Total Time

Figure 4.8: PostgreSQL Lineitem-Part Join (10GB, z=1)

4.2.2 Multi-Way Joins

When performing a star join of the tables Part, Supplier, and LineItem any memory size
above 10% of the size of the Part table will run the smaller join of LineItem and Supplier
completely in memory. This multi-way join was tested with memory fractions (sizes) of
0.78% (2770KB), 1.56% (5440KB), and 3.12% (10880KB). Figure 4.11a shows that for the
z=1 dataset Histojoin performs around 6% fewer IOs than HHJ and for the z=2 dataset
Histojoin performs around 40% fewer IOs than HHJ.

4.2.3 Effect of Number of MCVs

By increasing the number of MCVs from the default 10, the performance of Histojoin in-
creases as Histojoin is able to capture more of the most valuable tuples. The join of LineItem

45

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 200000

 0 20 40 60 80 100

I/O
s

(x
 1

00
0)

Memory Fraction (%)

HHJ
Histojoin

(a) Total I/Os

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 500

 0 20 40 60 80 100

T
im

e
(s

ec
)

Memory Fraction (%)

HHJ
Histojoin

(b) Total Time

Figure 4.9: PostgreSQL Lineitem-Part Join (10GB, z=2)

 0

 10

 20

 30

 40

 50

 60

 0 20 40 60 80 100

%
 I/

O
 Im

pr
ov

em
en

t o
f H

is
to

jo
in

 v
s.

 H
H

J

Memory Fraction (%)

LI-P Z1
LI-P Z2
LI-S Z1
LI-S Z2

Figure 4.10: PostgreSQL Percentage Improvement in Total I/Os of Histojoin vs. Hash Join
(10GB)

and Part was performed with a memory size of 6.2% and various amounts of MCVs. The
results by total I/Os and by time are in Figures 4.12a and 4.12b respectively. The query was
run with 10, 100, 300, 500, 700, and 1000 MCVs on partkey. Histojoin’s performance with
the z=1 dataset can be increased by adding more MCV statistics as this dataset has many
relatively good MCVs. As more MCVs are added the benefit per new MCV is much less.

4.3 Results Summary

For skewed data sets, Histojoin dramatically outperforms traditional hash joins by 10% to
60%. This is significant because hash join is a very common operator used for processing
the largest queries. As the amount of skew increases, the relative performance improvement

46

 0

 50000

 100000

 150000

 200000

 250000

 300000

 0 0.5 1 1.5 2 2.5 3

I/O
s

(x
 1

00
0)

Memory Fraction (%)

HHJ
Histojoin

(a) z=1

 0

 50000

 100000

 150000

 200000

 250000

 300000

 0 0.5 1 1.5 2 2.5 3

I/O
s

(x
 1

00
0)

Memory Fraction (%)

HHJ
Histojoin

(b) z=2

Figure 4.11: Total I/Os for PostgreSQL Lineitem-Supplier-Part Join (10GB)

of Histojoin increases.
Histojoin introduces no performance penalty compared to hash join for uniform data sets

or data sets where the skew is undetected due to selection conditions or stale histograms.
Histojoin’s performance improvement depends on the amount of skew detected (as given
by the formula in Section 3.1). Histojoin has better performance with a more accurate
estimate of the distribution of the probe relation. When the confidence in the histogram
approximation of the distribution is low, Histojoin allocates fewer privileged partitions which
must be significantly better than the average. Thus, Histojoin will exploit whatever skew is
detectable and fall back to dynamic hash join behavior otherwise. Even with low accuracy
histograms, Histojoin will improve join performance over hash join for skewed data sets.

The implementation of Histojoin in PostgreSQL uses only premium values determined
from pre-generated MCV lists to determine its privileged partitions. Histojoin is minimally
affected by bad estimates as the MCV lists are small and represent only a minimal memory
overhead. In the experiments this implementation shows a large improvement over the stan-
dard hybrid hash join operator used for all large unsorted joins in PostgreSQL while adding
no noticeable overhead when skew cannot be exploited. Histojoin is especially valuable for
smaller memory fractions as its relative benefit over HHJ is higher.

47

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

 160000

 180000

 0 200 400 600 800 1000

I/O
s

(x
 1

00
0)

of MCVs

HHJ
Histojoin

(a) Total IOs

 0

 100

 200

 300

 400

 500

 0 200 400 600 800 1000

T
im

e
(s

ec
)

of MCVs

HHJ
Histojoin

(b) Total Time

Figure 4.12: PostgreSQL Lineitem-Part Join With Various Amounts of MCVs (10GB, z=1)

48

5. Discussion and Conclusion

This thesis began by describing the general function of a database system (Section 2.1) and
how join algorithms fit into that system (Section 2.2). Hash join algorithms are used in
many of the large, important, and costly queries that a database performs especially in the
large database systems used by governments and commercial organizations.

The original in-memory hash join algorithm (Section 2.2.1) increased the speed of joining
large unordered data sets significantly over previous methods by reducing the number of tuple
comparisons that needed to be made but was limited to data sets that could fit in memory.
The Grace Hash Join (Section 2.2.3) handled very large relations by partitioning them into
smaller memory sized chunks that could be joined one at a time but required writing these
partitions to disk and then re-reading them during a cleanup phase which incurred extra
I/O operations per tuple. Grace Hash Join also failed to make use of all available memory
during the initial partitioning phase.

Hybrid Hash Join (Section 2.2.4) improved on the Grace Hash Join by keeping one of
the partitions in memory after partitioning the build relation and producing results while
partitioning the probe relation. Recognizing that partitions sizes could vary due to partition
skew in the build relation and that memory conditions could change the Dynamic Hash
Join algorithm was created (Section 2.2.5). Dynamic Hash Join is similar to Hybrid Hash
Join except it initially keeps all partitions in memory and then dynamically flushes them
to disk whenever memory must be freed. Since many partitions can remain in memory
the targetted size of a partition does not necessarily have to be equivalent to the size of
memory and Dynamic Hash Join can adapt its memory usage much easier if the partitions
are targetted at being smaller than the amount of available memory.

In a hash join the partitions that remain memory-resident after the build relation is
partitioned are chosen before any probe relation tuples have been read. Consequently there
is no guarantee that the memory-resident build tuples will join with many of the probe
tuples. Due to skew (Section 2.3) the memory-resident build tuples may join with far more
probe tuples than the frozen partitions or far fewer. Statistics such as histograms already
exist in most commercial database systems and when present can give a good indication of
the number of probe tuples that will join with each build tuple (Section 2.4).

The effect of skew on hash joins is well known and modern hash join algorithms try to
minimize the negative effect that skew has on their performance. Previously skew has not
been exploited by a hash join to improve algorithm performance. The theoretical benefits
of exploiting skew (Section 3.1.1) are significant, however the practical benefits rely on the
statistics accurately representing skew and the algorithms ability to compensate when the
statistics are incorrect.

49

The generic Histojoin algorithm described in Section 3.2 does not rely on any particular
database system or type of statistics although the maxdiff histograms used by Microsoft
SQL Server are used in the examples. The ability of a Histojoin implementation to exploit
skew is directly proportional to how good the statistics are. Two actual implementations of
Histojoin have been created, one as a stand-alone Java algorithm and the other as an addition
to the Hybrid Hash Join algorithm in the PostgreSQL open source database system. The
statistics available to the Java implementation are more comprehensive than those available
in PostgreSQL and consequently that implementation is better able to detect and exploit
skew in the underlying relations being joined. If Histojoin was implemented in a system that
used SITs (Statistics on Intermediate Tables) [2] or other advanced statistics the amount of
instances when skew could be exploited would increase. It is a distinct benefit of Histojoin
that it can adapt to the database system it is implemented in.

Empirical experimental results (Section 4) have shown that Histojoin can have significant
practical benefits over conventional hash join algorithms. Demonstrating an algorithm in
only the ideal cases, however, does not prove that it is generally beneficial. Histojoin is able
to adapt to cases where exploiting skew is not possible or necessary, such as when performing
a one-to-one join or when the entire join can be performed in memory, without noticeable
runtime overhead. Histojoin has also been designed to handle cases where statistics are
inaccurate and attempting to exploit skew would reduce performance (although this ability
is implementation specific (Sections 3.3.2 and 4.1.3)).

Through discussion and collaboration with core PostgreSQL developers the PostgreSQL
implementation of Histojoin has been modified to handle many potentially negative situations
gracefully while still providing a significant benefit when skew can be exploited.

This research is important as it makes improvements to a core database algorithm that
is used in all major database systems by corporations and individuals alike. The algorithm
is generic in that it is not limited to one database system and does not require significant
changes to the underlying system to gain its benefits.

Since the benefits of Histojoin depend heavily on the statistics available it would be
useful to examine more types of statistics used in current database systems (especially SITs)
and how they can be exploited by Histojoin. As defined, Histojoin is a join algorithm for
centralized database systems but the concept should adapt to distributed and grid databases.

This thesis expands on the presentation in [4, 5]. The PostgreSQL implementation is
currently being evaluated for inclusion in the main production branch of PostgreSQL where
it will have an impact on many real world databases and millions of users. In conclusion,
by exploiting statistics already existing in database systems hash join algorithms can gain
significantly increased performance.

50

Bibliography

[1] TPC-H Benchmark. Technical report, Transaction Processing Performance Council,
Available at: http://www.tpc.org/tpch/.

[2] N. Bruno and S. Chaudhuri. Exploiting Statistics on Query Expressions for Optimiza-
tion. In ACM SIGMOD, pages 263–274, 2002.

[3] S. Chaudhuri and V. Narasayya. TPC-D data generation with skew. Technical report,
Microsoft Research, Available at: ftp.research.microsoft.com/users/viveknar/tpcdskew,
1999.

[4] B. Cutt and R. Lawrence. Using Intrinsic Data Skew to Improve Hash Join Performance.
Information Systems, To appear, 2008.

[5] B. Cutt and R. Lawrence. Histojoin: A Hash Join that Exploits Skew. In IEEE
Canadian Conference of Electrical and Computer Engineering, May 2008.

[6] C. Date. The SQL standard. Addison Wesley, Reading, US, third edition, 1994.

[7] D. DeWitt, R. Katz, F. Olken, L. Shapiro, M. Stonebraker, and D. Wood. Implemen-
tation Techniques for Main Memory Database Systems. In ACM SIGMOD, pages 1–8,
1984.

[8] D. DeWitt and J. Naughton. Dynamic Memory Hybrid Hash Join. Technical report,
University of Wisconsin, 1995.

[9] D. J. DeWitt. The Wisconsin Benchmark: Past, Present, and Future. 1993.

[10] D. J. DeWitt, J. F. Naughton, D. A. Schneider, and S. Seshadri. Practical skew handling
in parallel joins. In VLDB, pages 27–40, 1992.

[11] H. Garcia-Molina, J. D. Ullman, and J. Widom. Database Systems: The Complete Book.
Pearson Education, Inc., 2002.

[12] G. Graefe. Five Performance Enhancements for Hybrid Hash Join. Technical Report
CU-CS-606-92, University of Colorado at Boulder, 1992.

[13] Y. E. Ioannidis. The history of histograms (abridged). In VLDB, pages 19–30, 2003.

[14] Y. E. Ioannidis and V. Poosala. Balancing histogram optimality and practicality for
query result size estimation. In ACM SIGMOD, pages 233–244. ACM, 1995.

51

[15] M. Kitsuregawa, M. Nakayama, and M. Takagi. The Effect of Bucket Size Tuning in
the Dynamic Hybrid GRACE Hash Join Method. In VLDB, pages 257–266, 1989.

[16] M. Kitsuregawa, H. Tanaka, and T. Moto-oka. Application of hash to database machine
and its architecture. New Generation Computing, 1(1), 1983.

[17] D. E. Knuth. The Art of Computer Programming, Volume 3: Sorting and Searching.
Series in computer-science and information processing. Addison-Wesley, 1973.

[18] R. Lawrence. Early Hash Join: A Configurable Algorithm for the Efficient and Early
Production of Join Results. In VLDB 2005, pages 841–842, 2005.

[19] W. Li, D. Gao, and R. T. Snodgrass. Skew handling techniques in sort-merge join. In
SIGMOD, pages 169–180, 2002.

[20] M. Muralikrishna and D. J. DeWitt. Equi-Depth Histograms For Estimating Selectivity
Factors For Multi-Dimensional Queries. In H. Boral and P.-Å. Larson, editors, ACM
SIGMOD, pages 28–36. ACM Press, 1988.

[21] M. Nakayama, M. Kitsuregawa, and M. Takagi. Hash-partitioned join method using
dynamic destaging strategy. In VLDB, pages 468–478, 1988.

[22] V. Poosala, P. J. Haas, Y. E. Ioannidis, and E. J. Shekita. Improved histograms for
selectivity estimation of range predicates. In SIGMOD ’96: Proceedings of the 1996
ACM SIGMOD international conference on Management of data, pages 294–305, New
York, NY, USA, 1996. ACM.

[23] C. B. Walton, A. G. Dale, and R. M. Jenevein. A Taxonomy and Performance Model
of Data Skew Effects in Parallel Joins. In VLDB, pages 537–548, 1991.

52

