AutoEd

An Online Assignment Generation and Marking System

By
Alyosha Pushak

A Thesis Submitted in Partial Fulfillment of the Requirements for the
Degree of

Bachelor of Science Honours

In

The Irving K. Barber School of Arts and Sciences

(Honours Computer Science Major Computer Science)

The University of British Columbia

(Okanagan)

April 2011

© Alyosha Pushak, 2011

Abstract

AutoEd is an open source web-based system that allows professors to give students
assighments made of randomly generated questions. The system was developed to improve
student learning and provide students with easy access to a potentially unlimited amount of
practice questions in a broad range of subjects, as well as saving time for professors and TAs by
auto-marking assignments. Professors create question templates from which random questions
are generated. Questions are written in HTML with special <eqn> tags that specify calculations
and random variable assignment. Numerical values and units can be randomized. Students and
professors can search for question templates by category, and then try practice questions
generated from those templates. AutoEd provides immediate feedback to students, and can
provide hints as to what they did wrong and how to solve the question. The server code,
written in Java, handles the question generation and marking. The templates and users' tests,
answers and marks are stored in a database.

Table of C

ontents

1Y 013 = Vot (S

TaADIE Of CONTENTS .euuvuirnireirirreireireireerereeresresrestesressessessessesssssesssssssssssssssssssssssssassassassanse

Table of Figures
1 Introduction

1.1 Motivation

1.2 Thesis Statement and CONTrIBUTIONS .ooovvveeeeiiiiiiie et eeeeas

1.3 Definitions

1.4 SYSEEM OVEIVIEW .ot ettt ettt e e e e e e e e e e e e ettt e be e e e e e e e e eeeeeeeneeeees

2 BacKgroundcccuiiiiieiiiiieiiiiiniiiieeieiieneieiieneieetnnsiestsnssestenssssensssesssnssesssnsssssnnssssannnnns

3 User Manual ..

I A LT aT=T = IV AT=3 T AT

0 0 R o Y= =1 o =0 1 o I PO TP PO PPTPPPPPPPPN

3.0, 2 IMIY COUPSES uuuuiiieieeeeeeeeeeeeeteteetterea e sasesseseeeretaeteeaeeessssasasnssssesessssasenennennnsnnnnns

3.1.3 Search

ING QUESTIONS ...ttt e e e e e e e e e e e e e eeeeeeenenenes

3.2 SEUARNT VIBW ittt ettt et e ettt e s e et e s et s et teseeaaesettnaseetaneseannesaeannanes

3.2. 1 COUISE PABE .ttt ettt e e et s s e e e e et s e e e eabas s e e eataanseeaeaerannnes

3.2.2 ASSIBNMENTS PAZE ..oieiiiiiiii ittt e et e e e e e ettt e e e e e e e et e e e e aara e e aaeans

3.2.3 Practic

[[g¥ =4 @ U T=TS) 4 o] o RN

3.2, 4 ENTEIING ANSWELS oeeeieeeeeieeeeeeettetiiiiiaesese s e s s e e e e e e e eeeeeeeeeasssbassasssesessesesenesessnnsnsnnes

3.2.5 Practic

N TOSTS ittt e e et ee ettt s s s e s e e e eeeeeeeaeesernnnnansnannes

3.2.6 ASSISNIMENTS ..ciiiiiiiiiiiiiiieiee ettt s e e e e e e e e e e e e et teeebebebas e e e e e e eeeaaaeeens

I I L1 A U ot o T g VAT, A

3.3 L COUISE PABE .ttt ettt ettt e et e s s e e e eat e s e e e eabas s e e eaeaanseeeeaerannnes

3.3.2 VieWing TSt RESUILS ..oueueiieeeieceee et 15

3.3.3 Creating @ QUEStION TEMPIALE .oviivviiiiieiieiiee e 17
3.3.4 QUESTION SYNTAX 1oiiiiiiiiiiiiiit e e e e e e e e e e e e e e e 19
3.3.4.1VArADIES ..o e 19
3.3.4.2 BiNary OPerators ..cccciiiiiiiiiieeiiiiiiiiiiies e e e s e e e e e e e eeee e e e e ss e e s e e e e eeaeeaeanerenes 20
3.3.4.3 EQN FUNCLIONS ...eeiiiiiiiiiiiiiiii i 20
3.3.4.3 StateMENTS ..eeviiiiiiiiiiic 20
3.3.4.4 Other SPECIAl TAES ...cceeieeiciiittreteee et ee e e e e ceeccr e e e e e e eeeeeeeeeeeesseennnnnnnns 21
3345 UNIt PrefiXes ouevieieiie ettt 21

3.3.5 Assignments and Practice TESES ...uuiiiiiiriiiiieieiiriiiee st seaee e e e 21
3.3.6 Creating @ TEST couviiiiiiiiiiiee ettt e e e e e e e e e e e e e e e aaaaas 22
3.3.7 Modifying Assignments and their QUESLIONSccevveeieiiieiiie e, 23
3.3.8 UPIOATING FIlES «.uevvrvrreeiiiiiiiiee ettt e e e et e s ees e e s aeer e e e reeeeeeeeeesenns 24

4 DEVEIOPMENT ...ceeueiiieeniirieieeteenierteeeeetenneeteenseceresssressssesssnssessssssssesnssesssnssessnssesssnnsnnns 24
AL TIMEIING ettt ettt e et e e e st e e s bt e e s aabeeeesbbeeesabbeeensareeesannaeenas 24
4.2 ChAllENEES eeeeeeeiiiiee ettt e e s e sttt e e e s st e e e e s s bbeaeeeeeeaataeeeeenans 25

5 Results and Feedbackcceueeeeeeemmiuiiiiiiiiiiiiiiiiinrrrrrre e 27
0o 1] 17 T 28
7 FUBUFE WOKK ..cceeeeeiieiiiiiiiiiiiiciiiiiies it ec e seesssssssassss s ssssssssssss s s e e s e sesssssssssssssnnns 28
ACKNOWIEAZEMENTSciveeiiiiiniiiiiinieetteeierteneeteneseereesseseenssessesssessenssesssnssessenssssssnssesssnnes 29
APPENIX cereeeiieniiriniereirrierteertesereeereaseresseresserasserassssassssssessnsessasssessesassesassssansssnssssnsesens 30

[R=3 L= =] 2 =1 46

Table of Figures

FIBUIE 11 MY COUISES eeiiiiiiiiieeeee e e e e e e e e ee ettt e se s e e e e e e e e e e e e ee et teeeeaessbna s e e aeseeeeaeeeseeeeenenes 8

Figure 2: Search QUESLIONScciiiii it ereeeaeeeeaeeeeseennnnnnes 9

Figure 3: ASSIBNMENTS PO .ocviiiiiii it e e e e e e e et e e e e et e e e e e s aaneeeeeeenens 10
Figure 4: Practice QUESTION ..uuui ettt e e et e e e e et e e e e e e et e e e e e eeennaa s 11
T oW T N o = ol o =T =) USSR 12
Figure 6: ASSigNMENT ATLEMPTES ..o iiiiiiiiee e e e e e e e e e e e e e eaa s 13
FIBUIe 7: ASSISNMENT ittt e e e e e e e e e e e e e ettt ee e et e e e e eeeeeeeeneees 13
FIgure 8: STtUAENT Grades .oouuuieiiieiiiiieee ettt ettt e e e s s e e e e e ssbareee e e s snabaneeesenanns 15
Figure 9A: AsSigNmMENT RESUILSuuuiiiiiiiiiiiiiiiee e e e e e e e e e e e e e e s 15
Figure 9B: ASSIZNMENT RESUIS ..eevvviiiiiiiiiiiiicceeeee et e e e e e e e e e e s eeanns 16
Figure 10: QUESEION TEMPIATE ...uuuuiiiiiieiiieiieee e e e e e e s e e re e erereeeeeeees 17
T U I O =T L I T =T 22
FIgure 12: File UPloadcooiiiiiiiieeeeeee ettt e e e e e e e e e e e e s barrreeeeeeeeaeaeeeeens 24
Table 1: Paper VS. ONIINEuviiiiiiiiiee ettt e e e e e e s setee e e s e s abaeee e s sannees 27

Figure 13: Database SChemMaccoouiiiiiii e 32

1 Introduction

1.1 Motivation

Assignment preparation and marking, especially for first year classes with over a hundred
students, is very time consuming. Automating this process can free up instructors’ and TAs’
time for more valuable student contact. Online test systems can also be a resource for students
to help them learn, and provide more standardized evaluations of students and instructors.
While many such systems exist already, most are not free. Either the school or the students
have to pay for them. Many only allow static questions, so there is no value in repeating the
questions. We decided to build our own system rather than use a pre-existing system.

1.2 Thesis Statement and Contributions

The contribution of this thesis is the development and evaluation of the AutoEd assignment
system. The thesis is that the system will improve student performance and engagement in
large classes.

AutoEd is a web-based system for automated assignment generation and marking. Instructors
create question templates from which random questions are generated. It is also a tool to help
students learn. As some values are randomized, students can repeat a question with different
values until they feel confident they know how to solve it. The system provides students with
immediate feedback. The goal is to create a resource for students providing easy access to a
potentially unlimited amount of practice questions in a broad range of subjects. The system was
evaluated by a first year physics class during first term. Over second term, two more sections of
the first year physics course used the system, and a third year pharmacology class used it for
one assignment.

1.3 Definitions

Users are divided into two categories: instructors and students. Students can search for and
practice questions, and take assignments in the courses they are registered in. Instructors can
do everything students can do. Additionally they can create question templates, and assign
tests in any courses they instruct. They can view the assignments and marks of any students in
their courses.

Question templates are used to generate random questions. Variables in the question template
are assigned random values, resulting in a question. Question Templates are made of one or
more question template parts. For instance, a multi-part question with parts A) B) and C)
would have three question template parts. During question generation, each question template

6

part generates a question part. Questions and question parts can store a user’s answers and
marks. Test templates are made up of multiple question templates, and are used to generate
tests. Tests belong to a user, and can store that user’s overall mark.

1.4 System Overview

The users’ test scores and answers, the templates for questions and tests, and information on
users and courses are stored in a Microsoft SQL Server database on a campus server,
cssqgl.ok.ubc.ca. The server code, written in Java, runs on another on-campus server, cs-suse-
4.0k.ubc.ca. It handles the question generation and marking, and interacts with the database.
The front-end pages running client side are written in HTML and JavaScript, and send Ajax
requests to the server to mark questions and perform various other tasks without reloading the
page. Users interact with the system using a web browser. The system was tested and works
with Internet Explorer (Version 7+), Mozilla Firefox and Google Chrome.

2 Background

The idea of question templates is not new. One of the first systems produced was WWWAssign
built by Dr. Larry Martin for physics courses. Initially freely released, this system is no longer
supported and has been replaced by the commercial product WebAssign [6]. WebAssign has
content and questions from multiple textbook publishers.

There are other similar commercial systems most often affiliated with textbook publishers
including Aplia [7] (mostly for social sciences), Mastering Physics [8], Gradiance [9] (computer
science), and Carnege Learning (mathematics) [10]. The advantages of using these products are
that the questions are completed and verified, there may be questions associated with the
course textbook, and the web hosting is provided by the companies so no technical setup is
required. The disadvantages are cost and inflexibility. The cost of these systems ranges from
approximately $S15 to $100 per student per course. Given the large enrolments for classes that
typically use these systems, this is a cost most likely placed on the student rather than the
institution. Although both parties see a benefit (students for learning, the institution for
reduced costs), it is primarily supported by students, who are resistant to increased costs.
Further, it is challenging to create new questions in these systems and their costs force
instructors to use them significantly in a course. It is not cost-effective to use them for a few
guestions that require specific repetitive practice or produce your own questions for use.

Another alternative is that most course management systems have built-in support for quizzes
and tests including some such as WebCT Vista [11] that have limited support for randomized
guestions. If the institution has a course management system deployed, then simple questions
can be done this way. We evaluated the support for randomized questions in WebCT Vista and

7

found them reasonable for basic questions but not acceptable for more detailed formula-based
questions.

Finally, there have been several university led efforts on building these systems and providing
access. One such system is the Quest Service [12] at The University of Texas at Austin. This
system has questions for many sciences and outside institutions can get access by requesting
UT Austin accounts.

LON-CAPA [13] is an open source system built primarily at Michigan State University. It has
hundreds of thousands of resources and questions that are shared by multiple institutions.
Institutions are part of a sharing network for distributing questions and resources. However,
they do not release questions outside of the institutions using the system, or to students (so
students cannot acquire the answers). We wanted to build a system where anyone, including
students, could access the questions.

There has been some informal evidence that these systems have improved efficiency, especially
for large first-year classes, and student learning and educational outcomes. Students enjoy the
immediate response of the system and overall performance on tests and lectures have
improved.

3 User Manual

3.1 General View

3.1.1 Logging In

On the main page at cs-suse-4.ok.ubc.ca/autoedu, you must log in before you can continue.
Students default username and password are their student number. You can log into a demo
student account with user name and password “demo”.

3.1.2 My Courses

‘ Welcome, Teresa Wrzesniewski My Courses My Questions My Files Search Questions Contact Us Log Out

PHYS 122 - Introductory Physics IT

Term: Winter 2 Sect: 001 Instructor: Teresa Wrzesniewsk

Figure 1: My Courses

Once you log in you will be directed to the My Courses page. It lists the courses you are
registered in. Instructors will see the courses they instruct. Course details—the course number,

name, term, section number and instructor name—are shown. Clicking the course number or
name will bring you to the course page for that course.

3.1.3 Searching Questions

| Welcome, Demo Student My Courses My Files Search Questions Contact Us Log Out
Search by Category Search by Class
Physics PHYS 122 [+]
(Search |
Page: 1 E] Displaymng Results 1 - 20 of 28
Created By: Teresa Wrzesniewski Date: 2011-01-13 19:54
Charges 4 ’ Physics
Created By: Teresa Wrzesniewski Date: 2011-01-13 20:19
Two Charged Penduhums \ Physics
Created By: Teresa Wrzesniewski Date: 2011-01-13 19:00
Charges 3 ‘ Physics
Created By: Teresa Wrzesniewski Date: 2011-01-25 21:54
Capacitors \ Physics
Created By: Teresa Wrzesniewski Date: 2011-02-03 22:47
Wire Resistance ‘ Physics
Created By: Teresa Wrzesmewska Date: 2011-01-25 20:48
Electric Potential Energy and Field ’ Physics
Created By: Teresa Wrzesniewski Date: 2011-03-12 15:07
Generator, Resistor, and Capacitor \ B
Created By: Teresa Wrzesniewski Date: 2011-03-12 14:43
Sliding Copper Rod ’ Physics
Created By: Teresa Wrzesniewski Date: 2011-03-12 15:30
RMS Voltages ‘ Physics

Figure 2: Search Questions

You may search for question templates by category and/or by course. If you leave both
category and course blank, the search will retrieve all question templates. Twenty questions are
displayed per page. The question template name, description, author’s name, creation date,
and category are listed for each template. Clicking the question template name allows you to
practice a question generated from that template. Instructors will see a “copy” link for each
template. Clicking this will bring you to the question editing page, with the data loaded for that
template. Clicking save will create a copy of the question that belongs to you, with any changes
you made in the editor. Instructors will also see a “modify” link for any template they created,
allowing them to edit the template. For more information on creating/editing question
templates see sections 3.3.3 and 3.3.4.

3.2 Student View

3.2.1 Course Page

Each course page has a header with three rows. The first row displays the course name and
number. Second are links to the assignments page and the questions page. Third is course
information: the term, section number, and instructor name.

3.2.2 Assignments Page

I\\'ekome, Test Studentl My Courses My Files Search Questions Contact Us Log Out
TEST 101 - Test Course
Assignments Questions

Term: Winter 1 Sect: 001 Instructor: Alyosha Pushak

Test Name Assigned Date Due Date Grade

Active Assignments

One Part at a Tme |2011-02-08 20:19|2011-04-22 20:00{0%
Past Assignments

Example Assignment|2011-04-06 22:06|2011-04-13 22:00|0%

Once Chance 2011-02-22 20:16|2011-03-01 20:00|50%

All At Once 2011-02-08 20:16|2011-02-28 20:00(0%

Unit Conversions |2011-02-01 19:53|2011-02-03 23:59|0%

Math Challenge 2010-09-14 18:02|2010-11-16 22:57|100%

Algebra Test 2010-10-02 15:21|2010-10-09 15:00(0%

Easy Math 2010-08-31 19:08|2010-09-12 19:00(0%
Practice Tests

test order

Practice Test

Figure 3: Assignments Page

When you click on a course from “My Courses” you will be brought to the course’s assignments
page. A table of assignments and practice tests is shown here, listing active assighnments first,
then past assignments, and lastly practice tests. Active assignments with nearer due dates
appear first. The assignment name, due date, assigned date, and your grade for each
assignment is listed. For practice tests only the name of the test is listed.

10

3.2.3 Practicing Questions

‘“'elcome. Demo Student My Courses My Files Search Questions Contact Us Log Out I

Light Beam Through Oil marks: 3/6
The light beam shown in the figure below makes an angle 8oil = 20.0 degrees with the normal line NN' in the linseed oil. Determine the angles 8 and &' (You don't need units). The refractive index for linseed oil, noil = 1.48 and for water,
nwater = 1.33.
4
N .
Air
WV Linseed oil
'+ eoil
\ Water
Y
N
A)B= 304 L'
B)O =183 x

Figure 4: Practice Question

On the questions page within a course you will see all the questions for that course, along with
the question’s category. Click on a question’s name to practice an instance of that question.
You may also search for questions to practice from the Search Questions page (see section
3.3.1). When viewing a question you will see a page as shown in Figure 4. Questions have a
guestion header, which shows the question name, your marks and the total marks for the
guestion, and submit and clear buttons. Below is the text for the question. Questions have one
or more questions parts to them, each of which requires an answer. When you have answered
all the question parts, click the submit button to have your answers graded. You may submit
answers as many times as you want. Green check marks will appear next to correct answers,
whereas red exes indicate incorrect answers. The clear button will clear your answers to each
guestion part. Refreshing the page will load a new instance of the question with different
values. For some incorrect answers a “Show Hint” button will appear. Click the button to view a
hint.

3.2.4 Entering Answers
In this section we discuss the format in which answers are entered.

e Numerical Values — decimal answers within a given tolerance of the correct answer are
accepted. The default tolerance is 2%, though the instructor may set it to 0%, in which
case the exact numerical value is needed. For integer values the exact value is usually
required, unless the instructor sets up the answer as a decimal answer.

e Scientific Notation — You may use scientific notation of the form 6.1E-5.

e Units — Some answers require units. Units follow the numerical value, which may or may
not be separated by a space. Units are case sensitive. If you forget to include units for a
guestion that requires them, you will be given a hint reminding you to include units. If
you provide the correct answer but the wrong units, you will also be given a hint
informing you so. The marker can convert unit prefixes; for example, if the expected

11

answer is 1.1 m, the answer 110 cm would be marked correct. The instructor may
disable unit conversions for a given question, in which case the instructor should tell you
in the question which units the answer expects. For a full list of acceptable unit prefixes
see section 3.3.4.5.

There are three ways a question part may expect answers inputted, as follows:

e Text— A text box is provided for you to type the answer.

e Multiple Choice — A list of possible answers is provided. Click the radio button next to
the answer you think is correct.

e Text with Solver — Like the text option, though this time a “solve” button appears next
to the text box. You may enter simple equations into the text editor, beginning with the
‘=" character. Equations can use the following operators: + (addition), - (subtraction), /
(division), * (multiplication) and * (exponents). You may use parenthesis to specify order
of operation. Clicking the solve button evaluates the expression you entered.
Expressions will also be evaluated when you click the submit button to have your
answer graded.

3.2.5 Practicing Tests

| Welcome, Demo Student My Courses My Files Search Questions Contact Us Log Out

Assignment 6 Assigned Date: 2011-03-31 16:05 Due Date: 2011-04-06 12:00
stion| 1| 2 |3 |45 Total

HQDC |0-‘6|0-‘~10|0-'9 | o 9| 0-'9|0s‘43 (0.00%)‘ For question 2, do not round your calculations until you reach the answer. Rounding your calculations early could result in answers the system won't accept. Total Time: 00:18

1. marks: 0/6

The kight beam shown in the figure below makes an angle 8oil = 20.0 degrees with the normal line NN' in the linseed oil. Determine the angles 8 and 8’ (You don't need units). The refractive index for nseed oil, noil = 1.48 and for
‘water, nwater = 1.33.

~ Air
& Linseed oil

{ goil

Water

marks: 0/10

A submarine is 3.00 x 10"2 m horizontally from shore and d = 100.0 m beneath the surface of the water. A laser beam is sent from the submarine so that the beam strikes 2.10 x 102 m from the building standing on the shore and the
laser beam hits the target on the top of the bulding.

b air
g n =1.00
¢ < _—900m—
- 210x10% m - - [

water
n=1333

Submarine &--*

A) Calculate the angle of incidence 61 on the water/air interface.

Figure 5: Practice Test

From the course assignments page, click on a practice test to practice the test. You may also
practice assignments. Clicking the assignment name will list your attempts at that assignment.

12

Click “Practice this Test” to practice the test. You may practice a test as many times as you like.
At the top of the page you will see the test header. This header will be the same when doing an
assignment. On the left the question numbers are listed along with you mark and the total
marks for each question, and the test total and your overall mark and percentage. Clicking a
question number will scroll the page to that question. On the right the time you’ve had the
page opened is listed. In the center a custom message from the instructor may appear, if the
instructor creates one. Below the header the questions appear as they did when practicing a
guestion. Inputting and submitting answers is done the same as it is for practicing questions.

3.2.6 Assignments
[Welcome, Test Studentl My Courses My Files Search Questions Contact Us Log Out
TEST 101 - Test Course
Assignments Questions

Term: Winter 1 Sect: 001 Instructor: Alyosha Pushak

Test Name Due Date Grade

Assigned Date

Grade Start Date Submission Date

Active Assignments One Part at a Time [42.86%|2011-04-18 15:06 (n/a
One Part at a Tme |2011-02-08 20:19|2011-04-22 20-00|42 86% Start a New Attempt Practice this Test
Past Assignments
Example Assignment|2011-04-06 22:06|2011-04-13 22:00|0%
Once Chance 2011-02-22 20:16/2011-03-01 20:00|50%
All At Once 2011-02-08 20:16(2011-02-28 20:00(0%
Unit Conversions 2011-02-01 19:53|2011-02-03 23:59 (0%
Math Challenge 2010-09-14 18:02(2010-11-16 22:57|100%
Algebra Test 2010-10-02 15:21(2010-10-09 15:00(0%
Easy Math 2010-08-31 19:08/2010-09-12 19:00(0%
Practice Tests
test order
Practice Test
Figure 6: Assignment Attempts
‘ Welcome, Test Studentl My Courses My Files Search Questions Contact Us Log Out |

One Part at a Time

Assigned Date: 2011-02-08 20:19

Due Date: 2011-04-22 20:00

| Question| 1 | 2|3 |4 Total . Subr

|Marks [or2[12[22[1/1[477 (57.14%)| Total Time: 00:31 | Submit
marks: 012 En

Try these

A) 2839=

B) 35720= |

-

marks: 1/2

D B

‘What is the remainder m the followmg division problems?
A) 48 divided by 57 [3 v
B) 25 divided by 247 2 x

3

marks: 2/2
Solve these problems.
A)-13 + |25

B) |20

=1V
-25=54

4.

marks: 1/1

[Submit I Clear I Save |
v

1=f1

Figure 7: Assighment

13

On the course assignments page, click an assignment to view your attempts for that assignment,
along with your grade, start time, and submission time for each attempt. Each attempt has its
own set of questions and saves your answers and marks. Only your attempt with the highest
grade will count. Click “Start a New Attempt” to begin an attempt. Any answers you submit
that are correct will be saved. You can leave the page and your answers will be there when you
return. To resume an attempt where you left off, click on the attempt in the list of attempts on
the course assignment page. You may not start new attempts once the due date is passed. If
you open an attempt after the due date, you may view your attempt, but you won’t be able to
change your answers. There are different types of assignments as follows:

e All at Once - Like when practicing questions and tests, all parts of a question are
marked at once. Once you submit your answers you may not change them, however,
you may retry another instance of the question with different random values as many
times as you like, by clicking “retry” in the question header. The number of times you try
each question is listed in the question header. This is the only type of assignment with a
retry button.

e One at a Time — You submit answers to one question part at a time. In a question with
multiple parts, you must answer the previous part correctly before moving on to the
next part. You may submit answers as many times as you like. The inputs for the
guestion parts you cannot answer are greyed-out.

e One Chance — Only one attempt is allowed, and you may only submit your answers once.
All parts of a question are marked together. Be sure to answer each question part
before clicking “submit” for that question.

Once you’ve answered all of the questions, you may submit your assignment by clicking
“submit” on the right side of the assignment header. You will still get your grade if you don’t
click submit. The assignment submission is to give the instructor an indication of how many
students completed the assignment, and when.

3.3 Instructor View

3.3.1 Course Page

The course page view for instructors is similar to the student view. The differences are detailed
here.

In the course header there is an additional link to the “Student List,” where the list of students
enrolled in the course, and their student numbers can be viewed

14

3.3.2 Viewing Test Results

| Student Grades for Once Chance - View Statistics - Download Results

Student Name Grade Start Date Submission Date

Alyosha Pushak | 12.5% |2011-02-22 20:16|n/a
Test Student] |50% |2011-02-22 20:31(2011-02-22 20:32

Figure 8: Student Grades

On the assignments page, below the list of assignments, when an assignment is clicked on, a list
of students will appear below the table of assignments, listing the date the student started and
completed the assignment (n/a if the student hasn’t submitted the assignment), and their
grade (percentage) for their best attempt at the assignment. Clicking a student’s name allows
you to view the student’s assignment and see the answers they submitted. Above the list of
student marks, the assignment name along with the links “View Statistics” and “Download
Results” are listed.

Summary Statistics for Assignment 4

100
90
80

70

Started Completed Average Highest Median Lowest
Students Started: 122/131 (93.13%) Show Time Data

Figure 9A: Assignment Results

15

Summary Statistics for Assignment 4

25 Students Started
Students Completeted

50

Feb 23 Feb 24 Feb 25 Feb 26 Feb 27 Feb 28
Show Overall Data

Figure 9B: Assignment Results

Click “View Statistics” to see a graph of the assignment results. You will see a bar graph
displaying the number of students who started the test, the number that completed the test,
the average, highest mark, median, and lowest mark, as percentages. Mouse over a column to
view the percentage and, for students started and completed, the number of students
started/completed over the total number of students in the class. Instructors may try
assignments. Their scores are not reflected in this data. Click “Show Time Data” to view a graph
of students started and students completed over time. The start and end points of the graph
are the assigned and due date of the assignment. You can return to the original graph by
clicking “Show Overall Data.” On the assignments page, clicking “Download Results” will
download a .csv (comma separated values) file containing the student name, number (prefixed
with an ‘s’ so as to be compatible with WebCT), mark, and grade (percentage).

16

3.3.3 Creating a Question Template

Question Template

Question Name:
Courses: PHYS 122
Text:
Description:
Category:

Question Part 1 [x
Marks: 1
Question Type: Text [~]
Answer Type: Text [~]
Text:

X

Correct Answers: -
Incorrect Answers
(Add Another Part | [Submit |

Figure 10: Question Template

On the My Questions page click “Create a Question” to view the question template creation
page. You can edit the following fields. Unless otherwise indicated, fields may be left blank.

Question Template Fields

e Question Name — The name of the question. Cannot be left blank. Max 100 characters.

e Courses — The courses you instruct appear here. Check the courses you want this
guestion to belong to. Students in those courses can then see and practice this question.

e Text — The text for this question. Written in HTML with special <eqn> tags to specify
calculations and random variable assignment. See the section 3.3.4 for details on the
syntax for <eqn> tags.

17

e Description — A description of the question. It appears with the question template in
search results.

e Category — The category of this question.
Question Template Part Fields

e Marks — The amount of marks awarded for a correct answer to this question part. Must
be an integer greater than 0.
e Question Type — Determines the input used for the answer. Must be one of the
following:
o Text—the answer is entered in a text box.
o Text with Solver — the answer is entered in a text box. Computations beginning

“u_n

with an can be evaluated when the answer is submitted or when the “solve”
button is pressed. For more information on the solver, see page 36 in the
appendix.

o Multiple Choice — The answer is selected from a list of possible answers. Answers
entered in the “Incorrect Answers” field will appear as possible answers.

e Answer Type — Determines how the answer is interpreted by the marker. Must be one
of the following:

o Text—answer is matched against a string, case insensitive.

o Text Case Sensitive —answer is matched against a string, case sensitive.

o Integer —answer is compared with an integer.

o Integer with Units — answer must have an integer value and units which must
match a correct answer. Unit conversions aren’t allowed for integers, as the
conversions could result in non-integer values.

o Real Number — answer is a double. It is marked correct if it is within a certain

range of the correct answer.

Real Number With Units — answer is a double with units.
Integer Vector — a list of integers.

Integer Vector with Units — a list of integers followed by units.
Real Vector — a list of doubles.

Real Vector with Units — a list of doubles followed by units.

o O O O O ©°

Text Vector — a list of strings, all compared with case insensitive.
Some answer types have additional fields that must be filled out, as follows:

o Precision — Must be filled out for all types containing real numbers. The answer
is marked correct if it is in the range of the correct answer + or — correct answer
* precision. Must be an integer between 0 and 100 inclusive. Default value is 2.

18

o Enable Unit Conversions — this option is available for any types containing real
numbers with units. If enabled, if the base units in the answer match the correct
answer’s base units but the prefixes don’t match, the answer will be converted
to match the prefix of the correct answer.

e Text — The text that appears for this question part. Written in HTML using special <eqn>
tags to specify calculations and random variable assignment.

e Correct Answers — The correct answers. Use <eqn> tags to calculate the answers. Click
“Add Another Answer” and another text box will appear for inputting another answer.
At least once correct answer must be given.

e Incorrect Answer — Click “Add Another Answer” and two text boxes will appear; one for
the answer and one for a hint. The hint will appear when the student tries the
corresponding incorrect answer. In multiple choice questions, the incorrect answers are
listed as possible answers. The hint field may be left blank.

At the bottom you may click “Add Another Part” and the fields for another question part will
appear. Each question template must have at least one question template part. Clicking the red
‘X’ next to a question part or field will remove that question part or field. When you are finished,
click submit to create your question.

3.3.4 Question Syntax

<eqgn> tags are used to specify calculations and random variable assignment within tests. This
section details the syntax and commands used in the eqgn tags.

3.3.4.1 Variables

Variables are prefixed by the $ character. For example, <eqn $a=3> would give the variable Sa
the value 3. This will create the variable Sa if it wasn’t already created, otherwise it will just
overwrite the value in $a. Variables can have three types:

e Number - May be an integer or a double.

e String - Strings must be surrounded by single quotes. The quotes will be removed when
the string is printed in the question.

e NumUnit - a number together with a unit. Units are made up of a base unit (like m or V)
and a prefix (like k or n). For a full list of unit prefixes see section 3.3.4.5. The NumUnit
with number 2.1, prefix k and base unit m would be printed as 2.1 km. When a NumUnit
is added to or subtracted from another NumUnit, the base units must match or an error
will be thrown. There are several functions for manipulating NumUnits detailed in
section 3.3.4.3.

19

3.3.4.2 Binary Operators

Binary operators take two arguments, one on the left and one on the right. For example, <eqn
Sa+4> would return the value of Sa plus 4. + (addition), - (subtraction), * (multiplication),
/(division), %(modulo), and =(variable assignment) are supported.

3.3.4.3 EQN Functions

e format(val, num) — Returns a string representation of the number val with num
decimals. Val can be a Number or a NumUnit. The unit will be included at the end of the
string for NumUnits.

e rnd(nl1, n2, (optional) n3) — Returns a random number between nl1 and n2. n3 is the
step size (i.e. the random number will be n1 + k*n3 for some integer k). n3 defaults to 1.

e rndu(nl, n2, (optional) n3, u) — Returns a random NumuUnit between nl1 and n2 with
unit u. n3 is the step size.

e rndunit(pl, p2) — Returns a random unit prefix between the prefixes p1 and p2 (both
inclusive).

e setunit(nu, u) — Sets the unit of NumUnit nu to unit u.

e toprefix(nu, p) — Converts the unit prefix of NumUnit nu to prefix p, and changes the
value of nu accordingly.

e sqrt(n) - returns the square root of n

e Trigonometric Functions — sin, cos, and tan take an angle in radians. The inverse trig
functions are prefixed with an ‘a’. The degree equivalents of the trig and inverse trig
functions end with a ‘d’

3.3.4.3 Statements

Statements are expressions to be evaluated made up of constants, variables, binary operators
and functions. Operators are evaluated in accordance to B.E.D.M.A.S rules, with functions being
evaluated before division and multiplication, and variable assignment occurring last.
Parenthesis can change the order of evaluation. Multiple statements, separated by semi-colons,
can be executed in one <egn> tag. The value returned from the last statement will be printed in
the question. For example, <eqn Sa=cos(Sb); format(Sa, 2)> will evaluate the cosine of Sb and
assign the result to Sa. Then it will print Sa rounded to two decimal places.

The parser is picky about white space. White space is only permitted (though not necessary)
after commas separating function parameters, and semi-colons separating statements. A space
is needed between the egn and the first statement.

20

3.3.4.4 Other Special Tags

<pic> tags are used to embed uploaded pictures into questions. The syntax is as follows: <pic
user/tagname> where user is the username of the user who uploaded the image, and tagname
is the image’s tag name. For information on uploading files and setting tag names, see section
3.3.8.

The first <_> tag encountered in a question part indicates where the input for entering answers
in placed. If no <_>tag is found, the input will be appended to the end of the question part text.

3.3.4.5 Unit Prefixes

The accepted unit prefixes the marker can do unit conversions with are listed here, along with
their value when converted to base (no prefix) units.

e ‘G'-1079

o ‘M -10"6
e ‘k-1073

o ‘-1

o ‘d-.1

e ‘c’-.01

e ‘m-107-3
e ‘W' —107-6 (you may type u in place of p)
e ‘n”-107-9
e ‘p’—107-12
e ‘f—107-15

3.3.5 Assignments and Practice Tests

There are two types of tests: practice tests and assignments. Practice tests have no assigned or
due date, are not worth marks, can be practiced endlessly by students, and do not record any
information when students practice them. Assignments have an assigned and due date, are
worth marks, and record the student’s answers to the questions. Assignments may be practiced
like practice tests. There are restrictions on which parts of assignments can be modified once it
is assigned, discussed in the next section. A practice test can be assigned, making it an
assignment. Assignments cannot be unassigned, only deleted.

21

3.3.6 Creating a Test

[Welcome, Alyosha Pushak

My Courses

My Questions

My Files Search Questions

Contact Us

Log Out

Test Template

Test Name: | Mew Assignment

Due Date: April

[+] 256 [+] 2011[=] 15 [~] 00 [+] Assigned: (V]

Test Type: One Chance

Header Text:

Multiply and Divide
Smple Algebra
Truck speed and acceleration

Convert Cubic Inches to Cubic Centimeters

Select Questions

Practice Math

Geometry Practice

Math Fun

Multiply and Divide

Remainder

Triangle Sides

Arithmetic

Convert Miles/Hour to Meters/Second

Convert Cubic Inches to Cubic Centimeters

Convert Pounds/Litre to Grams/Cubic Centimeter

Truck speed and acceleration

Free Falling Object

MC Question

Simple Algebra

Artillery Shell Clearing an Avalanche

Test Pics

Test New Line

Test Static Image

Testing

Test Static [mage (Copy)

Figure 11: Create a Test

On the course page for the course you want to create a test for, click “Create a Test.” You’ll be
taken to the test creation page, where you fill out the following fields:

o Test Name — The name of the test. May not be left blank. Max 200 characters.

e Due Date — To make the test an assignment, check the assigned check box. You will then
be able to give the test a due date. The default due date is one week from the current
date, rounded down to the hour. The due date must be at least 24 hours from now.

e Test Type — Determines how many times the questions can be answered and how they

are answered. The different test types are as follows:

o All at Once - All parts of a question are marked together. Once marked, the
answers may not be changed. However, the student may regenerate the

guestion to try again with different values.

o One Part at a Time — Students answer one question part at a time, and must

have the previous question part answered correctly before they can answer the
next part. They may submit their answers as many times as they like.
o One Chance - All parts of a question are marked at once. Students can only

submit their answers once, and may only attempt the test once.

22

e Header Text — Here you can type a message that appears at the top of the test when
students practice or attempt the test. This field is optional.

Selecting Test Questions

On the right you’ll see the list of questions you’ve created, with check boxes next to them. On
the left is a blank column with a red arrow. The questions that make up the test will be listed
here. The red arrow shows where questions will be inserted into the test. Click the check box
next to a question on the right, and it will appear on the left where the red arrow indicates. Un-
checking a question on the right will remove it from the list on the left. In the left column, the
order questions are listed is the order they will appear in on the test. Clicking and dragging a
question allows you to change their order. Clicking to the left a question will move the red
arrow, changing where questions will be inserted.

3.3.7 Modifying Assignments and Their Questions

To modify a practice test or assignment, on the course assignments page, click “Modify” next to
the test name. Once a test is assigned, only the test name, due date, and header text may be
changed. When modifying a question that is part of an assignment, a message will appear at
the top of the page stating that the question is part of an assignment and if you wish to add or
remove question parts, you will have to create a copy of the question. Click on “create a copy”
to do so. If you change the marks a question part is worth, all user assignment scores will be
updated to reflect the change. A new field called “refresh message” is located at the end of the
guestion template fields. It consists of a check box for the option, “Refresh Active Questions,”
and a text area, both greyed out. If you edit the question text or any part of a question part
besides the marks, the check box will no longer be greyed out. The changes you made will only
appear to users who start new attempts of the assighment after the changes are made.
Attempts started before the changes will not be changed. However, if you check the “Refresh
Active Questions” check box, any assignment questions the user has no marks for will be
regenerated to reflect the question changes. Any users who have marks for the modified
guestions will see a message at the start of the question, saying the question has been changed,
and giving them the option to refresh the question to see the changes. If they refresh the
guestion, however, they will lose any answers and marks they had for that question. You may
also provide an additional message that will appear below the first, by filling out the text area in
the “Refresh Message” field. This allows you to inform students if the change was minor and
they don’t need to refresh the question, or if it was something they should refresh the question
for, such as an answer being incorrect which is now fixed.

23

3.3.8 Uploading Files

| Welcome, Teresa Wrzesniewski

My Courses My Questions My Files

Search Questions

Contact Us

Log Out

File Size

Delete

File Name

Tag Name

File Type

Upload Date

charges3.png na image/png 16852 bytes 2011-01-13 21:38:35
chargesd pog na image/png. 21542 bytes 2011-01-13 21:38:35

dubms pog n/a image/png 12722 bytes 2011-01-13 21:38:35
charges2 png n'a image/png. 15183 bytes 2011-01-13 21:42:08
copperLoop.png joog) image/png 13807 bytes 2011-03-12 16:37:11
copperRod pag rod [/ 3251 bytes 2011-03-12 16:37:11
ms.png. rms image/png 17215 bytes 2011-03-12 16:37:11
charges.png charges image/png. 13783 bytes 2011-01-25 22:48:40
capacitors.png capacitors. image/png 8223 bytes 2011-01-25 22:48:40
circuit] . png circuit] image/png 7093 bytes 2011-02-04 15:49:21
circuit2. png circuit2 image/png 9310 bytes 2011-02-04 15:49:21
circuit3.png circuit3 image/png 15380 bytes 2011-02-04 154921
concave png concave image/png 7464 bytes 2011-03-28 18:06:19
lens png lens image/png 6811 bytes 2011-03-28 18:06:19
submarine. png submarine image/png 10708 bytes 2011-03-28 18:06:19
oil png. oil image/png 11600 bytes 2011-03-28 18:06:19
tub.png tub image/png 6981 bytes 2011-03-28 18:06:19
angle.png angle image/png 4742 bytes 2011-02-20 154838
crossedWires png crossed image/png 7169 bytes 2011-02-20 15:48:38
MFields png fields image/png. 29896 bytes 2011-02-20 15:48:38
suspendedConductor.png conductor image/png 4135 bytes 2011-02-20 15:48:38
twoWires.png dwires image/png. 10587 bytes 2011-02-20 15:48:38 L
Save Tag Names I Select All [Ds\ele Selected

Choose File | No file chosen URLIcs—suse—4.ok‘ubc‘:a"autuedu-IoadFie.jsp’.‘\.p_‘yd=—13984593 50
S B
. -
A - 907 »=060ms
-

Figure 12: File Upload

From the “My Files” page instructors can upload files. Clicking “Upload Another” allows you to
upload multiple files at once. Up to 10 files can be uploaded at once. Once you’ve chosen your
files, click “Upload” to begin uploading. When the upload is complete you should see your
newly uploaded files added to the list of files. To give a file a tag name, click on the file’s tag
name in the tag name column, and type a name in the text box that appears. “n/a” indicates
that a file has no tag name. This is the default for new uploads. Once you’ve typed tag names
for your files, click “Save Tag Names.” You can use an image’s tag name to embed it in a
question. Clicking on a file’s name will display the file’s URL, and, if the file is an image, display
the image underneath the URL.

4 Development

4.1 Timeline
August 2010:

e First version of backend done by Dr. Ramon Lawrence. | started working on the project.
September:

Ability to create and edit question and test templates through the site added.

24

October:
e First online assignment for PHYS 112.
January 2011:

e First online assignment for PHYS 122.
e Added functionality for marker to do unit conversions between prefixes when marking.
e Question template searching added.

February:

e First online assignment for the second section of PHYS 122.

e Functionality for modifying question templates that are used in assignments added.
e Ability to randomize unit prefixes added.

e Dr. Andis Klergis uses AutoEd for an assignment in BIOC 308.

March:
e Functionality for instructors to override student marks added.

4.2 Challenges

Several challenges and errors occurred during the development process, some of which are not
fully understood, for which workarounds were found.

The first concerns loading pictures from the database using jsp. When requesting one picture,
the image is consistently loaded properly. However, for a page requesting multiple pictures
from the database, some of the pictures often fail to load. To fix this, when our equation solver
parses the <pic> tags used to embed images in questions, it assigns a unique id to the picture
element that replaces the <pic> tag, and gives the image an onerror event, which reloads the
image, identified by its id, when it doesn’t load properly.

To use an updated question.jar, tomcat has to be restarted. When tomcat restarts, it erases
everyone’s session. Anyone who was doing a test at the time would suddenly find all their
answers being marked incorrect. To fix this, whenever a question is marked, we check if the
session was lost. If it was, the user is informed via an alert box that their session was lost and
they’ll have to re-login.

During the 3 online assignment for Phys 112 in term 1, we noticed some students who
submitted their test had less than 100%. As the assignment required all questions to be
answered correctly before moving on, this should have been impossible. In fact, we observed

25

test scores changing after the student submitted the test, sometimes days later. The grades
were 100% when they submitted, and changed afterwards. Fortunately grades were
recoverable — only the overall test score was altered; the marks for each question part were
preserved, so the overall test mark could be recovered by summing the individual question part
marks. | wrote a java function to do this. | later found a case where a student’s answers and
marks were overwritten for one question, which was disturbing as the marks can’t be
recovered in such a case. The student has submitted her assignment so | gave her 100%. |
determined that, if a user somehow could view their own test with someone else’s test in their
session, it would account for all the errors we encountered. If the student hit submit, and the
expected answer in their session was different from the test they were viewing, it wouldn’t
accept their answer. We had some students complaining that their answers weren’t accepted.
We assumed this was because they weren’t formatting their answers properly, or caused by
tomcat restarting and wiping everyone’s session. If the expected answer in their session
matched that for the test they were viewing, when submitting their answer they would
overwrite the other student’s overall mark, and also the marked date for that question part. |
confirmed that the marked dates were after the submission date for some question parts in
tests that had their overall mark affected. The last and rarest case, where question answers and
marks were overwritten, would occur when the user with the wrong test in their session clicked
“Save.” This happened very rarely as most students don’t use the “Save” button. | was able to
view one test with another in my session by opening one test, then opening another test, and
then clicking back until | was viewing the first test. | was then able to reproduce all the errors
we encountered before. It doesn’t make sense for the students to have gotten someone else’s
test in their session in this way though. We still don’t know how the session data becomes
inconsistent. To fix the issue, whenever something will be saved to the database, we first check
that the correct test is in the session. If not, we reload it. The expected test id is stored in the
JavaScript, and sent to the server with all Ajax requests to check against the session’s test’s id.

Sometimes the formula for correct answers was incorrectly entered into the question template
and not caught before the question went into an assignment. The system then rejected
student’s answers when they were correct. Some of the students this happened to of course
found this frustrating. When this happened it was usually caught and fixed within a day or two.
Students who tried the question before it was fixed would have to reload the question and redo
any question parts they had already answered. Most students were very understanding about
this.

Questions sometimes expected the answer to be more precise than the answer the student
gave, requiring more significant figures then it should. Precision was changed from 1% to 2% for
later assignments to avoid this problem.

26

5 Results and Feedback

Results were overall very positive. In Dr. Teresa Wrzesniewski’s PHYS 112 class during term 1,
students were given two written assignments, two online assignments using AutoEd, and a final
assignment which they could choose to do on paper or online. The online assignment questions
were the same as those for the written assignment, but with some values randomized. In a
survey, 70% of students indicated they preferred online assignments to written assignments,
and 15% said they liked both equally. However, when given a choice for doing the last
assignment online or on paper, 92% of students did it online. So when given the choice, most
students who say they liked them equally, and even some who said they preferred paper
assignments, chose to do the assignment online. Over 72% of students rated their experiences
with the system as satisfactory or very satisfactory. Only 3% rated it very unsatisfactory. 45%
indicated they thought AutoEd improved their learning. 81% reported it helped them complete
their assignments, and 84% said it helped them hand the assignments in on time. 92% of
students thought AutoEd should be used again in Phys122, and 87% thought it could be used in
other courses, such as chemistry, math, biology, and even English.

Al A2 A3 A4
% Handed-In 2010 —paper 89% 94% 89% 84%
2011 -online 93% 90% 93% 98%
Average Grade 2010 — paper 60.3% 82.9% 67.3% 62.1%
2011 -online 84.4% 71.3% 77.5% 86.3%
Median Grade 2010 — paper 67.1% 92.2% 77.9% 75%

2011 -online 100% 100% 100% 100%
Table 1: Paper Vs Online

Table 1 compares results from the first 4 assignments for the second term PHYS 122 in 2010
when assignments were done on paper, to the results from 2011 when assighments were
online. Grades and the percentage of students who completed the assignments improved when
assignments were done online for all assignments except the second. The median was 100%
each time for the online assignments. This is because students could try answering a question
until they got it right, so most students tried for 100%.

27

A common complaint was the issue of incorrect marking for some answers. This was either
because the formula for the answer was encoded incorrectly, or more commonly due to issues
with precision and rounding. This was fixed in most cases by increasing the tolerance for
accepted answers. For some poorly constructed questions, rounding values part way through
calculations could lead to very different results.

6 Conclusions

AutoEd is a valuable teaching tool that can help students learn and dramatically reduce time
spent marking assignments, especially in large first year classes. Most of the first year physics
students who evaluated the system prefer using it to written assignments. Students especially
like the immediate feedback when they submit an answer. They like being able to continue
trying to answer a question until they get it right.

7 Future Work

Several ideas and plans were made over the course of the development that, due to time
constraints, could not be implemented. | plan to implement these features over the summer.

Currently a copy of a question template must be made for an instructor other than the question
template’s author to use the template in a test, and test templates cannot be shared across
courses. The idea is to allow publishing of question and test templates. Once published, the
templates can be used by other instructors. A new table in the database would be created for
assignments. Each assignment would point to a test template and course, have an assigned and
due date, and an assignment type determining how questions are answered. This way multiple
assignments for different courses could use the same test template. Once a template is
published, the original author cannot edit it, as other instructors may be using it. A copy must
be made instead. To publish a test template, all question templates in the test must also be
published.

We want to add the ability to search question templates by keyword. Tags could be added to
guestion templates, which, together with the question text and question part text, would
determine the search results.

A mobile version of the site for cell phone browsers is another planned feature.

Dr. Andis Klergis asked how many of his students in BIOC 308 were practicing the online
assignment. While we do not currently keep track of this, we could add this feature. Every time
a student answers a question in practice or an assignment, we would record the student’s id,
answer, the question id, and time. Instructors could then view this data to see how many times

28

each student tries each question, and get an idea of what common mistakes are made. They
could then add hints to the questions for those common mistakes.

During summer 2010 | developed a “formula editor” to be used with the AutoEd system. It
allows users to type mathematical formula and symbols and have it displayed properly. | used
the open source Mathdox Formula Editor developed at Technische Universiteit Eindhoven([5] as
a base and tweaked it to suit our purposes. | also wrote a solver for it that can solve equations
with functions like sine or log, and even do unit conversions; it can determine if the two terms
in 2d * 3a*2/b + 2c (where a, b, ¢, and d are units) have equivalent units and can therefore be
summed. We plan on integrating this with AutoEd, allowing students to show their work and
based on that get partial marks for some questions.

Our goal is to continue developing the system and evaluate it in more courses, and eventually
release it as open source to the community.

Acknowledgements

| would like to thank Dr. Ramon Lawrence, my honours supervisor, without whom | would not
have decided to pursue graduating with honours. The project was his idea. He created the first
versions of the database schema and the question.jar, which | modified and used as a base.

| would like to thank Dr. Teresa Wrzesniewski, for evaluating the system in her first year Physics
classes. | also owe thanks to Dr. Ashraf Farahat, Dr. Andis Klergis, and Dr. Bulent Uyaniker, who
used AutoEd in their classes. Finally, I'm grateful to all the students who tested the system and
provided their feedback, and were understanding of the technical errors encountered.

29

Appendix

Table of Contents

Database SChema ... resss s s e s s s s s s s s e s nn s s s s s e e nnnnes 32
JAVASCIIPTL FIlES ouuiieeeiiiiieiiiieierieteeettteneetenneeeeeeseereansesseensessessssesssssesssnsssesssnsesssnsssssnnnnns 33
[L= ToT<T o S¥] o Tot d [o] o T 3PP 33
(@ Lol == o] N [T PO O PP PPPURTRPPPPPPPPRt 33
D11 [= 28 [P PPPRRP 35
(O) d=T= o] g T=T TN [SO UUPPPPPPPRRPN 35
Y 1T o T o] 17T o -3 36
(O T T=T] o o 1 1= 37
I o LS 38
211 1 2 = PRSPPIt 40
[0 VL= YOO PPRR 40
BV T o LTSN 41
[L= To [T o 1Yo U 41
Y g @ U T=T A o T 1] o 41
Y V7O L0 =T o Lo o 1N 1] o Nt 41
Y=t =d=T o 1@ BTy Ao o 1Y] o ISP 42
[U10] Lo =T 12T o [PPSR 42
JAVACK e e e e et e e e e et e e e at e e e e et e e e e ata s 42
(O TUT=ES u To T TN T | SN 42
B =T 0] o1 =) AU 42
LIRS S PP PPPPPPIPN 43

30

QUESTIONTEMPIALE .evverieiiieiie et e e e e e e s r e e e e e e eeeeeeeeeesess s nansansreeeeees 43

(0101 (o] o [P 44
QUESEIONTEMPIATEPAIT ...t e e s e e e e e s ae e e e s sabraes 44
(O TUT=Ty d oY] 22 APPSR 44

31

Database Schema

Category Course QT_C Question
@ca_id : int) &=c_jd :int qt_id :int (©&=q_jd : int
ca_name : vareﬁa{-fflo) c_num : varchar(10) | cid:int qt_id : int
pca_id : int c_year : smallint i t_id : int
c_term : tinyint - q_name : varchar(100)
c_name : varchar(S0) q_numParts : int
c_sect : smallint q_classMame : varchar{150)
q_text : nvarchar(2000)
A q_desc : nvarchar{2000)
q_creationDate : datetime
q_attempthum : int
P _isActive : bit
= num : int
a oum :int
tid
QuestionPart QuestiopTemplate Fr Quesji’tfnTernplatePart 1T_QT
&=qp_id 1 int E=qt_id : int >t &=t _id : int
gtp_id : int qt_name : varchar(100) .,Q@qt—id : ink
qp_marks : int qt_numParts : it (&= num : int
gp_type : int qt_classMame jvarchar(150) < —type int gt_ig
qp_answerType ! int qt_text : nvarghar(2000) atp_if 'atp_answerType :ink
qp_precision : int Q._ql‘:decr : nvardhar(2000) é Qtp_precision : int
gp_answers : nvarchar(2000) ca_id : int qtlid| \agtp_answers : nvarchar(2000) id
qp_canswers : varchar(250) u_id : int tp_canswers : varchar(250) =
qp_tutor : nvarchar{2000) qt_date : dateliime _tutor : nvarchar{2000)
qp_usernswer : varchar(250) _tmessage : hvarchar(2000) qtip_text : nvarchar(2000)
qp_userMark : int hints : nvarchar(2
qp_savedDate : datetime
Test f TestTemplate u_cC Uploads
@t _id : int tt_id : int u_id : int (@ up_id : int
u_id : ink gtt_id : int c_id:int up_name : varchar(100)
tt_id : int £ slig tt_name : varchar{100) up_file : varbinary
t_name : varchar{100) T tt_marks : int u_id :int
t_marks : int tt_attempts : int up_size ! int
t_attempt : int tt_assignedDate : datetime i up_date : datetime
t_startDate : datetime tt_dueDate : datetime o up_ftype : varchar(50)
t_submitDate : datetime c_id :int up_tagName | varchar(100)
tk_text : nvarchar(2000)
o w_id tt_type : smallint ujd
v
y
Users
@=u_jd @ int

u_login : varchar(10)
u_name : varchar(100)
u_password : varchar(20)
u_type : smallint

Figure 13: Database Schema

JavaScript Files

HelperFunctions.js

Summary: Provides helper functions for creating form elements and some IE (Internet Explorer)

workarounds.

getElementsByName(name, tag) — If the user’s browser is IE, this function is added to
the document. It returns an array of all elements of the given tag type with the given
name. If tag is undefined, it will return elements of any tag type. This function isn’t
added for browsers other than IE, as they already have this function.

setEvent(element, event, f) — Adds an event to the given element. Event is the trigger,
and f is name of the function called by that trigger. Adding events is easy in browsers
other than IE, so this is really an IE workaround.

createlnput(type, name, size, maxlength) — Creates and returns an input element of the
given type, name, size, and max length. Size and max length are optional parameters.
createButton(html, onClick, className, name) — Creates and returns a button element.
Html is the inner html; onClick is the function triggered by clicking the button. Class
name and class are optional.

addOption(select, text, value) — Adds an option to the given select element with the
given value. Text is the text that appears in the drop down menu.

selectOption(select, value) — Selects the option with the given value in the given select
element.

QCreator.js

Summary: Provides functionality for the question creating and modifying pages.

initQCreator(assignment) — Call this before using other functions from this script. It just
stores a pointer to the element with id “table” for later use, which is the table all the
form elements are in. Assignment is true if the question is in an assignment.
doneLoad(editing) — Call this after all question data is loaded via addPart(). Editing is
true for the modifying questions page.

format(str) — formats the string stored in the database to the form it’s displayed in on
the webpage. It converts <quote> to “ and <line> to line breaks.

adjustButtonPositions() — It’s a hack to keep the red X buttons positioned on the left
side of the header bar for each question part, while keeping the text in the center of the
bar. It doesn’t work in IE so it isn’t called for IE, leaving the text on the left instead of the
center. It’s also not called if the question is in an assignment, as there are no X buttons

33

in that case as question parts cannot be deleted. It’s called every 20 milliseconds to
reposition the buttons correctly if the elements are stretched or the page is resized.
change() — Called when the user changes a value in a question part other than marks.
This will cause the existing questions parts to be written over in the database. The
changes will only show in questions generated after the changes are saved.
changeMarks() — Called when the user changes the marks for one of the question parts.
This will trigger a recalculation of all the user’s marks for questions generated from this
template once the changes are saved, which could change their marks on tests that
contains those questions.

addAnswer(num, answer) — Adds another input element for entering another correct
answer to question part #num. If answer is defined, that answer will be put in the input
element, as is the case when loading the initial question data on the modify question
page.

removeAnswer(gnum, anum) — Removes the input element for a correct answer. Anum
is the answer number, gnum is the question part number. If that question part has only
one correct answer, it does nothing, as question parts must have at least one correct
answer.

addHint(num, answer, hint) — Adds form elements for adding another incorrect answer
with a hint to a question part. Num is the question part number, answer and hint are
the initial values entered in the form elements.

removeHint(qnum, anum) — Removes form inputs for incorrect answer and hint #anum
from question part #gnum.

addPart(qpmarks, qptype, gpprec, qptext, answers, wrongAns, hints, uconv) — Adds
another tbody containing form elements for entering another question part. The
parameters are the initial values for the question part.

removePart(num) — Removes the tbody containing all the form elements for question
part #num. If there’s only one question part, it does nothing, as all questions must have
at least one question part.

addPrecision(num) — Called when the answer type of a question part is changed. It
checks if an input element for precision or a checkbox for allowing unit conversions
needs to be added or removed.

addRow(text) — Adds another row to the tbody of the question part currently being
added. Text is the text that appears in the left title column. Returns a pointer to the td
of the right column.

validateForm() — Validates form input before submitting the form and creating or
modifying a question. To be valid, the following is required:

The question must have a name.

34

e The question text, question description, and each question part text must be 2000
characters or less.

e Marks for each question must be an integer greater than 0.

e Question parts with precisions must have an integer precision between 0 and 100.

e All Question parts must have at least one correct answer.

Dialog.js

Summary: Create custom dialog boxes. Like the pop-ups that appear with alert messages, but
customizable.

e Dialog(width, text) — Returns a Dialog object. Width is the width of the dialog box, and
text is the header text. This prepares the html elements for the dialog box, but does not
display the dialog box on the page.

e Dialog.createTD() — Creates another row (TR and TD element) in the dialog box and
returns the TD element for that row. Rows are separated by lines. Custom content can
be displayed in the TDs.

e Dialog.close() — Removes the dialog box from the page. The html elements are
preserved in the Dialog object so the dialog box can be reopened.

e Dialog.show() — Shows the dialog box. Call this after all custom content is added to the
dialog box. The box is centered based on its current size. It will not recenter if it’s sized is
changed after it’s opened. While a box is open, clicking off the box will cause the box’s
header to flash, and clicking links will not direct you to another page, and form elements
will not focus. The variable dbox is true while the dialog box is open. This can be used to
disable other clickable events. Header flashing is disabled for the first 100 milliseconds
after opening the box to prevent flashing from the initial click that opened the dialog
box.

e Dialog.flash() — causes the dialog box’s header to flash. If called with Dialog.count = 0, it
will flash 6 times, once every 150 milliseconds.

e enableFlash() — Enables dialog box header flashing. Called 100 milliseconds after a box is
opened.

¢ handleClick(e) — Causes the dialog box’s header to flash by calling Dialog.flash() with
Dialog.count = 0. Called when the user clicks off the dialog box.

Categories.js

Summary: Creates a dialog box for selecting a category. Categories have parent categories. The
root categories are listed. Clicking the + sign next to a category shows all the children categories
of that category. Clicking the — sign then hides the children categories. Uses dialog.js.

35

Variables:

categories — An array. categories[id] contains a list of all children categories of the
category with that ca_id.

cats — An array of categories indexed by ca_id.

dia — The dialog box.

display — The div in the dialog box displaying the categories.

divs — An array of divs containing a group of sibling categories.

Functions:

Category(name, id, pid) — Returns a Category object. Name is the category name, id is
the ca_id, and pid is the pca_id (parent id). Pid is ‘n’ for no parent.

addCategory(name, id, pid) — Creates a Category object with name, id, and pid, and
adds it to the cats array, and the appropriate location in the categories array.
displayCategories() — Opens the dialog box displaying the categories. Will create the
dialog box dia if it was not already created. When initially opened, all root categories
will be displayed, with no categories expanded.

insertCategory(id, div) — Adds the category with the given name to the given div. Div
should be a div containing a group of sibling categories. The + character for showing the
children categories of the category will be added to the end of the div if the category
has any children, along with the category name.

expand(id) — Expands or closes the category with the given id, showing or hiding all its
children categories (depending on if it’s currently expanded). If this is the first time
expanding the category, a div will be created that holds all the children categories and
added below the parent category. The div has 20 pixels of padding on the left to indent
the list of children. For subsequent expansions the div is reinserted below the parent.
The div will be restored to the same state it was in when removed, so children
categories that were expanded will remain expanded. When closing a category the div
with its children is removed. Called when a + or — character is clicked.
chooseCategory(id) — Selects the category with the given id. Closes the dialog box and
fills the textbox with id “category” with the selected category name. Called when a
category name is clicked.

MiniSolver.js

Summary: A simple calculator than can solve equations made of binary operations (+, -, /, ¥,

A), numbers, and parenthesis. It is a simplified version of a solver | wrote in summer 2010

for another project.

36

The Algorithm: We begin parsing the equation string from the left. We have a stack called
parse, onto which we push numbers and operators. If the character we are parsing is a
number or a ‘., we append to a string called number. If not, we call pushNumber(). This
converts the string in number to a number and pushes it on the parsed stack, then sets the
string number to an empty string. If the string number could not be converted to a number,
it throws an error. Any parsing errors terminate the parsing and send an alert message to
the user describing the error. Before pushing the number on the stack, we call
checklInvisibleTimes(). If the previous object on the stack was a number, this will push a *
(multiplication) operator on the stack. This can happen in cases such as: “4(5)2”. If our
parsed character is a -/, and the last object on the stack was an operator or a ‘(, we append
the - to the number string, making the next number a negative number. When we parse an
operator, we may be able to evaluate part of the expression. If the operator we parse has
precedence lower than the last operator we parsed, we start popping objects off the stack
and evaluate them until we reach an operator with precedence less than that of the
operator we just parsed. Then we push the resulting number from our evaluation onto the
stack, followed by the operator we just parsed. For example, if we parsed 3+-5*6”2%*, once
we see the second ‘*’, we know we can evaluate the -5*6/2. After evaluation our stack will
have 3+-180*. If we parse a ‘(‘, we first check our number string. If it is equal to ‘-, we push
a -1 on the stack and empty the number string. Next we call checkInvisibleTimes(). The we
evaluate off the top of the stack until we encounter a ‘(. White space is allowed between
numbers and operators. If we parse a character we don’t know what to do with, that
character is assumed to be the start of the units, parsing is stopped and we evaluate
everything on the stack.

Question.js

Summary: An abstract class representing a question part. There are different question classes
for the different types of question parts (text, multiple choice), which implement this class.

Variables:

e id — The id of this question. The input element(s) have this id, or name if there are
multiple elements (for multiple choice).

e mark —The user’s mark for this question part.

e score — Total marks this question part is worth.

e solver — a boolean indicating if the question part answer type is text with solver. Only
the text question part class has this field.

37

Function:

getAnswer() — Returns the user’s answer. If this is a text type with a solver and the
answer begins with an ‘=’, the answer string will be passed to miniSolver.js to solve the
equation.

clearAnswer() — Clears the user’s answer.

lock() — Locks the question part, disabling and greying-out the input for answering. If the
user hasn’t answered this question yet and the entire test isn’t locked, it gives the input
an onfocus event that displays an alert message informing the user they must answer
the previous question part correctly before answering this one.

unlock() = Unlocks the question part, so it can be answered.

Test.js

Summary: Contains methods shared by the pages for doing assignments, practice tests, and

practice questions.

Variables:

type — The type of the test, which effects how questions are answered. See section 3.3.6.
qguestions — An array containing the questions.

gmarks — An array containing the user’s mark for each question.

score — The user’s total mark for the test.

numlLocked — The number of locked questions.

submitted — true if the test was submitted

assignment — true if the test is an assignment.

Functions:

checkAnswer(qgpid, answer) — Checks the answer for the question part with the id gpid.
The marking is done on the server by sending an AJAX request to markQuestion.jsp.
Nothing is recorded in the database. If the test is an assignment, it checks the due date
before marking the question, and gives an alert message if the due date is passed. If the
session was lost (either due to session timeout or the server was restarted), the server
responds saying the session was lost, and an alert message informs the user that the
session was lost and they will have to log in again. A checkmark is displayed next to the
answer if it is correct, whereas a red ex appears if it is not. This also displays the “Show
Hint” button if a hint is available. It ends by calling addmarks for the appropriate
guestion, so the question’s marks and the marks in the test header are updated.

38

format(str) — returns the string str with all single quotes replaced with the right-single
guote special character.

reloadlmage(id) — reloads the image with the given id. Called when an image fails to
load.

showHint(hint, id) — Shows the hint text hint in the element with the given id. Called
when the “Show Hint” button is pressed.

incLocks(gqnum) = locks the question with number gnum, increases the total lock count,
and enables assignment submission if all questions are locked. Locked questions can’t
have their answers edited.

markQuestion(qnum) — Marks the question with number gnum. Behaviour differs
depending on the test type and whether or not the test is an assignment. All answers
are checked through calls to checkAnswer. For assignments, answers, marks, and
whether or not the question is active is saved though AJAX requests to saveQuestion.jsp.
For some test types incorrect answers do not save anything to the database.
lockQuestion(gnum) — Locks the question with the given gnum. It is different from
incLocks in that it locks each answer input and displays a green check mark or red ex for
each question part depending on if the user has marks for that question part, whereas
incLocks assumes these things have already happened. It finished by calling
incLocks(gqnum). This is called to lock an inactive question when the page is initially
loaded. incLocks is called when a question is first locked because the user just submitted
their answer to it.

partialLockQuestion(gnum) — Used for test types that require the question parts to be
answered one at a time, in order. Locks all the question parts that the user currently
cannot answer or has already answered. Will lock the entire question and call
incLocks(gnum) if all the question parts are answered.

lockAll() — Locks all questions. Called when viewing a submitted test, a test passed the
due date, or when an instructor is viewing a student’s test.

clearQuestion(gnum) — Depending on the test type, either clears the answers to all
guestion parts for the question with number gnum, or just the active question part.
Called when “Clear” is clicked.

saveQuestion(gnum) — Saves user answers to all parts of the question with number
gnum, though Ajax requests to saveQuestion.jsp. The question header will say “Save

III

Successful” when the save is completed successfully or “Save Unsuccessful if an error
occurred.

regenQuestion(gnum) — Regenerates a new instance of the question with number
gnum through an Ajax request to regenQuestion.jsp. Called when the retry button,
which appears for some test types, is clicked, or when the user clicks refresh for a

guestion the instructor modified since the question was initially loaded. The user’s

39

answers are cleared, and the user’s marks for the question are reset to zero. If the
guestion was previously completely answered, the total number of locks is decremented,
which may disallow test submission if all questions used to be answered.

e override(qnum, gpnum) — Hides the “Override Mark” button and shows the form inputs
for an instructor to override the student’s mark for question part gnum of question
gnum. Called when an instructor clicked an “Override Mark” button.

e setOverrideMark(qnum, gpnum) — Sets the initial value of the input for overriding a
mark to be the user’s current mark for that question part. For some reason changing the
value when the input is first appended to the document in override() doesn’t work.
Calling this function a millisecond after override() does.

e doOverride(gnum, qpnum) — Saves the overrided mark and answer to question part
gpnum of question gnum, and the new overall test mark through an Ajax request to
saveQuestion.jsp. Hides the form inputs for changing the mark and brings back the
“Override Mark” button, and changes the user marks in the question header and the
test header.

e addMarks(qnum) — Sums the user’s marks for each question part of question gnum and
updates the marks in the question and test headers accordingly.

e scrollToNum(num) — Scrolls the question with number num. Called when a question
number is clicked in the test header.

e calcTime(time, id) — displays the time in the form “mm:ss” in the element with the given
id. Time is the time to be displayed in seconds.

e keepTime() — Keeps track of the total time the user spends on the page, and updates
the time shown in the test header every second through calls to calcTime. Timing stops
when all questions are locked. The time starts at 0 each time the page is loaded.

Flot API

Flot is an open source JavaScript plotting library [1]. It was used for creating the graphs of
assignment data on the “View Results” page.

jQuery

“jQuery is a fast and concise JavaScript Library that simplifies HTML document traversion, event
handling, animation, and Ajax interactions” [2]. The Flot API requires jQuery. Asides from the
page using Flot, jQuery was not used.

40

Java Files

Header.jsp

Summary: Contains methods for printing the header that appears at the top of each page, and
the course header appearing below the header on all course pages. There are two versions of
each method, one with a String path parameter for passing the path to the directory containing
header.jsp. The other with no path arguments assumes we already in the correct directory.
Printing the course header requires the course id as an argument.

MarkQuestion.jsp
Summary: Send an Ajax request to this page to mark an answer.
Parameters:

e mytext — The answer to be graded.

e num — The question number followed by the question part number, separated by an
underscore.

e tid — The expected test id. If the test in the session does not have this id, the test is
reloaded. Can be null (when marking for a practice test or question that is not saved in
the database).

SaveQuestion.jsp

Summary: Send an Ajax request to this page to save data to the database. The data saved
depends on the parameters.

Parameters:

e tid — The expected test id. If the test in the session does not have this id, the test is
reloaded.

e num - The number of the question to save. Optional.

e pnum - The number of the question part to save. Optional. If num is provided and pnum
is not, all parts of the question are saved. If pnum is given, ans must be as well.

e ans — The answer to save over the old answer for question part pnum. Optional, but
must be provided if pnum is.

e mark - The overall test mark to save over the current test mark. Optional.

e deactivate — Optional. If set to anything, the question num will be deactivated.

41

RegenQuestion.jsp

Summary: Send an Ajax request to this page to regenerate (reload with new random values) a
question.

Parameters:

e tid — The expected test id. If the test in the session doesn’t have this id, the test is
reloaded.

e num - The number of the question to be regenerated.

e marks — The total number of marks the question is worth (sum of the marks for each
guestion part).

UploadBean

UploadBean is a Java component for uploading files from browsers [3]. It handles our file
upload requests to the database.

JavaCC

JavaCC is a parser generator for Java[4]. It was used to generate the parser for evaluating <eqn>
tag expressions.

Question.jar

All class representing an object that gets saved to the database (templates, questions, tests,
etc.) have a save(Connection con) and load(int id, Connection con) method. Save saves the
object to the database, along with any objects that belong to that object (for instance saving a
guestion saves all its question parts). If it's not already inserted into the database, it will insert
it. Save() returns the id of the object. Load will load the object with the given id from the
database. Each object stores variables corresponding to the attributes stored in the database.
Their Ids are -1 If they aren’t saved to the database.

TestTemplate
Summary: Represents a test template.
Methods:

e Arraylist<Test> loadUserTests(int userld, Connection con) — Loads all the test instances
of this test template started by the user with the given id, and returns them in an
ArraylList.

42

o Test generate() — generates and returns a test using this test template. To generate a
test, all questions that make up a test must be generated from their respective question
templates.

This class also contains various getter and setter methods, and a toString method.
Test

Summary: Represents a test. Extends TestTemplate.

Methods:

e void addQuestions(Question q) — Adds question g to the ArrayList of questions for this
test.

e void submit(Connection con) — sets the submit date to the current time and saves the
test.

e saveMark(Connection con, int mark) — sets the user’s mark to the given mark, and
saves that mark to the database.

This class also contains various getter and setter methods, and a toString method.
QuestionTemplate

Summary: Represents a question template.

Methods:

e void addPart(QuestionTemplatePart qtp) — adds qgtp to the ArraylList of question
template parts.

¢ void insertPart(QuestionTemplatePart qtp, PreparedStatement pstmt, int qtid) — Saves
gtp to the database with question template id set to qgtid. Called by save(Connection
con).

e Question generate() — generates a question from this template. Question generation
involves generating all of the question’s question parts from their respective question
template parts.

This class also contains various getter and setter methods, and a toString method.

43

Question
Summary: Represents a question. Extends QuestionTemplate.
Methods:

e Question(QuestionTemplate qt) — Constructor. Generates this question from the
template qt by calling generateFromQT(qgt). Question text is evaluated here.

e generateFromQT(QuestionTemplate qt) — Generates this question from template qt.
Question text for each question part is evaluated here. Do not use this method by itself
to generate a question. Use the above constructor.

e void saveAnswers(Connection con) — saves answers to all of the question parts, via calls
to saveAnswer().

e void saveAnswer(int partNum, Connection con) — saves the answer to question part
number partNum. Part numbers start at 1.

e String mark(int partNum, String answer) — Marks the answer for question part partNum.
Saves nothing to the database. The result of the marking is returned as a String, which
will include any hints if there are any.

¢ int regenerate(Connection con) — Regenerates this question (reloads with new random
values). Save the question to the database and returns the question id.

e saveActive(Connection con, boolean isActive) — Saves whether or not this question is
active.

This class also contains various getter and setter methods, and a toString method.
QuestionTemplatePart

Summary: Represents a question template part.

Methods:

This class contains various getter and setter methods, and a toString method.
QuestionPart

Summary: Represents a question part. Extends QuestionTemplatePart.

Methods:

e QuestionPart(QuestionTemplatePart qtp) — Constructor. Generates this question part
from the template qtp.

44

e Regenerate(QuestionTemplatePart qtp) — Regenerates this part using template qtp
(reloads with new random values).

e String mark(String answer) - Marks the given answer with a «call to
markAnswer(answer). Sets the markedDate and the savedDate to the current date. The
results of marking are returned as a String.

e int getUnitsLoc(String s) — Returns the start of the units in s. Ignores the first E followed
by a ‘-‘ or a digit, as that indicates scientific notation and is not a unit. Returns the length
of s if s contains no units.

e String extractUnits(String s, int unitLoc) — Extracts the units from s starting at unitLoc
and returns them as a String.

e int extractint(String s, int unitLoc) — Extracts and returns an int from s, ending at unitLoc.

e double extractDouble(String s, int unitLoc) — Extracts and returns a double from s,
ending at unitLoc. Converts from scientific notation is s is of the form 2.1E-3.

e String markAnswer(String answer) — Marks the given answer but saves nothing to the
database. The appropriate extract methods are used to extract the answer (int, units,
etc.) from the answer String, and the appropriate method in the marker class is called,
according to the answer type. The answer is checked against each answer in the
ArrayList of answers. The results of marking are returned in a String, including any hints
that go with that answer.

This class also contains various getter and setter methods, and a toString method.

45

References

[1] Laurson, Ole (2011). Flot — Google Code. http://code.google.com/p/flot/

[2] jQuery (2010). http://iquery.com/

[3] Java Zoom. UploadBean Support.
http://www.javazoom.net/jzservlets/uploadbean/uploadbean.html

[4] Oracle (2011). JavaCC. http://java.net/projects/javacc

[5] Technische Universiteit Eindhoven(2007-2008). MathDox Formula Editor.

http://www.mathdox.org/formulaeditor/

[6] WebAssign. http://www.webassign.net

[7] Aplia. http://www.aplia.com

[8] Mastering Physics. http://www.masteringphysics.com

[9] Gradiance. http://www.gradiance.com

[10] Carnegie Learning. http://www.carnegielearning.com

[11] Blackboard. http://www.blackboard.com

[12] Quest. http://www.quest.cns.utexas.edu

[13] LON-CAPA. http://www.lon-capa.org

46

