
Adapting Linear Hashing for Flash
Memory Resource-Constrained

Embedded Devices
by

Andrew Feltham

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

B.SC. COMPUTER SCIENCE HONOURS

in

The Irving K. Barber School of Arts and Sciences

(Computer Science)

THE UNIVERSITY OF BRITISH COLUMBIA

(Okanagan)

April 2019

c© Andrew Feltham, 2019

Abstract

Linear hashing is a key-value data structure with constant time oper-
ations that is widely used for indexing in database systems. The research
goal was to implement this data structure on embedded devices such as
Arduino which have limited memory. Storing data on embedded devices
is increasingly important for environmental sensor and Internet of Things
applications. Flash memory persistent storage, which has unique properties
with read and write times, presents an additional challenge to construct an
efficient implementation. Several implementations were created and tested.
This talk will explain the different linear hash implementations that were
created and present the benchmarks collected.

ii

Table of Contents

Abstract . ii

Table of Contents . iii

List of Figures . v

Acknowledgements . vi

Chapter 1: Introduction . 1
1.1 Embedded Devices . 1
1.2 Flash Memory . 2
1.3 Embedded Databases . 2
1.4 Motivations . 2
1.5 Contributions . 2

Chapter 2: Background . 4
2.1 Hashing . 4
2.2 Split . 5
2.3 Variations . 6

Chapter 3: Implementation . 8
3.1 Common Implementation . 8

3.1.1 Linear Hash Table . 8
3.1.2 Records . 8
3.1.3 Buckets . 8

3.2 Buffers . 9
3.3 Hashing . 9
3.4 Hash Table Operations . 10

3.4.1 Get . 10
3.4.2 Delete . 11
3.4.3 Split . 12

iii

TABLE OF CONTENTS

3.4.4 Insert . 12
3.5 File Implementation . 15

3.5.1 Get . 15
3.5.2 Delete . 15
3.5.3 Split . 15
3.5.4 Insert . 16

3.6 Bucket Map . 16
3.6.1 Insert . 16
3.6.2 Get . 16
3.6.3 Delete . 19
3.6.4 Split . 19

3.7 Serial Writing . 19
3.7.1 Insert . 19
3.7.2 Split . 19

Chapter 4: Results . 20
4.1 Block Statistics . 20
4.2 Insert . 20
4.3 Get . 21
4.4 Delete . 22

Chapter 5: Conclusion . 28
5.1 Future Work . 28

Bibliography . 29

iv

List of Figures

Figure 2.1 Example linear hash table 5
Figure 2.2 Example linear hash table split 6

Figure 4.1 SD card read/write benchmarks 21
Figure 4.2 Time per insert . 22
Figure 4.3 Time per insert . 23
Figure 4.4 Block reads per insert 24
Figure 4.5 Block writes per insert 25
Figure 4.6 Time per get . 26
Figure 4.7 Time per delete . 27

v

Acknowledgements

With thanks to Dr. Ramon Lawrence who guided and supported me
through this adventure.

vi

Chapter 1

Introduction

Linear hashing dates back to work done by Litwin [Lit80] and later ex-
panded by Larson [Lar82, Lar85]. Linear hashing is an expandable hash
table on storage that provides constant time operations. Although B+-trees
are generally favored for database workloads as they also provide ordered ac-
cess, linear hashing is implemented in many relational database systems and
has benefits for certain use cases. In the embedded domain, linear hashing
is interesting as it may allow for even better performance and less resource
usage than B+-trees.

In this work, linear hashing is adapted and optimized for flash-based,
memory-constrained embedded devices and shown to work for devices with
as little as 8 KB of memory. Optimizations include implementing a linked
list of overflow buckets in a backwards chaining fashion to avoid writes,
trading off writes for reads due to asymmetric performance of flash memory,
and minimizing the memory consumed so that most operations require only
one memory buffer and at most two memory buffers are required for a split
during insert.

1.1 Embedded Devices

Embedded devices are small, low powered, computer systems. Many
embedded devices exist today for use within the open source community.
One of the most popular is the Arduino project which produces multiple
embedded computers with varying capabilities. This work used an Arduino
2560 Mega as a benchmarking and testing device.

This Arduino device has 8KB of SRAM and a 16Mhz cpu. Developing
with so little available RAM produces a challenge for implementing efficient
data structures.

1

1.2. Flash Memory

1.2 Flash Memory

Flash memory is commonly used in embedded devices as a long term
storage. An ethernet shield with a microSD slot was used for the Arduino
2560 Mega used in this work.

SD cards are rated by their sequential read or write speed and have
varying performance depending on their class. In general read speeds are
better than write speeds and sequential access is faster than random. These
memory characteristics guided the development into using less writes and
potentially favouring sequential over random access.

1.3 Embedded Databases

There have been several efforts to construct database libraries and soft-
ware tools for these embedded devices starting with the sensor-database
networks such as TinyDB [MFHH05] and COUGAR [BGS01] to database
software installed and executing on the device such as Antelope [TD11], Pi-

coDBMS [ABP03], LittleD [DL14], and IonDB [FHD+15]. There have also
been data structures and algorithms specifically developed for flash-memory
including [GT05, LZYK+06]. This work attempts to improve an existing
implementation of Linear Hashing built into the IonDB project.

1.4 Motivations

There is a renewed focus on data processing on devices with limited
capabilities as applications such as sensor-based monitoring grow in deploy-

ments. The Internet of Things [LYZ+17] relies on these devices for data
collection and filtering, and it is widely known that there are performance
and energy benefits to processing data on the edge (where it is collected)
rather than sending it over the network for later processing. Manipulating
data on these edge devices represents similar challenges to the early days of
computing with limited resources and supporting software. Implementing a
low memory and efficient hash table for these devices is beneficial and an
interesting experiment.

1.5 Contributions

This project utilized the IonDB [FHD+15] framework to implement the
linear hash table. The honour thesis by Spencer Macbeth which in-

2

1.5. Contributions

vestigated linear hashing on embedded devices was expanded on in this
work [Mac17]

3

Chapter 2

Background

First introduced by Litwin in 1980 [Lit80], the linear hash data structure
is a dynamically-resizable hash table which maintains constant-time com-
plexity for hash table operations. A search generally takes about one access,
and the space utilization may be up to 90%. This performance is superior to
B+-trees for key-based lookup operations. Linear hashing does not require
an index to lookup bucket locations on storage if the buckets are allocated
continuously on storage or allocated in fixed size regions. Computing the
address of a record is done by using the output of the hash function com-
puted on the key to identify the appropriate region (if multiple) and bucket
within the region. Thus, the memory consumed is minimal and consists of
information on the current number of buckets and next bucket to split.

2.1 Hashing

The key feature of a linear hash table is that expansion occurs one index
at a time as needed instead of doubling the table size as in a regular hash ta-
ble. This is made possible by the hashing function and splitting mechanism.
Two hashing functions are used to calculated the table index. Equation 2.1
and Equation 2.2. These equations require the hash table properties N as
the initial number of buckets, and L the number of times the hash table
has doubled in size. Algorithm 2 is used to calculated the table index for a
given key hash. nextSplit in this algorithm is the next bucket that will be
split. This algorithm finds the last number of bits in the key hash that is
a valid hash table index. Every time the linear hash table doubles in size
additional bits in the hash are used to find the table index.

H0(H) = H mod (N × 2L) (2.1)

H1(H) = H mod (N × 2L+1) (2.2)

Overflows in a bucket are handled by adding a new bucket to a linked
list of buckets. Overflow buckets are chained together as needed.

4

2.2. Split

Algorithm 1: Hashes a key to a table index

if H0(H) < nextSplit then
index← H1(H)

else
index← H0(H)

end

An example table is shown in Figure 2.1. This figure shows hashed keys
inserted into a table with an initial size of 4. This table demonstrates key
hashing and overflow chaining.

Table Index
0
0

8
4

1
1

5
10

2
2

6
10

3
3

7

12

Figure 2.1: Example linear hash table with hash keys

2.2 Split

The hash table is dynamically resized when the storage utilization (load
factor) increases beyond a set amount. At that point, a new bucket is added
to the end of the hash file and records are divided between the new bucket
and the current bucket to split in the table. It is this predefined, ordered
splitting of buckets that is the main contribution of linear hashing.

The load factor is calculated using Equation 2.3. After every insert
operation this load factor is re-calculated and compared against the
maximum load factor. If it is exceeded then a split operation is triggered.

load =
totalRecords

size ∗ recordsPerBucket
(2.3)

5

2.3. Variations

During a split operation the table size is expanded by one and a new
bucket is created. The bucket referenced by the nextSplit is loaded and
split into the newly added bucket. Due to the way the hashing works, all
records that should belong in the new table index are inside the buckets at the
nextSplit index. Records are moved if the H0 and H1 functions have different
values. Once the split has completed, if the table size has now doubled, the
nextSplit is reset to the first index otherwise it is incremented by one.

An example split of a split is shown in Figure 2.2. In this example a
new bucket was added to the end of the table and records from table
index 0 were moved to this new bucket.

Table Index
0
0

8
1
1

5
10

2
2

6
10

3
3

7
4
4

12

Figure 2.2: Example linear hash table with hash keys after a split

2.3 Variations

Linear hashing was extended and generalized by Larson [Lar82] using
partial expansions. It was shown that performance can be increased if dou-
bling of the file size is done in a series of partial expansions with two generally
being a good number. Search performance is increased at the slight trade-off
of additional algorithm complexity and the need for buffering and splitting
k + 1 buckets in memory where k is the number of partial expansions. Fur-
ther work [Lar85] allowed for the primary buckets and overflow buckets to
use the same storage file by reserving pre-defined overflow pages at regular
intervals in the data file. This work also added the ability to have multi-
ple overflow chains from a single primary bucket by utilizing several hash
functions to determine the correct overflow chain.

Variations of linear hashing optimized for flash memory use the idea
of log buffering to increase performance. The Self-Adaptive Linear Hash
[YJYZ16] buffers logs of successive operations before flushing the result to
storage. This often decreases the total number of read and write opera-
tions and allows for some random writes to be performed sequentially. Self-
Adaptive Linear Hash also adds higher levels of organization to achieve more

6

2.3. Variations

coarse-grained writes to improve the bandwidth. Unfortunately, the extra
memory consumed is impractical for embedded devices.

7

Chapter 3

Implementation

To fully explore optimizations of linear hash tables on the embedded
architecture and flash memory, several implementations of a linear hash table
were constructed, benchmarked, and compared. This chapter describes the
implementations with their optimizations and intended uses.

3.1 Common Implementation

Since the goal of this project was experimenting with different possi-
bilities for optimization of the linear hash table on flash memory, a basic
framework of a linear hash table was created and modified for the different
implementations described later in this chapter. Due to the shared core
functionality of a linear hash table, many of the structures, functions, and
logic were identical. This section describes the common structures used in
each implementation.

3.1.1 Linear Hash Table

The linear hash table structure was used to keep track of variable values
required to perform the operations.

3.1.2 Records

Records are stored in buckets in binary format. Each record contained
a key and a value as sequential values. Separators were not used between
the key and value as the keys and values are required to be constant sizes
which is set during the linear hash table creation. The linear hash table
precalculated the record size during initialization.

3.1.3 Buckets

A linear hash table is built around buckets which contain records and
metadata describing the bucket and its contents. The same bucket structure
is used for top level buckets in each hash table index and overflow buckets

8

3.2. Buffers

that are linked together as a linked list. Each bucket can contain up to a
maximum number of records which was calculated using equation 3.1.

recordsPerBucket = floor(
blockSize− bucketHeaderSize

) (3.1)
recordSize

The bucket object was implemented using a C struct object. This struct
contains the hash table index it belongs to, the number of records stored
in the bucket, a pointer to the next bucket in the chain, and the remainder
of the space was the record data. To optimize file reading and writing
performance, each bucket was set to be 512 bytes in size to align to the
file system’s block boundaries. The header used 12 bytes total leaving 500
bytes for the bucket data. Buckets are loaded from the files using buffers,
modified in memory and written out to the file as entire blocks.

Overflow buckets are handled by linking buckets together as a linked
list. The overflow block field in the header points to the logical block in the
overflow location (implementation dependent) where the next bucket in the
chain exists. The UINT32 MAX value was used to indicate there the was no
overflow bucket for a particular bucket. This value set a hard limit on the
number of buckets that could be created.

3.2 Buffers

The buffer structure was used to load a bucket block from a file and keep
track of values related to that buffer. Two buffers were allocated for each
implementation as a minimum of two are required during a split operation
to read a bucket and move records into another bucket. However, most
functions required only one buffer. These buffers were allocated when the
linear hash table implementation was created so that it can fail early if
allocation failed. This is the main memory impact of the implementations.
Each buffer had to store both the 512 bytes of data plus the additional buffer
flags, resulting in 1042 bytes of memory overhead.

A dirty flag was used to save some unnecessary writes during splits,
deletes, and updates. The buffer contents were written and read only as
entire blocks of data.

3.3 Hashing

Hashing keys to index values is the key feature of the linear hash table.
Several key hashing functions were tested to find a function that offered rea-

9

3.4. Hash Table Operations

sonable distribution and performance for the embedded environment. Using
the work done by Fritter et al., the SDBM function was found to offer well
rounded performance on the Arduino hardware [FOKFL18]. This function
was implemented as the default key hashing function. A function pointer
was added on the linear hash table structure to allow easy replacement of
the hashing function.

A key was hashed to the hash table index with Algorithm 2. This func-
tion was used at the beginning of every operation and was not modified for
any of the three implementations.

Note that this function is dependent on the linear hash table values
nextSplit and initialSize. These values are modified as the hash table
grows during the split operation.

Algorithm 2: Hashes a key to a table index

Input: The key to hash
Output: The table index where that key should be found
Function getIndex(key)

hash← SDBM(key)
index← H0(hash)
if index < nextSplit then

index← H1(hash)
end
return index

Function H0(hash)
return hash&(initialSize− 1)

Function H1(hash)
return hash&(2 ∗ initialSize− 1)

3.4 Hash Table Operations

3.4.1 Get

The get or find hash table operation is shown in Algorithm 3. This
operation is just a linear scan through all the buckets in the bucket chain
found at the index for the key.

10

3.4. Hash Table Operations

Algorithm 3: Get Operation

Input: The key to find
Output: The value found or an error code
index← getIndex(key)
bucket← loadTopBucket(index)
terminal← false
while ¬terminal do

foreach record in bucket.records do
if record.key = key then

return record.value
end

end
if bucket has overflow then

bucket← loadOverflowBucket(bucket.overflow)
else

terminal← true
end

end
return NotFound

Performance

The find operation requires exactly 0 writes as it does not perform any
modifications to the hash table. The operation takes minimum O(1) and
maximum O(N) reads where N is the number of buckets in the bucket chain
at the given index.

3.4.2 Delete

Delete operations are a linear scan through the buckets in an index chain
and matching records are removed. Since each bucket is loaded into memory,
records are manipulated in place. This operation is outlined in Algorithm 4.
During deletion records are shifted up in order to maintain a continuous
block of records. This saves time during insertion as the insertion spot
is immediately at the bottom of the currently used area. The algorithm
accomplishes shifting with one pass through the bucket by keeping track of
an insert and a read pointer. As the records are scanned through, the read
pointer is incremented but the insert pointer is not incremented if a record
should be deleted. If the read and insert pointer do not match after a record

11

3.4. Hash Table Operations

is read, then the read record is moved to the insert pointer and the insert
pointer is incremented.

In order to remove a bucket, the previous bucket in the linked list must
be reloaded from the file and then modified to point to the bucket pointed
at by the removed bucket. This process requires an extra read and write.
In order to save writes and memory space, empty buckets were not removed
from the overflow chains and records were not shifted between buckets. This
can result in partially empty or empty buckets remaining in the bucket chain.

Performance

Deletion requires a linear scan through all the records in the bucket chain
of length N which requires N reads. The writes required range between 0
and N depending on how many buckets were modified.

3.4.3 Split

Splitting was implemented with Algorithm 5. This algorithm ensures
that the new bucket chain is continuous with entirely full buckets. A split
is triggered when the load of the linear hash table is reached after an insert.
This load is configurable on the linear hash table structure. Similar to
deleting, empty gaps in the splitting chain are filled, empty buckets are not
removed, and partially full buckets are not filled.

This function is the main reason two buffers are required. One buffer to
load the splitting bucket and a second buffer for the new bucket.

Performance

Splitting requires reading every bucket in the bucket chain for an index
(N) and writing every bucket in the chain as well as all newly created buckets.
In the worst case where every record must be moved this takes 2N writes.

3.4.4 Insert

In general the insert functionality loaded the top level bucket and poten-
tially further buckets as needed until an empty spot was found. If required
a new overflow bucket was added. After an insert a split could potentially
be performed. This operation was determined to be the operation where
optimizations and experiments could be made. Therefore, each implemen-
tation modified this function and the algorithms are documented further in
this chapter.

12

3.4. Hash Table Operations

Algorithm 4: Delete Operation

Input: The key to delete
Output: The number of records deleted
deleted← 0
index← getIndex(key)
bucket← loadTopBucket(index)
terminal← false
while ¬terminal do

insert, read← firstRecordPointer
count← bucket.recordCount
for i← 0 to count do

record← recordAtReadPointer
if record.key = key then

bucket.recordCount− = 1
deleted+ = 1

else
if insert 6= read then

copy record at read to insert
end
insert += recordSize

end
read += recordSize

end
write out bucket
if bucket has overflow then

bucket← loadOverflowBucket(bucket.overflow)
else

terminal← true
end

end
return deleted

13

3.4. Hash Table Operations

Algorithm 5: Split Operation

Input: The key to delete
Output: The number of records deleted
deleted← 0
index← getIndex(nextSplit)
splittingBucket← loadTopBucket(index)
newBucket← createNewBucket()
completed← false
while ¬completed do

insert, read← splittingBucket.firstRecordPointer
count← bucket.recordCount
for i← 0 to count do

record← recordAtReadPointer
hash← SDBM(record.key)
if H0(hash) 6= H1(hash) then

insert the record into the new bucket
write out the newBucket if full and create a new overflow
splittingBucket.recordCount −= 1

else
if insert 6= read then

copy record at read to insert
end
insert+ = recordSize

end
read+ = recordSize

end
write out splittingBucket
if splittingBucket has overflow then

splittingBucket←
loadOverflowBucket(splittingBucket.overflow)

else
completed← true

end

end
write out new bucket
currentSize++
if currentSize == 2× initalSize then

initialSize← 2× initalSize
nextSplit← 0

else
nextSplit++

end
14

3.5. File Implementation

Once an insert has been made, the load is checked using Equation 2.3,
compared to the maximum load set on the table. If the load is larger then
the maximum load, a table split is made.

3.5 File Implementation

The file based implementation was built as a simple base implementation
of a linear hash table. The goal of this implementation was to provide a
performance comparison between a standard linear hash table and further
attempts at modifications.

This implementation requires two files, data and overflow, to store the
linear hash table contents. A third file was used to store the hash table state
for simplicity.

The data file was used to contain top level buckets in the linear hash
table. Each file block contained a bucket that matched the table index for
that bucket. As the table was expanded new buckets were added to the end
of the file.

Overflow buckets were added to the overflow file. When an overflow
block was created, it was always appended to the end of the overflow file
and then the previous bucket was linked to the logical file index for that file
block.

3.5.1 Get

The get operation functions identically as in Algorithm 3. The only
change required is to load the bucket from different files during loadTopBucket
and loadOverflowBucket.

3.5.2 Delete

The delete operation functions identically as in Algorithm 4. The only
modification required is to load the bucket from different files during loadTopBucket
and loadOverflowBucket.

3.5.3 Split

The split operation functions as in Algorithm 5. The buckets are tracked
if they are a top level or an overflow bucket in order to write it out to the
correct file.

15

3.6. Bucket Map

3.5.4 Insert

Inserting into the file based implementation by finding the index for the
key, iterating through the buckets in the bucket chain until a bucket with
space is found. If all bucket are full then a new bucket is added to the end
of the chain.

The file performance for this function is best case O(1) reads and O(1)
writes in the case where the top level block is not full.

In the worse case, where a new bucket must be added, this is n reads
where n is the number of buckets in the current bucket chain and 2 writes
in order to insert the new bucket and update the previous bucket overflow
pointer.

3.6 Bucket Map

The bucket map implementation was built around the goal of reducing
the number of writes and reads required for an insert and removed the extra
file needed by the file based implementation.

The two data files that were required in the file based implementation
were merged by always inserting buckets to the end of the file. In order to
map the hash table index to a top level bucket an in-memory expandable
array was added to the hash table that maps the index to a file block.

3.6.1 Insert

Insertion can now be done in exactly one read and write by inserting an
overflow bucket to the top of the bucket chain instead of the bottom and
only reading the top bucket before creating an overflow. This process is
shown in Algorithm 7.

The downside of only reading the top level bucket before expanding is
that partially empty buckets further in the chain will never be filled. This
can impact the performance of the split, get and delete operations.

3.6.2 Get

Get functions identically as in Algorithm 3. The only difference is that
the file location is retrieved from the bucket map before reading the bucket
from the file.

16

3.6. Bucket Map

Algorithm 6: Inserts a key and value into the hash table

Input: The key and value to insert
Output: Error or success code
index← getIndex(key)
bucket← loadBucketFromDataF ile(index)
completed← false
while ¬completed do

if bucket is not full then
insert record into the bucket
write out bucket
completed← true

else
if bucket has overflow then

bucket← loadOverflow(bucket.overflow)
else

bucket.overflow ← nextOverflowBlock
write out bucket
bucket← initalizeNewBucket()
insert record into the bucket
write out bucket
completed← true

end

end

end
numRecords += 1
if currentLoad > load then

split()
end

17

3.6. Bucket Map

Algorithm 7: BucketMap Insert Operation

Input: The key and value to insert
Output: The error or success code
index← getIndex(key)
fileIndex← bucketMap[index]
bucket← loadBucket(fileIndex)
if bucket is full then

bucket← initalizeNewBucket()
bucket.overflow ← fileIndex
insert record into bucket
writeBucket(nextF ileIndex)
bucketMap[index]← nextF ileIndex
nextF ileIndex += 1

else
insert record into the bucket
writeBucket(fileIndex)

end
numRecords += 1
if currentLoad > load then

split()
end

18

3.7. Serial Writing

3.6.3 Delete

Delete functions identically as in Algorithm 4. The only difference is
that the file location for the top level bucket is read from the bucket map.

3.6.4 Split

The split algorithm was modified to load the splitting bucket using the
file location in the bucket map as well as updating the bucket map for the
new bucket and its overflows. The new bucket chain is created in the same
way as in the insert algorithm.

3.7 Serial Writing

An implementation was created with the goal of taking advantage of the
flash memory performance for serial writes. The hash table was modified to
always write changed and new buckets to the end of the file. This necessi-
tated using the bucket map implementation in order to always know where
the top level buckets were located.

3.7.1 Insert

Insertion was a simple modification of Algorithm 7 which simply wrote
out the changed bucket to the next available file location and updated the
bucket map.

3.7.2 Split

In order for splitting to work with overflow chains, the splitting bucket
chain has to be reversed and rebuilt during the split. This was accomplished
by reading the bucket chain top down and then updating both the bucket
map and overflow pointers as further blocks were read and written out.

19

Chapter 4

Results

Benchmarks were performed on all tables by inserting random 2-byte
keys and random 2-byte values. The linear hash table was configured with
the SDBM hashing function and a load of 85%.

4.1 Block Statistics

Writing to flash memory file blocks was tested with three different SD
cards. 10000 file blocks were written as random or sequential writes. A file
of 10000 blocks was benchmarked with sequential and random reads.

These benchmarks are shown in Figure 4.1 and demonstrate the large
variability of different SD cards and the general expected performance. In
general it was found that read operations are faster then writes and sequen-
tial writes are faster then random writes. Sequential reads took an average
of 47% of the time it takes for a sequential write. A random read takes an
average of 64% of the time of a random write.

4.2 Insert

Insertion was benchmarked by recording the time to insert records into
a hash table. These statistics are an average of five runs and include the
time for splitting.

Figure 4.2 shows the time per insert for a range of inserts. It is obvious
from this graph the the serial writing implementation did not perform as
expected. This trend continued for all benchmarks and will be left out in
later figures.

Figure 4.3 shows the same graph with the non-overwrite removed. It
shows that the bucket map is faster as expected until around 70,000 records
have been inserted. After this cut off the file based implementation performs
better. This performance difference is likely a result of the time used to
expand the bucket map array as well as additional time needed during a
split due to increased bucket map chains.

20

4.3. Get

0

1

2

3

4

5

6

7

8

9

10

Sequential Read Sequential Write Random Read Random Write

Ti
m

e
p

er
 b

lo
ck

 o
p

er
at

io
n

 (
m

s)
Time per Block operation (ms)

Average of 1000 operations

8GB Class 6 16 GB Class 10 2 GB

Figure 4.1: SD Card benchmarks

Figure 4.4 and Figure 4.5 show the block reads and writes for the in-
sert operation benchmarks. As expected the bucket map implementation is
less then the file implementation and is around 1 read and write per insert
operation.

4.3 Get

Get operations were benchmarked by getting random keys from a table
of varying size. The number of gets was made as half the current table size.

Figure 4.6 shows that the bucket map implementation was variable and
consistently slower then the file based implementation. This is expected as
a result of larger partially filled bucket chains.

21

4.4. Delete

0

10

20

30

40

50

60

70

80

0 20000 40000 60000 80000 100000 120000

Ti
m

e/
In

se
rt

 (
m

s)

Number of Inserts

Time per insert vs Number of Inserts

BucketMap Sequential Writes File

Figure 4.2: Time per insert

4.4 Delete

Delete operations were benchmarked by deleting random keys from ta-
bles of different sizes. The number of deletions was half the number of
records in the table. However due to the random nature of the data some
deletions failed to delete any records.

Figure 4.7 shows the benchmarked times for these delete operations.
Bucket map was consistently slower then the file based implementation.
Similar to the get statistics this is likely the result of longer bucket chains
with partially filled buckets.

22

4.4. Delete

5

5.5

6

6.5

7

7.5

8

8.5

9

0 20000 40000 60000 80000 100000 120000

Ti
m

e/
In

se
rt

 (
m

s)

Number of Inserts

Time per insert vs Number of Inserts

BucketMap File

Figure 4.3: Time per insert

23

4.4. Delete

0

0.2

0.4

0.6

0.8

1

1.2

1.4

0 20000 40000 60000 80000 100000 120000

B
lo

ck
 R

ea
d

s/
In

se
rt

Table Size

Block Reads/Insert vs Table Size

BucketMap File

Figure 4.4: Block reads per insert

24

4.4. Delete

0.995

1

1.005

1.01

1.015

1.02

1.025

1.03

1.035

1.04

1.045

1.05

0 20000 40000 60000 80000 100000 120000

B
lo

ck
 R

ea
d

s/
In

se
rt

Table Size

Block Writes/Insert vs Table Size

BucketMap File

Figure 4.5: Block writes per insert

25

4.4. Delete

0

1

2

3

4

5

6

7

8

9

0 10000 20000 30000 40000 50000 60000

Ti
m

e/
G

et
 (

m
s)

Number of Gets (1/2 table size)

Time/Get for getting half the number of records in the table

Bucketmap File

Figure 4.6: Time per get operation

26

4.4. Delete

0

2

4

6

8

10

12

14

16

0 10000 20000 30000 40000 50000 60000

Ti
m

e/
D

el
et

e
(m

s)

Number of Deletes (1/2 table size)

Time per Delete vs Number of Deletes

BucketMap File

Figure 4.7: Time per delete operation

27

Chapter 5

Conclusion

The performance of three implementations of a linear hash table were
compared. For table sizes under 70,000 the bucket map implementation
has superior performance during insert operations. However, the bucket
map implementation performed slower than the standard file implementa-
tion during get and delete operations. This is due to the increased bucket
chains with partially filled buckets caused by the modifications to reduce the
number of writes during insertion. The bucket map implementation also re-
quired larger amounts of memory as the table size grows in order to index
all the top level blocks in the table.

The sequential writing implementation did not work as expected and
resulted in a massive increase in time for all operations. We believe this is
a result of increased seek times in the file system as a result of larger file
size. Research into random reads with the FAT file system in an embedded
environment has shown that many reads are required to seek to random
locations as the file size grows [PFL16].

In conclusion, the bucket map implementation is efficient and has faster
inserts compared to the standard implementation for the case of smaller
table sizes. However, for large table sizes the file based implementation
performed better.

5.1 Future Work

Future work on linear hash tables for embedded devices should investi-
gate reducing the number of buffers required for the split operations, and
investigate and improve the performance of the bucket map implementation.
The sequential write implementation should be investigated to determine the
cause of the massive slow down and be tested with direct file access. Addi-
tional linear hash table techniques such as partial expansions and could be
explored for implementation.

Exploration into raw SD card access, ignoring a file system entirely, has
potential to bypass the problems found with with the FAT file system.

28

Bibliography

[ABP03] Nicolas Anciaux, Luc Bouganim, and Philippe Pucheral. Mem-
ory Requirements for Query Execution in Highly Constrained
Devices. VLDB ’03, pages 694–705. VLDB Endowment, 2003.
→ pages 2

[BGS01] Philippe Bonnet, Johannes Gehrke, and Praveen Seshadri. To-
wards sensor database systems. In Kian-Lee Tan, Michael J.
Franklin, and John Chi-Shing Lui, editors, Mobile Data Man-
agement, pages 3–14, Berlin, Heidelberg, 2001. Springer Berlin
Heidelberg. → pages 2

[DL14] Graeme Douglas and Ramon Lawrence. LittleD: A SQL
Database for Sensor Nodes and Embedded Applications. In
Proceedings of the 29th Annual ACM Symposium on Applied
Computing, SAC ’14, pages 827–832, New York, NY, USA,
2014. ACM. → pages 2

[FHD+15] Scott Fazackerley, Eric Huang, Graeme Douglas, Raffi Kudlac,
and Ramon Lawrence. Key-value store implementations for ar-
duino microcontrollers. In 2015 IEEE 28th Canadian Confer-
ence on Electrical and Computer Engineering (CCECE). IEEE,
may 2015. → pages 2

[FOKFL18] Matthew Fritter, Nadir Ould-Khessal, Scott Fazackerley, and
Ramon Lawrence. Experimental evaluation of hash function
performance on embedded devices. In 2018 IEEE Canadian
Conference on Electrical & Computer Engineering (CCECE).
IEEE, may 2018. → pages 10

[GT05] Eran Gal and Sivan Toledo. Algorithms and Data Sructures
for Flash Memories. ACM Comput. Surv., 37(2):138–163, June
2005. → pages 2

[Lar82] Per-Åke Larson. Performance analysis of linear hashing with

29

http://dl.acm.org/citation.cfm?id=1315451.1315511
http://dl.acm.org/citation.cfm?id=1315451.1315511
http://dl.acm.org/citation.cfm?id=1315451.1315511
http://doi.acm.org/10.1145/1089733.1089735
http://doi.acm.org/10.1145/1089733.1089735

Bibliography

partial expansions. ACM Transactions on Database Systems,
7(4):566–587, dec 1982. → pages 1, 6

[Lar85] Per-Åke Larson. Linear hashing with overflow-handling by lin-
ear probing. ACM Transactions on Database Systems, 10(1):75–
89, mar 1985. → pages 1, 6

[Lit80] Witold Litwin. Linear hashing: A new tool for file and table
addressing. In Proceedings of the Sixth International Conference
on Very Large Data Bases - Volume 6, VLDB ’80, pages 212–
223. VLDB Endowment, 1980. → pages 1, 4

[LYZ+17] Jie Lin, Wei Yu, Nan Zhang, Xinyu Yang, Hanlin Zhang,
and Wei Zhao. A survey on internet of things: Architecture,
enabling technologies, security and privacy, and applications.
IEEE Internet of Things Journal, 4(5):1125–1142, oct 2017. →
pages 2

[LZYK+06] Song Lin, Demetrios Zeinalipour-Yazti, Vana Kalogeraki, Dim-
itrios Gunopulos, and Walid A. Najjar. Efficient Indexing Data
Structures for Flash-Based Sensor Devices. Trans. Storage,
2(4):468–503, November 2006. → pages 2

[Mac17] Spencer Donald James MacBeth. Linear hashing for flash mem-
ory on resource-constrained microprocessors. 2017. → pages 3

[MFHH05] Samuel R. Madden, Michael J. Franklin, Joseph M. Hellerstein,
and Wei Hong. TinyDB: an acquisitional query processing sys-
tem for sensor networks. ACM Transactions on Database Sys-
tems, 30(1):122–173, mar 2005. → pages 2

[PFL16] W. Penson, S. Fazackerley, and R. Lawrence. Tefs: A flash file
system for use on memory constrained devices. In 2016 IEEE
Canadian Conference on Electrical and Computer Engineering
(CCECE), pages 1–5, May 2016. → pages 28

[TD11] Nicolas Tsiftes and Adam Dunkels. A Database in Every Sen-
sor. SenSys ’11, pages 316–332, New York, NY, USA, 2011.
ACM. → pages 2

[YJYZ16] C. Yang, P. Jin, L. Yue, and D. Zhang. Self-adaptive linear
hashing for solid state drives. In ICDE, pages 433–444, May
2016. → pages 6

30

http://dl.acm.org/citation.cfm?id=1286887.1286911
http://dl.acm.org/citation.cfm?id=1286887.1286911
http://doi.acm.org/10.1145/1210596.1210601
http://doi.acm.org/10.1145/1210596.1210601
http://doi.acm.org/10.1145/2070942.2070974
http://doi.acm.org/10.1145/2070942.2070974

	Abstract
	Table of Contents
	List of Figures
	Acknowledgements
	1 Introduction
	1.1 Embedded Devices
	1.2 Flash Memory
	1.3 Embedded Databases
	1.4 Motivations
	1.5 Contributions

	2 Background
	2.1 Hashing
	2.2 Split
	2.3 Variations

	3 Implementation
	3.1 Common Implementation
	3.1.1 Linear Hash Table
	3.1.2 Records
	3.1.3 Buckets

	3.2 Buffers
	3.3 Hashing
	3.4 Hash Table Operations
	3.4.1 Get
	3.4.2 Delete
	3.4.3 Split
	3.4.4 Insert

	3.5 File Implementation
	3.5.1 Get
	3.5.2 Delete
	3.5.3 Split
	3.5.4 Insert

	3.6 Bucket Map
	3.6.1 Insert
	3.6.2 Get
	3.6.3 Delete
	3.6.4 Split

	3.7 Serial Writing
	3.7.1 Insert
	3.7.2 Split

	4 Results
	4.1 Block Statistics
	4.2 Insert
	4.3 Get
	4.4 Delete

	5 Conclusion
	5.1 Future Work

	Bibliography

