
AutoER:
Automated Question Generation and Evaluation to
Assist Students Learning UML Database Design

A Thesis Submitted by Tatiana Urazova For The Degree of B.S. Computer
Science Honours in Faculty of Science
Supervisor: Dr. Ramon Lawrence

Motivation
&

Background

1.

Significant increase of Online Learning over the
past years

Automated Online Question Systems

● Support continuous practice and learning
● Provide real-time feedback

Database Design Questions

● Key concepts, require practice to master
● Time-consuming to create, mark and

produce feedback

Using Autograding systems:

● Potential to increase engagement and allow for formative learning
● Challenging to use with design questions, due to:

high variability of answers, and interpreting the semantics of the diagram and tested
concepts

The AutoER System

Autograding

String representation,
restricting naming:
removes ambiguity of
marking results

Question
Generation
Supports both
instructor-generated
questions and automatic
question generation

Immediate
Feedback

Immediately generates
Marker & Student
Feedback

User Interface

2.

Question Format

● Students interact directly with question text
● Reduces the variability of student answers
● Removes ambiguities in marking results by restricting the names of the

elements that the students can add to the diagram

Restricting Submissions

Limiting the
number of
submissions

Max Attempts

Penalty type is completely configurable by the instructor

Unlimited
submissions, but
every time the
student’s mark goes
down, the regression
penalty is applied

Regression Penalty

penalty=-abs(higher_mark-lower_mark)*0.5

AutoER Question Completion, Demo

https://docs.google.com/file/d/17UbhCfDZEwWxBoThtZuaNfD5PlBKaZhq/preview

1. First submission under Regression

2. Second submission: mark goes down

AutoER
Server

3.

System
Overview

postgres

Database for AutoER, not
generally accessible
outside of Docker

reverse_proxy

Maps external URLs
to internal Docker
container services.

django

Communicates with
frontend services to form
the Backend API for
AutoER

student

Hosts a static website for
students to complete
questions

3. 4.

1. 2.

Docker Containers

Question Creation

Workflow 1:

Creating a Question
Template

Workflow 2:

Creating a Question
Instance

Instructor Frontend Backend API

Question Template and
Marking code entered
into the editor

Question assets are
inlined and all code is
sent to Backend API

Received Assets are
stored in the Database
as a new Question
Template

A new question is
created with new data
and a chosen Question
Template

A new Question and a
new Potential Answer
(can add more than one
Potential Answer) are
stored in the Database

1

2

Answering
and Automarking a Question Question data

retrieved

A student user
requests a Question
by questionID

Data is sent back
If no Last Answer,
Student Answer with
attempt number 0 is
created

The Question
renders on Student
Frontend

The Student
submits an Answer

Answer is
auto-marked based
on Marking Code in
Question Template

Student FrontendBackend API

Regression penalty
is calculated,
number of attempts
increased

Student Answer is
created and stored.
Marking data, and
feedback sent back

Max
attempts
reached?

Editing disabled,
final mark
displayed

yes

no

● Process initiated with the Student

Frontend:

/questions/<questionID>

● If no previous answers are found, a new

Student Answer with attempt number 0 is
created. Otherwise, the latest answer
data is loaded.

● This ensures that a student does not lose

the progress & keeps track of the
regression penalties accumulated and
number of submission attempts.

nomnoml library
translates simple syntax strings into visual
representations of UML diagrams

[Tank|number {PK};name;volume;color]
[Fish|id {PK};name;weight;color]
[Species|id {PK};name;preferredFood]
[Event|date {PPK};note]
[Tank]1..1 - 0..*[Fish]
[Fish]1..* - 1..1[Species]
[Fish]1..1 - 0..*[Event]

Automarking and Feedback Steps

1. Match entities in the student answer with
entities in instructor solution by name.

2. Match the attributes within each entity.
3. Match the relationships in the student

answer with instructor solution, using
entity names and cardinality constraints
(0..1, 1..1, 0..*, 1..*).

4. Compare the student’s answer to all the
provided correct answers,

5. Throughout each step, appropriate
feedback is generated. Aggregate overall
feedback.

[Tank]0@1 - *[Fish]
[Fish]1..* - 1..1[Species]
[Fish]1..1 - *[Event]

Flexible Cardinalities: And Example

● Each user accesses the same
URL but gets a unique version
of the question

● Provide additional practice &
discourage academic
misconduct

Generated Questions
Instructor Frontend Backend API

Received data is
stored in a new
Generated Question
Type

Generate seed for
the generation code
in Generated
Question Type

Student Frontend

Instructor enters the
generation code for
a chosen Question
Template to create a
new Generated
Question Type

A student user
requests a Generated
Question

Execute generation
code, store resulting
assets as a new
Question

First
Load?

Create new Question
Details to map a
Question to a
Student

Load Question
corresponding to
Question Details,
send data to student

The Question
renders on student
frontend

yes

no

Gibberish Module

Results

4.

Winter 2021 offering of
COSC 304 Database
course, UBC Okanagan

180 students

76.95
SUS Score

Student Survey Results

Student Feedback:

● Easy to use & Saves time compared to
drawing diagrams by hand

● Appreciated autograding & immediate
feedback

● Areas of improvement included the display of
the diagrams, especially positioning of
cardinalities on relationships, displaying,
recursive relationships, and the ability to
rearrange diagrams

AutoER Evaluation in COSC 304 Fall 2021

● Instructor Generated Question

● Students were able to choose
between Restricted Attempts or
Regression Penalty

● Random Generated Question

● Students were randomly assigned either
Restricted Attempts or Regression
Penalty

Final ExamMidterm Exam

Max Attempts Regression

Max submissions 7 54

Avg submissions 4.63 13.97

% Students 80% 20%

Avg Grade 70% 63%

Max Attempts Regression

Max submissions 7 52

Avg submissions 2.32 3.57

% Students 51% 49%

Avg Grade 73% 81%

Student Profiles
Category 1 No regressions, 80%+ first submit

Category 2 0 to 2 regressions, iterative development

Category 3 2-4 regressions

Category 4 5+ regressions, end thrashing

Summer 2021 Distribution:

Performance on the Midterm: Restricted Attempts

Fall 2021: Restricted AttemptsSummer 2021: No restriction

Restricted Attempts Performance on the Midterm Grouped by Category

Performance on the Midterm: Restricted Attempts

Performance on the Midterm: Regression Penalty

Fall 2021: RegressionSummer 2021: No restriction

Regression Penalty Performance on the Midterm Grouped by Category

Performance on the Midterm: Regression Penalty

Performance on the Final: Restricted Attempts

Fall 2021: Restricted Attempts
Summer 2021: No restriction

Restricted Attempts Performance on the Final Grouped by Category

Performance on the Final: Restricted Attempts

Performance on the Final: Regression Penalty

Fall 2021: Regression PenaltySummer 2021: No restriction

Regression Penalty Performance on the Final Grouped by Category

Performance on the Final: Regression Penalty

Future work

Improving Visual Representation,
allowing interaction with the
diagram itself

Integrating into a learning
management system:
PrairieLearn

Evaluating the system on future
Database course offerings

1.

2.

3.

4.
Developing further strategies
to prevent system exploitation
and undesired user behaviour

Dr. Ramon Lawrence

Sarah Foss

Thank you!

