Towards Parallel Learned Sorting

Ivan Carvalho
Supervisor: Dr. Ramon Lawrence

Can we do better than Quicksort?

= Performance of Sorting impacts many common operations

= Quicksort can sort an array in O(nlog n)
= The lower bound for comparison-based sorting is Q(nlog n)

= Quicksort is the default algorithm available in many
languages/libaries (e.g. C++ STL)

Can we beat Quicksort and push the boundary of sorting

performance?

Yes, we can beat Quicksort (albeit it's not easy).

In-Place Parallel Super Scalar Sample Sort (IPS*0)
= State-of-the-Art Sorting Algorithm
= Generalization of Quicksort: sorting with k pivots
= |mplementation has many desirable properties

Desirable Properties of IPS*o

= In-Place Partitioning = Branchless Decision Trees
= Built from ak — 1
samples (oversampling

N for k-pivot Quicksort)
Buffer 1 [__m|
hohT = Extremely efficient
Figure 1: Example of in-place partitioning IPS*o where imp|ementation of a
each shade of blue represents elements assigned to a L.
different bucket and green represents elements never decision tree

visited. Instead of placing the elements directly to their
position, IPS%o places them into buffers and flushes the
elements to the array when a buffer becomes full. After,
defragmentation is executed to make the buckets
contiguous. Reprinted from Axtmann et al., 2022.

Figure 2: IPS%o organizes the pivots in a decison tree
structure for quickly finding the correct bucket for an
element. Reprinted from Axtmann et al., 2022.

Desirable Properties of IPS*o

= Parallelism
= Custom task scheduler
= Each task in IPS%0 has a parallel implementation

= Reusable Framework
= Code can be reused to implement variants of the algorithm
= In-place Parallel Super Scalar Radix Sort (IPS®Ra)

Aside: Learned Indexes

Emerging field using machine learning to create highly efficient
indexes that outperform traditional indexes (i.e. B-Trees)

Some indexes worth mentioning are:

= Recursive Model Index

= Piecewise Geometric Model Index

= RadixSpline

= Updatable Learned Index with Precise Positions

We will talk about ML-Enhanced Sorting. ML-Enhanced Sorting is
intrinsically connected to Learned Indexes and reuses the models
from Learned Indexes.

ML-Enhanced Sorting

New paradigm: Machine Learning Enhanced Sorting

Main idea: if there exists a model F that predicts the sorted
position of a key x, we can sort the array in O(n) by moving each
element to its correct location with A[F(x)] = x.

Unsorted array A: ‘ 8 ‘ 10 | 15 | 24 ‘ 19 ‘ 4 ’ 62 | 30 | 43 |
Ny
. Empirical
‘ Model Mapping CDF Model
T
Sorted array A’: ‘ 4 ’ 8 | 10 | 15 | 19 ‘ 24 ’ 30 | 43 | 62 |
Fa(x): 0.000 0.125 0.250 0.375 0.500 0.625 0.750 0.875 1.000
Fa(x) - |A[: o 1 2 3 4 5 6 7 8

Figure 3: Ideal case of ML-enhanced with a perfect model. Reprinted from Kristo et al., 2020.

Challenges of ML-Enhanced Sorting

First challenge: F(x) is not given. However, ML can overcome that:

we sample data and learn F(x).

But what kind of ML is useful to learn F(x)? One possible solution
is to use Empirical Cumulative Distribute Functions (eCDF).

eCDF yields the probability P(A < x) that an element is smaller
than x, hence for an array with N:

pos = F(x) = |N - P(A < x)]

Challenges of ML-Enhanced Sorting

There are more challenges even after we have F(x):

= Inversions: Pair of elements with a < b but F(a) > F(b)

= Collisions: Pair of elements with F(a) = F(b)
= Collisions are exacerbated when there are many duplicates as it
is guaranteed they will collide at F(x)

Learned Sort 2.0: practical implementation of ML-enhanced
sorting with outstanding performance

= Uses the Recursive Model Index to model the eCDF

= Performs two rounds of partitioning using the model similarly
to IPS%o

= Executes Insertion Sort to correct (very few) mistakes from the
model

Limitations
= Cannot sort strings
= No parallel implementation is available

Contributions

We are the first work to interpret IPS*o as a ML-enhanced

algorithm, which has two consequences:

= First consequence is that models from the field of Learned
Indexes can be used to create variants of IPS*o

» Second consequence is that IPS*o provides a framework to
efficiently parallelize ML-enhanced sorting algorithms

We introduce the In-Place Parallel Learned Sorting (IPLS) algorithm
to prove our point. We use a model from Learned Indexes using the
IPS*o framework to achieve parallel learned sorting.

10

Machine Learning Models for Sorting: Linear Models

Linear Models: partition based model.

Described by three parameters: the number of buckets k, the slope
a and the constant term b

0, if la-x+b] <0
F(x)=4qk-1, if la-x+b| >k

la-x+ b|, otherwise

Consequence of Linear Models: x; < x; — F(x;) < F(x;)

11

Machine Learning Models for Sorting: Linear Models

How do we train a linear model for sorting?
Idea: minimize the maximum number of elements in a bucket.

Fastest Minimum Conflict Degree (FMCD):

= Model used by the Updatable Learned Index with Precise

Positions
= Trains in O(S) for S samples
= Guarantees at most S/3 elements will be in the same partition
= Reasonable to assume at most N//3 elements will be in the
same bucket for the whole array as well
. % bound yields that on average O(log N) recursive partition
steps will be performed no matter what input is given

12

Proposed Algorithm

In-Place Parallel Learned Sorting (IPLS)

IPLS extends IPS*o and has the goal to show that the framework
can be used to implement a parallel version of ML-enhanced sorting:

= |IPLS partitions the data in k = 256 buckets using linear
models. It samples ak — 1 random elements from the array
with a = 0.2log N .

= Then, it trains a linear model on the samples using the FMCD
algorithm discussed earlier. The linear model F(x) is then used
to predict the bucket for each element.

= For n <212 IPLS uses SkaSort as the base case (fast
RadixSort)

13

Experimental Evaluation

We compare the performance IPLS to other sorting algorithms on a
mbzn.metal instance from AWS. The instance runs a Intel® Xeon®
Platinum 8252C CPU @ 3.80GHz with 48 cores and 192 GB of
RAM. The algorithms we compare against are:

« IPS%
= IPS°Ra

= Learned Sort

= std::sort

We compare both sequential and parallel settings. For the

sequential case, we refer to the algorithms as IS%0, 1S?Ra and ILS.

14

Results (Sequential)

Performance of Sequential Sorting Algorithms in Real-World Datasets

aomys
somjs
£ somss
£ Algorithms
£ s
£ somss b
. 1540
Leamedsort
dsort
2075
om/s
o
0sM/Cell_IDs wiki/Edit #8/1Ds Books/Sales NYC/Pickap
Performance of Sequential Sorting Algorithms in Synthetic Datasets
S0M/s
< 40Mfs
£ Algorithms
£ s
3w, 1s2ra
1540
LeanedSort
3 om, StdSort
om/s

Uniorm Normal Log Normal Mix Gauss

5

Results (Parallel)

Performance of Parallel Sorting Algorithms in Real-World Datasets

Algorithms
1585 LS
pszra
PSio
Paraltsdsort
18/s
saons
0
oS /Cell_iDs WiiEdt 78/10s Books/Sales NYC/Pickup
Performance of Parallel Sorting Algorithms in Synthetic Datasets
258/
/s
£ s Aigorithms
1 1PLs
& Psza
2 st
5 e ParslllStdSort
s00M s
0
Uniorm Nom Log Nomal Mix Gauss Exponental

16

Results (Scalability)

ability on Normal Dataset: Number of Keys vs Sorting Rate

5B/s
Algorithms
258/s ILs
_ 527
T s [
5 Learnedsort
S00M /s Stdsort
% ssomys
£ 100M/s
£ somys
250/
10M/s
10K 100K i 10M 100M i
Number of clements (Iog scale)
- Scalability on Normal Dataset: Number of Keys vs Sorting Rate
Algorithms
IPLS
_ asmpe 1Ps2ra
3 1PSdo
s ParallelStdsort
T e
2 soom/s
&
5 2sows
100M/5

™ 1om 100M 18
Number of clements (log scale)

17

Analysis of Results

Sequential
= Learned Sort dominates on synthetic data and IS?Ra dominates
on real-world data
= ILS is competitive with 1S*o and wins in some datasets
= Scalability of ILS and 1S*o is almost identical

Parallel

= IPS*o dominates on all datasets

= IPLS comes second and IPS?Ra comes third

= Can interpret the results as which algorithms creates more
independent subproblems

= Scalability preservers the same relative ordering for the
algorithms, but the overhead of multithreading makes the
parllel version slower than serial version for n < 10°

18

Conclusion

1. IPS*o provides a framework to implement parallel
ML-enhanced sorting

2. We achieved parallel ML-enhanced sorting with linear models
trained with FMCD

3. Advances in the field of Learned Indexes can also benefit

sorting
= Future models will benefit both applications and could
potentially dethrone IPS*o

19

Appendix

20

Machine Learning Models for Sorting

Sample Data — Sort Sample — Train Model — Predict on Keys

Machine Learning Models for Sorting: Concepts

Computing Budget: cost of executing all four phases from
ML-enhanced sorting must be less than or equal to the the cost of
executing Quicksort

CDF Based Models: Partition Based Models:
= Qutput is in [0,1) = Qutput is in
= Goal is to minimize the {0,1,2,...,k—1}
error of the CDF predictions = Goal is related to
= Mean-Squared Error is a minimizing either:
common metric = Average number of
elements

= Maximum number of
elements

Machine Learning Models for Sorting: RMI

Recursive Model Index (RMI): eCDF based model.

A RMI has L levels, and each level i has M; models that recursively
select the model in the next level of the RMI. The output F(x) of
an RMI is a value in [0, 1) that is an approximation for P(A < x).

fi(x) = f‘_(LMifi—l(X)J)(X)

l Key

Model 1.1

s
Model 2.1 Model 2.2 Model 2.3
’—ﬁ ’A_j P E————
Model 3.1 Model 3.2 Model 3.3 Model 3.4 | -

l Position

Stage 3 Stage2 Stage 1

Figure 4: Generic RMI with multiple levels.

Machine Learning Models for Sorting: RMI

RMls in practice are much simpler. They are limited to L = 2 levels,
hence Learned Sort uses an RMI that is closer to:

(x)

Maf D (x)])

F(x)= £

Stage 1

~cubic, cubic, ..

Figure 5: RMI used in practice with two levels.

Stage 2

Machine Learning Models for Sorting: Decison Trees

Decision Trees: partition based model.

Predicts the partition bucket B; for each x; with the property that if
x; < xj, then B; < B;. Used by IPS%o.

Sorted Splitters: Decision Tree a:

|< s0|= s0|< s1|= 51| < s2|= 82| < 53]|= 83| < 54]|= 84| < 55]|= 85| < 56]|= 56]|> 56| L |
¥ 7 T . 7 . T .
=50 =51 =257 =8B =54 =55 =258 =30

Figure 6: IPS%o organizes the pivots in a decison tree structure for quickly finding the correct bucket for an element.

	Appendix

