
Towards Parallel Learned Sorting

Ivan Carvalho
Supervisor: Dr. Ramon Lawrence

Can we do better than Quicksort?

• Performance of Sorting impacts many common operations
• Quicksort can sort an array in O(n log n)

• The lower bound for comparison-based sorting is Ω(n log n)
• Quicksort is the default algorithm available in many

languages/libaries (e.g. C++ STL)

Can we beat Quicksort and push the boundary of sorting
performance?

1

IPS4o

Yes, we can beat Quicksort (albeit it’s not easy).

In-Place Parallel Super Scalar Sample Sort (IPS4o)
• State-of-the-Art Sorting Algorithm
• Generalization of Quicksort: sorting with k pivots
• Implementation has many desirable properties

2

Desirable Properties of IPS4o

• In-Place Partitioning

︸ ︷︷ ︸
b

Buffer

A

b1 b2 b3 b4

b︷ ︸︸ ︷ 1)2)

3)

Figure 1: Example of in-place partitioning IPS4o where
each shade of blue represents elements assigned to a
different bucket and green represents elements never
visited. Instead of placing the elements directly to their
position, IPS4o places them into buffers and flushes the
elements to the array when a buffer becomes full. After,
defragmentation is executed to make the buckets
contiguous. Reprinted from Axtmann et al., 2022.

• Branchless Decision Trees
• Built from αk − 1

samples (oversampling
for k-pivot Quicksort)

• Extremely efficient
implementation of a
decision tree

Sorted Splitters: Decision Tree a:

≤ >

≤ >

≤ >

s0 s1 s2 s3 s4 s5 s6 s3 s1 s5 s0 s2 s4 s6⊥
a1 (s3)

a3 (s5)

a7 (s6)a6 (s4)a5 (s2)a4 (s0)

s6

< s0 = s0 < s1 = s1 < s2 = s2 < s3 = s3 < s4 = s4 < s5 = s5 < s6 = s6 > s6

= S[0] = S[1] = S[2] = S[3] = S[4] = S[5] = S[6] = S[7]

≤ >

≤ > ≤ > ≤ >

a2 (s1)

⊥

Figure 2: IPS4o organizes the pivots in a decison tree
structure for quickly finding the correct bucket for an
element. Reprinted from Axtmann et al., 2022.

3

Desirable Properties of IPS4o

• Parallelism
• Custom task scheduler
• Each task in IPS4o has a parallel implementation

• Reusable Framework
• Code can be reused to implement variants of the algorithm
• In-place Parallel Super Scalar Radix Sort (IPS2Ra)

4

Aside: Learned Indexes

Emerging field using machine learning to create highly efficient
indexes that outperform traditional indexes (i.e. B-Trees)

Some indexes worth mentioning are:

• Recursive Model Index
• Piecewise Geometric Model Index
• RadixSpline
• Updatable Learned Index with Precise Positions

We will talk about ML-Enhanced Sorting. ML-Enhanced Sorting is
intrinsically connected to Learned Indexes and reuses the models
from Learned Indexes.

5

ML-Enhanced Sorting

New paradigm: Machine Learning Enhanced Sorting
Main idea: if there exists a model F that predicts the sorted
position of a key x , we can sort the array in O(n) by moving each
element to its correct location with A[F (x)] = x .

Figure 3: Ideal case of ML-enhanced with a perfect model. Reprinted from Kristo et al., 2020.

6

Challenges of ML-Enhanced Sorting

First challenge: F (x) is not given. However, ML can overcome that:
we sample data and learn F (x).

But what kind of ML is useful to learn F (x)? One possible solution
is to use Empirical Cumulative Distribute Functions (eCDF).

eCDF yields the probability P(A ≤ x) that an element is smaller
than x , hence for an array with N:

pos = F (x) = ⌊N · P(A ≤ x)⌋

7

Challenges of ML-Enhanced Sorting

There are more challenges even after we have F (x):

• Inversions: Pair of elements with a < b but F (a) > F (b)
• Collisions: Pair of elements with F (a) = F (b)

• Collisions are exacerbated when there are many duplicates as it
is guaranteed they will collide at F (x)

8

Learned Sort

Learned Sort 2.0: practical implementation of ML-enhanced
sorting with outstanding performance

• Uses the Recursive Model Index to model the eCDF
• Performs two rounds of partitioning using the model similarly

to IPS4o
• Executes Insertion Sort to correct (very few) mistakes from the

model

Limitations
• Cannot sort strings
• No parallel implementation is available

9

Contributions

We are the first work to interpret IPS4o as a ML-enhanced
algorithm, which has two consequences:

• First consequence is that models from the field of Learned
Indexes can be used to create variants of IPS4o

• Second consequence is that IPS4o provides a framework to
efficiently parallelize ML-enhanced sorting algorithms

We introduce the In-Place Parallel Learned Sorting (IPLS) algorithm
to prove our point. We use a model from Learned Indexes using the
IPS4o framework to achieve parallel learned sorting.

10

Machine Learning Models for Sorting: Linear Models

Linear Models: partition based model.

Described by three parameters: the number of buckets k, the slope
a and the constant term b

F (x) =

0, if ⌊a · x + b⌋ < 0
k − 1, if ⌊a · x + b⌋ ≥ k
⌊a · x + b⌋, otherwise

Consequence of Linear Models: xi < xj → F (xi) ≤ F (xj)

11

Machine Learning Models for Sorting: Linear Models

How do we train a linear model for sorting?
Idea: minimize the maximum number of elements in a bucket.

Fastest Minimum Conflict Degree (FMCD):

• Model used by the Updatable Learned Index with Precise
Positions

• Trains in O(S) for S samples
• Guarantees at most S/3 elements will be in the same partition

• Reasonable to assume at most N/3 elements will be in the
same bucket for the whole array as well

• N
3 bound yields that on average O(log N) recursive partition
steps will be performed no matter what input is given

12

Proposed Algorithm

In-Place Parallel Learned Sorting (IPLS)
IPLS extends IPS4o and has the goal to show that the framework
can be used to implement a parallel version of ML-enhanced sorting:

• IPLS partitions the data in k = 256 buckets using linear
models. It samples αk − 1 random elements from the array
with α = 0.2 log N .

• Then, it trains a linear model on the samples using the FMCD
algorithm discussed earlier. The linear model F (x) is then used
to predict the bucket for each element.

• For n ≤ 212, IPLS uses SkaSort as the base case (fast
RadixSort)

13

Experimental Evaluation

We compare the performance IPLS to other sorting algorithms on a
m5zn.metal instance from AWS. The instance runs a Intel® Xeon®
Platinum 8252C CPU @ 3.80GHz with 48 cores and 192 GB of
RAM. The algorithms we compare against are:

• IPS4o
• IPS2Ra
• Learned Sort
• std::sort

We compare both sequential and parallel settings. For the
sequential case, we refer to the algorithms as IS4o, IS2Ra and ILS.

14

Results (Sequential)

OSM/Cell_IDs Wiki/Edit FB/IDs Books/Sales NYC/Pickup
0

10M/s

20M/s

30M/s

40M/s

50M/s

60M/s

So
rti

ng
Ra

te
(k

ey
s/

se
c)

Performance of Sequential Sorting Algorithms in Real-World Datasets

Algorithms
ILS
IS2ra
IS4o
LearnedSort
StdSort

Uniform Normal Log Normal Mix Gauss Exponential
0

10M/s

20M/s

30M/s

40M/s

50M/s

So
rti

ng
Ra

te
(k

ey
s/

se
c)

Performance of Sequential Sorting Algorithms in Synthetic Datasets

Algorithms
ILS
IS2ra
IS4o
LearnedSort
StdSort

15

Results (Parallel)

OSM/Cell_IDs Wiki/Edit FB/IDs Books/Sales NYC/Pickup
0

500M/s

1B/s

1.5B/s

2B/s

2.5B/s
So

rti
ng

Ra
te

(k
ey

s/
se

c)

Performance of Parallel Sorting Algorithms in Real-World Datasets

Algorithms
IPLS
IPS2ra
IPS4o
ParallelStdSort

Uniform Normal Log Normal Mix Gauss Exponential
0

500M/s

1B/s

1.5B/s

2B/s

2.5B/s

So
rti

ng
Ra

te
(k

ey
s/

se
c)

Performance of Parallel Sorting Algorithms in Synthetic Datasets

Algorithms
IPLS
IPS2ra
IPS4o
ParallelStdSort

16

Results (Scalability)

10K 100K 1M 10M 100M 1B
Number of elements (log scale)

10M/s

25M/s

50M/s

100M/s

250M/s

500M/s

1B/s

2.5B/s

5B/s

So
rti

ng
Ra

te
(k

ey
s/

se
c)

(lo
g

sc
al

e)

Scalability on Normal Dataset: Number of Keys vs Sorting Rate

Algorithms
ILS
IS2ra
IS4o
LearnedSort
StdSort

1M 10M 100M 1B
Number of elements (log scale)

100M/s

250M/s

500M/s

1B/s

2.5B/s

5B/s

So
rti

ng
Ra

te
(k

ey
s/

se
c)

(lo
g

sc
al

e)

Scalability on Normal Dataset: Number of Keys vs Sorting Rate

Algorithms
IPLS
IPS2ra
IPS4o
ParallelStdSort

17

Analysis of Results

Sequential
• Learned Sort dominates on synthetic data and IS2Ra dominates

on real-world data
• ILS is competitive with IS4o and wins in some datasets
• Scalability of ILS and IS4o is almost identical

Parallel
• IPS4o dominates on all datasets
• IPLS comes second and IPS2Ra comes third
• Can interpret the results as which algorithms creates more

independent subproblems
• Scalability preservers the same relative ordering for the

algorithms, but the overhead of multithreading makes the
parllel version slower than serial version for n < 106

18

Conclusion

1. IPS4o provides a framework to implement parallel
ML-enhanced sorting

2. We achieved parallel ML-enhanced sorting with linear models
trained with FMCD

3. Advances in the field of Learned Indexes can also benefit
sorting

• Future models will benefit both applications and could
potentially dethrone IPS4o

19

Appendix

20

Machine Learning Models for Sorting

Sample Data → Sort Sample → Train Model → Predict on Keys

Machine Learning Models for Sorting: Concepts

Computing Budget: cost of executing all four phases from
ML-enhanced sorting must be less than or equal to the the cost of
executing Quicksort

CDF Based Models:
• Output is in [0, 1)
• Goal is to minimize the

error of the CDF predictions
• Mean-Squared Error is a

common metric

Partition Based Models:
• Output is in

{0, 1, 2, . . . , k − 1}
• Goal is related to

minimizing either:
• Average number of

elements
• Maximum number of

elements

Machine Learning Models for Sorting: RMI

Recursive Model Index (RMI): eCDF based model.

A RMI has L levels, and each level i has Mi models that recursively
select the model in the next level of the RMI. The output F (x) of
an RMI is a value in [0, 1) that is an approximation for P(A ≤ x).

fi(x) = f (⌊Mi fi−1(x)⌋)
i (x)

Model 1.1

Model 2.1 Model 2.2 Model 2.3

Model 3.1 Model 3.2 Model 3.3 Model 3.4

…

…

St
ag

e
3

St

ag
e

2
 S

ta
ge

 1

Position

Key

Figure 4: Generic RMI with multiple levels.

Machine Learning Models for Sorting: RMI

RMIs in practice are much simpler. They are limited to L = 2 levels,
hence Learned Sort uses an RMI that is closer to:

F (x) = f (⌊M2f (1)
1 (x)⌋)

2 (x)

linear

cubic
1

cubic
2

cubic
n...

Stage 1

Stage 2

Figure 5: RMI used in practice with two levels.

Machine Learning Models for Sorting: Decison Trees

Decision Trees: partition based model.

Predicts the partition bucket Bi for each xi with the property that if
xi < xj , then Bi ≤ Bj . Used by IPS4o.

Sorted Splitters: Decision Tree a:

≤ >

≤ >

≤ >

s0 s1 s2 s3 s4 s5 s6 s3 s1 s5 s0 s2 s4 s6⊥
a1 (s3)

a3 (s5)

a7 (s6)a6 (s4)a5 (s2)a4 (s0)

s6

< s0 = s0 < s1 = s1 < s2 = s2 < s3 = s3 < s4 = s4 < s5 = s5 < s6 = s6 > s6

= S[0] = S[1] = S[2] = S[3] = S[4] = S[5] = S[6] = S[7]

≤ >

≤ > ≤ > ≤ >

a2 (s1)

⊥

Figure 6: IPS4o organizes the pivots in a decison tree structure for quickly finding the correct bucket for an element.

	Appendix

