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1 Introduction

Transaction management in a multidatabase environment is extremely costly due to network transmission

costs and the handling of replicas. Conventional databases enforce consistency by strict locking and commit

protocols which guarantee that the data is always consistent and trustworthy. Implementation of these

protocols in a distributed environment using global locking and two-phase commit, provide the necessary

consistency at a much greater cost. In a multidatabase environment with cooperating but not necessarily

entirely trusting databases, enforcing this consistency across all databases is not only inefficient but also

undesirable.

As an alternative to these strict protocols, varying levels of update privileges and consistency constraints

are needed which allow the database administrator to determine, at the data item level, the degree of sharing

and consistency of the data. There will always be critical data which must be consistent across all sites and

therefore require global synchronization protocols, but most data in a multidatabase environment is not of

that nature and accesses to it can be less controlled.

The basic problem is that updates in a distributed database environment are expensive[4, 5]. The

transmission costs associated with an update transaction are significant even with today’s high speed

networks, but more importantly, global locking, especially with replicated data, lowers the concurrency at
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all sites containing the updated data. Updating a data item replicated across many sites may block hundreds

of local or global read transactions at the participating sites. Thus, enforcing serializability reduces overall

concurrency.

One alternative is to allow transactions to proceed even while a global update is occurring. The

transactions are not guaranteed to get the most recent data; they are only guaranteed to get the most recent

committed value at their site. Thus, the newly updated data item becomes available to local or global queries

at a given site as soon as that site commits the update, regardless if other sites in the update transaction

commit the update. This has the possibility of introducing inconsistencies in the database, but allows the

DB more autonomy on how it handles updates and is especially useful when the level of trust between the

cooperating DBs is low. Allowing this "unrestricted parallelism" requires a reconciliation mechanism to

recompute data item values which become inconsistent.

The common goal of centralized databases where all information is consistent, current and globally

agreed upon is unrealistic in a multidatabase environment. A database is an abstraction of a person’s or

organization’s view of the world. Therefore, it is as complicated to reconcile multiple database views of the

world as it is for a group of people to agree on their environment. In such a situation, it is not possible to

agree on every data item at every point of time, but it is often possible to agree on most things most of the

time. Adding or updating information in this environment should not be done atomically. Rather, it falls to

the DBMS or database administrator (DBA) to reconcile new information into their particular view of the

environment and accept it based on age, structure, and trustworthiness of its source.

Databases participating in a multidatabase environment should be given the autonomy to preserve

their view of the world even when this may make them inconsistent with the views of other databases.

The concurrency control mechanisms should be flexible enough to allow global locking between trusted

databases on critical data items and still permit cascading[14, 11, 10] and voluntary updates on non-critical

information.
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This paper is organized as follows. Section 2 describes the background work that has been done in the area

and an explanation of why current solutions are unacceptable for a real system. A general MDBS architecture

common to many of the current solutions is presented in conjunction with appropriate definitions for the

MDBS environment. Section 3 defines serializability and justifies relaxing the serializability requirement

in this environment. The general MDBS architecture presented in Section 2 is modified in Section 4 into

a system which no longer supports global serializability. Section 5 discusses an algorithm for updating

independently updatable attributes based on the previous architecture. Finally, future work and concluding

remarks are given in Sections 6 and 7.

2 Background Work

According to Breitbart[2], the major task of transaction management in a multidatabase environment is

"ensuring the global consistency and freedom from deadlocks of the multidatabase system in the presence

of local transactions (i.e. transactions executed outside of the multidatabase system control) and in the

face of the inability of local DBMSs to coordinate execution of multidatabase transactions (called global

transactions) under the assumption that no design changes are allowed in local DBMSs."

A multidatabase is a collection of one or more autonomous databases participating in a global federation

for the exchange of data. The basic multidatabase system (MDBS) architecture in Figure 1 consists of a global

transaction manager (GTM) which handles the execution of global transactions (GTs) and is responsible

for dividing them into subtransactions (STs) for the local database systems (LDBSs) participating in the

MDBS. Each LDBS in the system has an associated global transaction server (GTS) which is assumed to

convert the subtransactions issued by the GTM into a form usable by the LDBS. Certain algorithms also rely

on the GTS for concurrency control and simulating features that the LDBS does not provide. Each LDBS

is assumed to be autonomous meaning that no modifications to it are allowed, although many algorithms

assume the LDBS to have certain properties. Finally, local transactions not under the control of the GTM
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are allowed at each LDBS as if the LDBS was not participating in the MDBS.

Both local and global transactions consist of a finite set of read/write operations to database items

and an abort or commit termination condition. Local transactions involve only data stored at one LDBS,

while global transactions are allowed to access data at multiple LDBSs. It is generally assumed that each

LDBS provides a concurrency control mechanism assuring serializable and deadlock-free schedules. This

guarantees local serializability as local transactions and subtransactions of global transactions are serialized

at each site. According to Breitbart[3], "a global schedule is globally serializable if and only if there exists

a total order defined over the committed global transactions that is consistent with the serialization order

of committed global transactions at each of the local DBMSs." Basically, there must exist some order of
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committing the global transactions such that at each LDBS the subtransactions of the global transactions can

be committed in this order. Global serializability can be verified by unioning the local serialization graphs

at every site and verifying that the global serialization graph produced is acyclic.

Research in transaction management for multidatabase systems has proceeded in 3 general directions:

� Weakening autonomy by placing restrictions on the local databases

� Enforcing serializability by using local conflicts

� Relaxing serializability constraints by defining alternative notions of correctness

The implications and algorithms for each technique are discussed.

2.1 Weak Autonomy for LDBS

One approach to the transaction management problem is weakening the autonomy restriction on the local

databases. Obviously if this weakening is carried out to the extreme, the problem becomes the same as the

much simpler problem in distributed databases. There has been some research[12] on the minimal control

information of the local databases that can be shared to improve the concurrency of the system, but a more

common approach is to assume each local database has certain properties.

One algorithm proposed by Breitbart et al.[2] assumed that each LDBS uses strict-2PL as its concurrency

control mechanism. Global serializability is used as a correctness criterion, and the two-phase commit

protocol is used for global commits. In this algorithm, the GTM does not commit any subtransactions until

all reads and writes of the global transaction are completed at all sites. Using this rule and the fact that all

local databases use strict-2PL is enough to guarantee global serializability. Unfortunately, the algorithm

is not fault tolerant during global commits. For fault-tolerance, the data items must be divided into two

mutually exclusive classes. One class consists of globally updatable items, and the other class contains

locally updatable items. A global transaction that updates may write only globally updatable items and may

not read locally updatable items. This data item partitioning and restriction on global transactions is also
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a common feature of quasi serializability methods. A global deadlock problem is introduced by the global

transactions holding locks for their duration and must be detected. The algorithm also needs each database

to support the prepare-to-commit state. The prepare-to-commit state is reached when the transaction is

about to commit but is waiting for an external signal to tell it to commit. Once a transaction is in the

prepare-to-commit state, the LDBS cannot abort the transaction.

The algorithm has low concurrency. Since a global transaction holds all its locks at all local sites

until all its processing is done at all sites, it may block many other local and global transactions at other

sites. This is especially restrictive with long-running or large global transactions that access many sites

and may be subject to network delays. Detecting global deadlock is a constant problem and results in

significant overhead. Finally, the fault-tolerant version and its partitioning of data items introduces the same

problem found with quasi serializability algorithms, which is that this partitioning is difficult and introduces

restrictive constraints on local and global transactions. Breitbart does state some other problems with the

algorithm including the fact that few commercial databases support the prepare-to-commit state, that it is

difficult to know how long to stay in the prepare-to-commit state, and that security issues arise.

According to Breitbart[2], "if all the local DBMSs of a multidatabase system would use the strict two-

phase locking protocol and ... the two-phase commit protocol ... then the problem of transaction management

in such [a] multidatabase system would be trivially solved, even in the presence of failures." This is a bold

statement which holds some validity as the simple algorithm he presented does solve the transaction

management problem. Unfortunately, if this algorithm (and many of the others) were implemented on a

real system, they would not work because of the very low concurrency. Even in Breitbart’s "utopian world"

of local database uniformity, the algorithm presented locks too many data items for too long and would not

scale well in a production system.
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2.2 Enforcing serializability by using local conflicts

Another approach proposed by Georgakopoulos et al.[9, 13, 8] is to enforce serializability by using tickets

at each local database. A ticket is a counter used to determine the relative serialization order of the

subtransactions at each LDBS. It is effectively a timestamp stored as a data item in the LDBS. Each

subtransaction is required to take-a-ticket which corresponds to reading the ticket value and incrementing

it. The concurrency control algorithm then allows all subtransactions to proceed at all sites but will only

commit a global transaction if the ticket values have the same relative order in all LDBSs.

A detailed description of the algorithm on a global transaction G is:

� The global transaction manager (GTM) sets a timeout and submits the subtransactions (STs) of G to

the LDBSs.

� Once all STs are in a prepare-to-commit state at every participating LDBS, validate using a Global

Serialization Graph (GSG) test. The nodes of this graph are "recently" committed transactions (no

transaction older than the current oldest running transaction), and an edge Gi ! Gj exists if at least

one of the subtransactions of Gi came before (had a smaller ticket than) a subtransaction of Gj in

some LDBS.

� The GSG initially contains no cycles. Add a node for G and insert the appropriate edges. If there is

no cycle, then G is committed at all sites, otherwise it is aborted and restarted. (G is also aborted if

any of its subtransactions fail.)

This method is called the Optimistic Ticket Method (OTM) because it allows transactions to proceed

unobstructed in the assumption that no conflicts will arise. OTM guarantees global serializability if:

� LDBSs guarantee local serializability.

� Each global transaction has only one subtransaction per site.

� LDBSs provide primitives to support a prepare-to-commit state.

This method appears very elegant as it requires only one data item per LDBS and preserves the autonomy

of the LDBSs. Also, it makes very little assumptions on the power of each LDBS, except for the prepare-

to-commit state which is not a common feature of many legacy database systems.
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Unfortunately, the algorithm has many hidden problems. If the GTM handles many global transactions,

especially large transactions involving multiple sites, the optimistic method may lead to many global

transaction conflicts and aborts. There is no method of guaranteeing transaction execution for older

transactions so livelock is possible. Using a prepare-to-commit state always introduces the problems of

knowing how long to stay in this state and the detection of problems. Another problem is that the ticket at

each local site becomes a bottleneck for all global transactions. Every global transaction must access the

ticket causing many conflicts and long waiting periods in heavy load situations. The ticket may be locked

by a subtransaction for long periods of time as it does not release its lock until all other subtransactions of

the global transaction have completed their operations and are in the prepare-to-commit state.

To address the issue of global transaction abort, a Conservative Ticket Method (CTM) was introduced.

CTM eliminates global restarts because the transactions are ordered such that it is never necessary to abort

a transaction based on a ticket conflict. CTM assumes a relative order that the transactions take tickets in

all LDBSs. The algorithm requires a prepare-to-Take-a-Ticket (p-T-a-T) state. A subtransaction enters this

state after it completes all its database operations before requesting a ticket and leaves the state when it

reads the ticket value. The algorithm is as follows:

� Proceed the same as OTM allowing arbitrarily interleaving at LDBSs until the subtransaction enters

the p-T-a-T state.

� The global transactions G1; G2; : : : ; Gn are given a relative serialization order.

� The subtransactions of Gi+1 must wait for all subtransactions of Gi to be in the p-T-a-T state and take

a ticket before they can take a ticket.

CTM avoids global transaction rollback but greatly reduces concurrency and results in an almost serial

execution of global transactions. Other variations to the ticket method are proposed when the LDBSs

guarantee strict schedules or have other properties. One variation[1] assigns timestamps to each global

transaction and uses the ticket as a global timestamp storing the timestamp of the last committed global
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transaction at that site. A global transaction is aborted if it has a timestamp less than the timestamp at a local

database that it is accessing. The algorithm insures that the global transactions are serialized in timestamp

order and is also deadlock-free. Unfortunately, it still has the same problems as the basic ticket method

including limited concurrency, a hot spot at the ticket item, and the possibility of global transaction aborts.

In conclusion, the ticket method is elegant for its simplicity and few restrictions on the LDBSs, but the

method is not practical in typical systems due to the concurrency restrictions in some implementations or

frequent transaction aborts in other implementations.

2.3 Quasi and Two-Level Serializability

It has been debated that serializability is too strict a correctness criterion especially for multidatabase

systems. Quasi serializability[6, 7] is a less restrictive definition of database consistency. An execution is

quasi serializable if:

� Local executions are conflict serializable.

� The execution is equivalent to a quasi serial execution in which global transactions are executed

sequentially. (i.e. For any 2 global transactions Ti, Tj in the sequential ordering where Ti precedes

Tj in the ordering, then all Ti operations precede all Tj operations in all local schedules in which they

both appear.)

To determine if a schedule is quasi serializable, construct a quasi serializability graph (QSG) and

determine if it is acyclic. The QSG has nodes representing global transactions and an edge Ti ! Tj iff Ti

conflicts (precedes) Tj in some local schedule or some transitive conflict such as oi(x); o1(x); o1(y); o2(y);

: : :,ok(t); ok(z); oj(z) and a local schedule L = oi(x); : : : ; o1(x); : : : ; ok(t); : : : ; ok(z); : : : ; oj(z); : : :exists.

Quasi serializability works by seperating interations between local and global transactions. Local

transactions are serializable at each LDBS, and the GTM serializes global transactions. To achieve this

separation, the local databases are assumed to be disjoint (have no data items in common), and it is assumed

that no data dependencies exist between data items at different sites accessed by the same global transaction.
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To remove the data dependencies across sites, the data items are separated into global and local data items

and access to them is restricted. There is an algorithm to enforce quasi serializability, but there is no efficient

algorithm to determine the data dependence property. The set of schedules that are quasi serializable is a

strict superset of the schedules that are conflict serializable. Quasi serializability is not studied in depth

because later research yielded two-level serializability (2LSR) which accepts a superset of the schedules

accepted by quasi serializability.

Two-level serializability[3] partitions the data into global and local data in attempt to eliminate problems

satisfying database constraints. A database constraint is an external restriction placed on the data items

of the database forcing them to always have certain properties. For example, restricting all bank balances

to be positive is a constraint that could be put on a bank database which must always be enforced by the

DBMS. Both quasi and two-level serializability try to find alternative ways of satisfying these constraints

besides using conflict serializability. There are three types of constraints in a MDBS:

� Local - involve only local data at one site

� Global - involve only global data but may span multiple sites

� Global/Local - involve both local and global data at one site

Each LDBS serializes access to its local data, and the GTM serializes access to global data. The major

restriction in 2LSR is that local transactions may not modify global data. This is because global data may

be involved in database constraints than span multiple sites (global constraints) and a local transaction

has no interaction with these other sites to enforce them. Schedules that are 2LSR preserve all local

and global/local database constraints, but global constraints will only be satisfied by imposing rules on

transactions like forbidding global transactions from accessing local data. Satisfying all local and global

constraints results in a strongly correct schedule where the final state is consistent and the state read by each

transaction is consistent. Unfortunately, strongly correct executions may not be a strong enough consistency

guarantee for some applications.
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Two-level serializability has many desirable properties. By separating local and global data, the

concurrency of local transactions operating on local data is not directly effected by global transactions

(except for sharing LDBS computing power). The GTM can manage the global data efficiently in a

manner similar to a distributed database. Two-level serializability may not be suitable for large numbers of

databases or partially trusting databases, but it is a promising method for integrating legacy systems in a

small environment like a company or department.

The major drawback of 2LSR is implementing the local/global data division. With existing local

databases, only global data need be added, but even this may result in data replication and complicated

re-engineering. It may not be a trivial task to separate local and global data especially when the number of

databases participating in the MDBS is large. Nevertheless, 2LSR is the most of practical of the schemes

described so far as it is fairly easily implemented and allows good concurrency.

2.4 Real World Implementations

Multidatabase systems in the real-world tend to be custom systems with little generality. Work in industry in

the distributed database field has headed towards providing loose consistency. Loose consistency guarantees

the primary copy of the data is correct and propagates the changes to the replicas, which may not be consistent

all the time. One system proposed by Sybase[14] provides loose consistency in an open system approach,

meaning that no assumptions are made on the type and capabilities of the databases participating in the

overall system. The system supports loose consistency by maintaining the primary copies of the data,

continually scanning the transaction log to detect updates, and then passing the updates to the replicas.

Allowing replicas to be inconsistent for a period of time seems to be the only practical way of implementing

a distributed database environment.
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3 Serializability and its Problems

The long-held benchmark for defining the correctness of concurrent transaction execution has been seri-

alizability. Formally, a schedule is serializable if it is conflict equivalent to some serial schedule. Two

schedules are conflict equivalent if the ordering of any two conflicting operations is the same in both

schedules. Two operations conflict if they are from two different transactions, operate on the same data

item, and one of them is a write. A schedule is globally serializable if all local schedules are serializable

and there exists an ordering of committing global transactions such that all subtransactions of the global

transactions are committed in the same relative order at all sites.

Many very efficient and practical algorithms for enforcing serializability in the centralized environment

have been defined such as two-phase locking and timestamping. These algorithms can also be extended

to operate in the distributed environment with reasonable additional overhead. The problem of enforcing

serializability efficiently in a multidatabase environment is still open. It appears unlikely that any efficient

algorithm will be found because the multidatabase environment represents a fundamental conceptual shift

from the centralized or distributed environments.

The interaction of autonomous databases is the distinguishing factor for a multidatabase. When au-

tonomous entities participate in any form of exchange, there are disagreements, as each entity has its own

view and method of working. In a centralized environment, one entity controlled all transactions, so it was

fairly easy to guarantee serializability. In a distributed environment, multiple entities control transactions,

but they were all working towards the same goal and were willing to compromise their autonomy for a

unified system. There is a real-world analogy between a distributed database and a bee-hive. In a bee-hive,

each bee has a predefined job for the hive and sacrifices autonomy for the betterment of the hive. Simi-

larly, distributed sites sacrifice their autonomy to the distributed system by sharing control information and

cooperating to implement concurrency control and recovery algorithms. In a MDBS, each database has

its own methods of concurrency control, data representation, and consistency constraints and is unwilling
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to sacrifice them for the "global good." Serializability is hard to enforce because each entity is allowed to

proceed in parallel on its own terms. The solutions previously presented enforce global serializability either

by restricting the types of transaction access, assuming certain capabilities of the local databases, or by

enforcing some global protocol to restrict the actions of the local databases. These methods are infeasible

because of their restrictions, high overhead, and low concurrency.

It is questionable that serializability is suitable for the multidatabase environment. With the lack of

efficient algorithms despite intense research, the answer appears that serializability is not suitable for a

MDBS. The reason why is apparent by examining the real-world analogy between a MDBS and a group of

people. A group of people fits the definition of a MDBS perfectly if the word "database" is replaced by the

word "person." Each person is an autonomous unit with local data who interacts with other people in the

environment to exchange information. In a society, people proceed in parallel with few external restrictions

or explicit communication yet meaningful work gets done. It is impossible to serialize these interactions as

they are very dependent on timing and independent decisions on different views of the data. This parallelism

may involve working on incorrect assumptions or data, doing useless work, or backtracking based on new

information, but it is the best method that we as individuals have come up with to get the most done with

uncertain and incomplete information. This "human parallelism" involving assumption, parallel work, and

backtracking or recomputation to resolve inconsistencies or mistakes may be a useful model for a MDBS.

There are more practical reasons why serializability is hard to support in a MDBS. First, the distances

involved in communication and the widely differing processing power of the databases are major issues.

Regardless of network speed, there are many messages that must be sent to multiple databases to enforce

consistency. If every transaction was instantaneous, then updates would not be overly costly and high

concurrency is possible. Unfortunately, network communication slowing transactions and long-running

transactions increase the time of transactions, which hold data items longer, and consequently reduce

concurrency. Another factor is the number of databases participating in the MDBS may be large. For
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example, all the databases on the World Wide Web could be considered a multidatabase if a cooperation

protocol was invented. Finally, enforcing serializability assumes that all databases cooperate completely in

the MDBS. It weakens local database autonomy by assuming that every update by a global transaction must

be accepted regardless of its source or content. Autonomous entities always associate a trust factor with

incoming information and may reject it for internal concerns. Current protocols assume totally cooperating

databases when in reality, a real-world MDBS would most likely consist of loose federations of databases

which exchange information based on their mutual trust. Allowing local databases to control the access to

their own data preserves autonomy but violates serializability as each local database can choose to abort or

commit a globally committed transaction. This introduces inconsistencies in the global view and brings up

the fundamental question of what does a global transaction mean.

4 A MDBS Architecture not supporting Serializability

4.1 General Overview

This section defines a multidatabase environment that does not support serializability based on the analogy

of "human parallelism". Specifically, any update by a global transaction can be rejected by any local

database without invalidating the global transaction. This results in a global view which may be inconsis-

tent. However, local serializability is preserved and local constraints at each site are satisfied. An optimistic

concurrency control mechanism allows local databases to proceed with little intercommunication. This lim-

ited synchronization results in temporary inconsistencies and makes it necessary to provide a reconciliation

method to make data consistent.

A local database in the MDBS guarantees local consistency and propagates changes to other databases

in the MDBS which have the ability to accept or reject these changes. The global view is inconsistent

during the update propagation and local information at a given site is inconsistent or stale until the update
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propagates to the site. It is the responsibility of the GTS of the local database to reconcile this external

update with local information. In the case of conflicts, some sort of transaction semantics must be passed

with the update so the GTS can make an informed decision on how this reconciliation can be achieved. This

is a hard but necessary problem if the data is not to degenerate into something totally unusable.

The meaning of a global transaction must be redefined for this environment since the global view is

inconsistent. Using the real-world analogy of a group of people, a global transaction corresponds to asking

the group, or a subset of the group, a question and evaluating the response. Assuming the question is a

read-only transaction, the correct answer depends on the user’s needs. There are several options including

taking the most recent value, the most agreed upon value, or a value recommended by the most trusted

person (database). The semantics of an update global transaction is more complex as inconsistent global

data may be used to update local data and cause inconsistencies in local data. One method might be

to use the local data of the database(s) involved in the update, so that the update does not violate their

local constraints. We have no solution at this time, and the solution will probably depend on how strictly

the consistency constraints of the local databases are to be enforced. A simple algorithm for write-only

transactions (global or local) is presented in Section 6 involving independently updatable attributes. An

independently updatable attribute can be updated without reading its previous value, and its update has

no effect on other values in the database.

4.2 The Consistency/Concurrency Trade-off

Relaxing consistency in a non-serializable MDBS results in greater concurrency and if handled properly, will

result in little change in correctness of applications using the database. The consistency/concurrency trade-

off arises in all aspects of life with database and computer applications greatly biased to the consistency side.

The basic idea is that a lot can be done in parallel if you are willing to make mistakes. A common constraint

on all computer systems since their creation is that they be flawless, even though in reality this reliability
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is hardly achievable. Database design has always started from the premise that a database is consistent and

transactions move the database from one consistent state to another. In fact, a production database is subject

to human errors, and the data contained within is often inconsistent, stale, and unnecessary. The DBMS

maintains strict serializability of transactions to "preserve" consistency in the system in a more rigorous

fashion than external operators validate database information and its usefulness as an abstraction of reality.

In a centralized system, enforcing serializability and consistency is easy using two-phase locking. Most

transactions are short, the data is readily available, and maintaining consistency is achievable with little

overhead and good concurrency. A distributed system adds the additional overhead of network access

and the complexity of distribution, but the algorithms still maintain consistency with good concurrency by

taking advantage of the cooperation between the sites. In a MDBS, the concurrency is low because of all the

synchronization overhead. The solution is to sacrifice consistency of data in a reasonable way. The level

of consistency is highly dependent on the application. Banks for example would want high consistency for

bank balances.

Many data items in the MDBS do not need rigorous consistency and others can have the type of

transactions on them limited to allow for greater concurrency. Addresses, names, and other vital statistics

are slow changing values in the real-world which often have no effect on other data items when changed.

These independently updatable attributes are easily kept consistent using update propagation. Other data

items, such as a bank balance, can be kept consistent by restricting operations performed on them. For

example, addition and subtraction operations always commute, so concurrent updates can proceed in parallel

and the "true" consistent value can be obtained at different sites by applying the transaction operations in

any order. Studying the types of data items and operations that relaxing consistency is suitable for would

be an interesting topic, as would determining how to handle operations that do not commute. Basically,

varying levels of consistency should be definable for different data items to allow for increased concurrency.

The level of consistency can be defined by the DBA of each LDBS. The consistency level is dependent on
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other databases, so this must be defined externally by DBAs of cooperating LDBS and can be enforced by

the GTS of each database.

4.3 Architecture Overview

The MDBS architecture is the same as in Figure 1. The exact operation of the MDBS will not be totally

defined here as it is specific to the concurrency control algorithm supported. Assumptions needed to support

the architecture are presented along with a mechanism to support "federations" between databases in the

MDBS efficiently.

The assumptions of the architecture include:

� No violation of LDBS autonomy. (No assumption of control information or concurrency control

mechanism.)

� The GTM exists at one site (for simplicity) which can store all needed control information and can be

itself considered a database.

� Each LDBS guarantees local serializability and recovery.

� The DBA is responsible for defining the GTS for a given LDBS and adding the additional information

to the exported schema needed by the GTM. (This includes defining the trustworthiness of other

LDBS participating in the MDBS.)

� A canonical form of data representation agreed upon between the GTS and GTM exists such that the

GTM has an integrated global schema of the local schemas. The GTS maps this global conceptual

schema into a suitable local schema by converting the subtransactions sent from the GTM into local

transactions for the local database.

The GTM has similar functionality as discussed in Section 2. The GTM is responsible for breaking

global transactions into subtransactions for the local databases and merging the results returned from the

GTSs. The functionality of the GTM is increased because of the possible inconsistencies in the global view.

Thus, a mechanism for specifying global transactions must consider timeliness and trustworthiness of data.
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Such a mechanism is highly dependent on the concurrency control mechanism chosen and the requirements

of the global transactions.

Finally, the definition of a transaction must change. Define the read set (RS) of a transaction as the set

of database values read by the transaction. Define the external set (ES) as the set of values used by the

transaction for its computation that exist external to the database. A transaction T is a program consisting of

a sequence of read/write operations, a commit or abort termination operation, a timestamp of its submission,

and a computational formulation of its execution sequence such that for every value x written to the database

there exists some function f(RS,ES) which determined the value x.

Capturing semantics of transactions is difficult. The previous definition of a transaction is a compromise

between full transaction semantics and blind acceptance of updates. If a local database has the ability to

reject a global update, it should know as much about the transaction as possible. A function representing the

decisions to determine the update may be achievable using compiler technology without the need to define

transaction semantics. The function and the transaction timestamp can be used to determine timeliness of

data, order of execution, and possible recomputation to reconcile inconsistencies in data. Recomputation is

the method humans perform to reconcile new data with existing data. The goal is to achieve parallelism in a

MDBS by allowing greater concurrency and using recomputation to fix inconsistencies. The algorithm for

updating independent updatable date items does not rely on this recomputation as updating these data items

does not effect other database values, but a general concurrency control algorithm must deal with data item

dependencies and have a means of reconciling inconsistencies.

4.4 Architecture Discussion

There are several key issues that arise when implementing this architecture. The most complex of which

is specifying the level of trust at the data item level that a local database assigns to all other participating

databases in the MDBS. This specification is very similar to a federated database system where scalability

18



is an issue. At some level, trust must be specified as a federation, but it is infeasible for each LDBS to

define a distinct export schema for every other LDBS in the MDBS. A solution is possible if we assume

that the number of federations in a MDBS is small compared to the number of participating databases. It is

highly unlikely that a given database would be "federated" with more than 20 distinct databases in a MDBS

which have update privileges. The much larger set of read-only access federations and no federations can

be grouped into two categories saving needless duplication. A single schema specifying all federations for

a given local database can be defined in the GTS as follows:

� The export schema in the GTS is the entire local schema in the LDBS. (Assume mapping from LDBS

representation to canonical form of GTS.)

� Each attribute in the export schema has two 32-bit bitmasks representing 32 levels of read/write

access. A one in the k-bit (0 � k � 31) position (level) indicates a transaction of k priority can access

that attribute. Note that the levels are not hierarchical. A transaction T with access at level k+1 is not

allowed to access an attribute with access level k unless T also has access to level k.

� Two levels are special in the bitmasks. Level 0 indicates unrestricted global access. Level 31 indicates

no global access is allowed for this attribute. Any other level can be used by DBAs of cooperating

databases to specify a federation on that attribute.

� Each transaction is assigned two bitmasks representing its read/write access. A GTS for a given

LDBS compares these bitmasks with the attribute bitmasks to determine if the transaction will be

accepted by the LDBS.

For example, assume 3 LDBSs decide to share attribute x. The DBAs define the federation by assigning

attribute x Level 1 read and write access in the 3 GTSs. Also in each GTS, the 2 other participating LDBSs

are defined to have Level 1 access, so any transaction updates originating from these databases are accepted

by the others. Thus, a federation on x between these 3 LDBSs is defined and only those databases have

access to it. At any time, the federation can be changed by any DBA without modifying the export schema

by adding or removing Level access priorities at their site.
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This method allows a LDBS to specify a maximum of 30 attribute level federations (extendable by

defining a large bitmask). As a general observation, most attributes will have Level 0 (unrestricted global

access or read-only global access) or Level 31 (no global access). Since each LDBS will likely participate

in a few federations, defining the federations in this manner is easier than defining an export schema for all

databases in the MDBS. In terms of expressive power, any size federation can be specified for a given level.

For example, it is possible to have 100 LDBSs sharing data item x at a given level. Also, the federations on

attributes tend to be clustered. Most attributes are shared between two databases or none at all. It is unlikely

that the attributes would need to be partitioned into many different access levels within a federation. Thus,

the method should be feasible in a general environment.

Another concern is specifying the read/write access bitmasks for a transaction. If an update is being

propagated globally from a local update, then the access priorities are the same as the access priorities for

the local database that originated the update. If a global transaction is performing the update, the problem is

more complex. The access priority could be defined as the logical OR of the access priorities of all databases

which the user has access to. In that case, the GTM must have some mechanism to keep track and verify

user access at all databases. For simplicity, each GTS keeps track of all local users for its system which

are assigned individual access priorities. A global transaction must be specified as originating from some

database. The access priority of this database is then used for the global transaction. Finally, this method

is not secure when considering local database security. A user is assumed to have full access to any local

database that he can access, which may not be the case. This user is then allowed to access other databases

in the federation at a higher priority than deserved. Some mechanism for integrating the two access levels is

needed. Accessing the export schema as defined is not intended to be secure if malicious users or databases

are in the MDBS but is merely a demonstration of how a schema can be shared without complete global

sharing or defining an export schema for each LDBS participating in the MDBS. Protocols implementing

security would be interesting future work.
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Finally, a new overhead is introduced as each data item has an associated timestamp to determine its

timeliness. These timestamps are managed by the GTS as items in the local database and may take up

considerable space.

5 Handling Independently Updatable Attributes

As defined previously, an independently updatable attribute is a stateless attribute that is not involved in

any data dependencies. These attributes can be modified without regard to their previous value, and their

modification has no effect on other database values. A method for updating these attributes is as follows:

� For local transactions, their execution is unchanged. On commitment of a local transaction T, the

GTS determines the write set of T and assigns the timestamp of T to be the time of commitment.

The GTS passes the timestamp, write set, and the local database identifier to the GTM which then

distributes the update to sites containing data in the write set.

� For global transactions, the timestamp is the time of submission and the local database identifier is

explicitly stated by the user. The write set is extracted from the transaction and passed with the

timestamp and local database identifier to the update sites.

� For both local and global transactions, the GTS of a local database has the write set, the timestamp

of the transaction, and can calculate the write access of the transaction based on the local database

identifier and the privileges assigned by the DBA in the GTS. If the transaction has write access to

the attribute(s), for each attribute x in the write set the GTS:

– Reads and locks x.

– Reads timestamp, TS, for x.

– if TS < transaction timestamp then write(x)

The goal is to have each LDBS accept the most-recent value for the data item. By assuming that no

data dependencies exist, the problem of updating other data items are eliminated. Interesting future work

would be to determine a method of handling data dependencies in general or in the specific case where

most databases agree that a given data item is independently updatable but some do not. Notice that global
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serializability is violated as a data item may have different values in different databases depending on the

timing of transaction execution. The method attempts to serialize transactions in time-based order under the

assumption that more recent transactions contain newer information, but does not guarantee that this will

always be the case.

6 Future Work

The methods for transaction management defined so far are unacceptable in a real-world environment. A

general architecture based on the "human parallelism" model was presented, but it is the very preliminary

stages. The feasibility of the architecture still must be justified, and its semantics more precisely defined.

Allowing global inconsistencies requires a new and more precise definition of a global transactions and the

interaction with local data. It must be shown that a suitable reconciliation algorithm can be defined for

attributes with local and global data dependencies and that the period of inconsistency of data is acceptable

to applications using the system.

7 Conclusion

An overview of serializability in a MDBS was presented. Current algorithms to enforce serializability

have high overhead and low efficiency. The usefulness of serializability as a correctness criterion for

multidatabases was debated, and an architecture not enforcing global serializability was introduced. A

method for updating independently updatable attributes based on this architecture was given. In conclusion,

serializability is hard to support in a MDBS so an alternative method was discussed which worked with

on incomplete or stale knowledge and used recomputation to reconcile inconsistencies introduced by the

increased parallelism of the local databases.
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