
UNIVERSITY of MANITOBA

Automatic Conflict Resolution to Integrate Relational Schema

A dissertation submitted in partial satisfaction of the

requirements for the degree of

Doctor of Philosophy

in

Computer Science

by

Ramon Lawrence

May 2001

Automatic Conflict Resolution to Integrate Relational Schema

Copyright 2001

by

Ramon Lawrence

ii

Acknowledgements

I want to thank my family for being supportive over all these years, especially my

beautiful wife, Carri, and my mother, Gloria. I would also like to recognize the tireless efforts

of my supervisor, Dr. Ken Barker, and the committee for evaluating this work. Finally, I

am very appreciative to funding agencies such as NSERC, TRLabs, and the University of

Manitoba whose financial support made this thesis possible.

iii

Abstract

Automatic Conflict Resolution to Integrate Relational Schema

by

Ramon Lawrence

With the constantly increasing reliance on database systems to store, process,

and display data comes the additional problem of ensuring interoperability between these

systems. On a wider scale, the World-Wide Web (WWW) provides users with the ability to

access a vast number of data sources distributed across the planet. However, a fundamental

problem with distributed data access is the determination of semantically equivalent data.

Ideally, users should be able to extract data from multiple sites and have it automatically

combined and presented to them in a usable form. No system has been able to accomplish

these goals due to limitations in expressing and capturing data semantics.

Schema integration is required to provide database interoperability and involves

the resolution of naming, structural, and semantic conflicts. To this point, automatic schema

integration has not been possible. This thesis demonstrates that integration may be increas-

ingly automated by capturing data semantics using a standard dictionary.

This thesis proposes an architecture for automatically constructing an integrated

view by combining local views that are defined by independently expressing database se-

mantics in XML documents (X-Specs) using only a pre-defined dictionary as a binding

between integration sites. The dictionary eliminates naming conflicts and reduces semantic

conflicts. Structural conflicts are resolved at query-time by translating from the semantic

integrated view to structural queries. The system provides both logical and physical access

transparency by mapping user queries on high-level concepts to schema elements in the

underlying data sources. The architecture automatically integrates relational databases,

and its application of standardization to the integration problem is unique.

The architecture may be deployed in a centralized or distributed fashion, and

preserves full database autonomy while allowing transparent access to all databases partic-

ipating in a global federation without the user’s knowledge of the underlying data sources,

their location, and their structures. Thus, the contribution is a system which provides

iv

system transparency to users, while preserving autonomy for all systems. A distributed

deployment allows integration using a web browser, and would have a major impact on how

the Web is used and delivered.

The integration software, Unity, is the bridge between concept and implementa-

tion. Unity is a complete software package for the construction and modification of standard

dictionaries, parsing of database schema and metadata to construct X-Specs, combining X-

Specs into an integrated view, and for transparent querying. Integration results obtained

using Unity illustrate the usefulness of the approach.

v

Contents

List of Figures ix

I Introduction 1
I.1 Motivation . 1
I.2 Thesis . 2
I.3 Overview of Thesis . 3
I.4 Example Databases . 3

II Background 5
II.1 Database Interoperability and Schema Integration 5

II.1.1 Schema Integration . 8
II.1.2 Data Integration . 10

II.2 Schema Integration Taxonomy . 11
II.3 Integration Methodologies . 16

II.3.1 Early Algorithms and Heuristics 17
II.3.2 Schema Transformations . 21
II.3.3 Language-Level Integration 23
II.3.4 Logical Rules and Artificial Intelligence Approaches 26
II.3.5 Global Dictionaries and Lexical Semantics 29
II.3.6 Industrial Systems and Standards 31
II.3.7 Wrappers, Mediators, and Interoperability Architectures . . . 34

II.4 Integration and Semantics . 38
II.4.1 General Semantic Integration Methodology 38

II.5 Remaining Challenges and Future Directions 41

III Integration Architecture 43
III.1 Integration Architecture Overview . 43
III.2 Standard Dictionary . 46

III.2.1 Top-level Standard Dictionary Terms 48
III.2.2 Constructing Semantic Names 51

III.3 X-Spec - A Metadata Specification Language 55
III.4 Integration Algorithm . 58

III.4.1 Concept Promotion . 62

vi

III.4.2 The Context View as a Universal Relation 62
III.5 Query Processor . 65
III.6 Dynamic View Construction . 66

III.6.1 Enumerating Semantic Names 66
III.6.2 Determining Relevant Database Fields and Tables 67
III.6.3 Determining Join Conditions 68
III.6.4 Query Extensions . 75
III.6.5 Generation and Execution of SQL Queries 76

III.7 Automatic View Integration . 77
III.7.1 Global Keys and Joins across Databases 77
III.7.2 Result Normalization at Query-Time 78
III.7.3 Query Examples . 80
III.7.4 Comparison with SQL . 82

IV Unity - The Architecture Implementation 85
IV.1 Unity Overview . 85
IV.2 The Global Dictionary Editor . 86
IV.3 The X-Spec Editor . 90
IV.4 The Integration Algorithm . 93
IV.5 The Query Processor . 94

V Architecture Contributions and Discussion 98
V.1 Architecture Contributions . 98
V.2 Implementation Applications . 99

V.2.1 Multidatabases and Data Warehouses 99
V.2.2 World-Wide Web . 99

V.3 Integration Validity . 100
V.4 Automatic Conflict Resolution . 102
V.5 Architecture Discussion . 105

VI Integration Examples 107
VI.1 Combining Two Order Databases . 107
VI.2 Comparison Shopping on the WWW 109
VI.3 Integrating the Northwind and Southstorm Databases 114

VI.3.1 Creating an X-Spec for the Northwind Database 114
VI.3.2 An X-Spec for the Southstorm Database 119
VI.3.3 Integrating the Southstorm and Northwind Databases 119

VII Conclusions and Future Work 124
VII.1 Contributions and Conclusions . 124
VII.2 Directions for Future Work . 128

Bibliography 131

A Unity Standard Dictionary Classes 142

vii

B Unity Metadata Classes 144

C Unity X-Spec Classes 146

D The Integration Algorithm 149

E Unity Schema Classes 153

F Unity Query Classes 155

G The Standard Dictionary 159

viii

List of Figures

I.1 Northwind Database Schema . 4
I.2 Southstorm Database Schema . 4

II.1 MDBS Architecture . 6
II.2 Fundamental Integration Taxonomy . 12
II.3 Integration Inputs Taxonomy . 14
II.4 Integration Product Taxonomy . 15
II.5 Selected Wrapper, Mediator and Interoperability Systems 35
II.6 General Integration Methodology . 39

III.1 Integration Architecture . 44
III.2 Top-level Dictionary Terms . 49
III.3 Constructing a Semantic Name . 53
III.4 Southstorm X-Spec . 57
III.5 Integration Algorithm . 60
III.6 Southstorm Integrated View . 61
III.7 Field Selection Algorithm . 69
III.8 Join Graph for Northwind Database . 70
III.9 Cyclic Join Graph for Northwind Database 72
III.10 Algorithm to Calculate Join Paths . 74
III.11 Dependency Tree for Orders tb in Southstorm Database 79
III.12 Normalized Dependency Trees for Orders tb in Southstorm Database . . 80

IV.1 Editing a Global Dictionary in Unity . 88
IV.2 Editing an X-Spec in Unity . 91
IV.3 Integrating a Schema in Unity . 94
IV.4 Querying in Unity . 96

V.1 Conflicts Resolved by Architecture . 103

VI.1 Order X-Spec . 108
VI.2 Integrated View . 108
VI.3 Books-for-Less X-Spec . 111
VI.4 Cheap Books X-Spec . 112

ix

VI.5 Integrated View of Books Databases . 112
VI.6 Integrated View of Books Databases with Different X-Specs 113
VI.7 Southstorm X-Spec . 119
VI.8 Northwind X-Spec Part 1 . 120
VI.9 Northwind X-Spec Part 2 . 121
VI.10 Northwind/Southstorm Integrated View Part 1 122
VI.11 Northwind/Southstorm Integrated View Part 2 123

x

Chapter I

Introduction

I.1 Motivation

Interoperability of database systems is becoming increasingly important as orga-

nizations increase their number of operational systems and add new decision-support sys-

tems. The construction, operation, and maintenance of these systems is complicated and

time-consuming and the complexity grows quickly as the number of systems increases. Inte-

grating diverse data sources is required for interoperability. Schema integration is involved

in constructing both a multidatabase system (MDBS) and a data warehouse (DW). Both of

these architectures are finding more applications because they allow high-level, transparent

access to data across multiple sites and provide a uniform, encompassing view of the data

in an organization. Thus, a method for simplifying schema integration would be of great

theoretical and practical importance.

On a wider-scale, the World-Wide Web is a massive source of information dis-

tributed across the globe. This information is exchanged and displayed using the stan-

dardized protocol TCP/IP and the language HTML. However, the information in these

web pages is far from standardized. Web users are still responsible for finding, and more

importantly, deciphering the vast quantities of data presented to them. By presenting a

framework for capturing data semantics, it is more likely that databases that were never

intended to work together can be made to interoperate. This is especially important on the

WWW where users want to access data from multiple, unrelated sources.

Although algorithms have been proposed for schema integration, none are suffi-

ciently automated for real-world implementations as they either require database designers

1

CHAPTER I. INTRODUCTION 2

to explicitly integrate knowledge between all data sources or are not sufficiently automated

to integrate many, diverse data sources in a timely fashion. Manual integration processes do

not scale well when the number and size of the databases increases. Industry standards have

been proposed as a bridge measure to ensure systems can at least communicate knowledge.

These systems achieve increased automation by acceptance of restrictive standardization.

This work combines these two ideas by using standardization to increase automation but

still allows high flexibility by utilizing intelligent integration algorithms.

All applications require a notion of data semantics. Although it is not immediately

apparent, capturing the meaning of data is fundamental in any computer system. Comput-

ers simply store, process, and display information. Computer systems have been developed

in a user-centric way which assumes the user or designer is responsible and able to define

and appreciate the data semantics inherent in a web page, data warehouse, or database

table. As our systems grow larger and interoperate across networks, it is becoming increas-

ingly difficult for users and programmers to fully understand the semantics of the data and

applications they use and develop, and the vast numbers of other data sources that they

interact with daily.

This thesis shows how to describe database semantics in a system-centric way

which allows the computer system to determine the semantics of the data it processes, and

thus free the user from this mundane task. By using data semantics, a schema integration

methodology is proposed which is a foundation component in an overall architecture to

support database interoperability.

I.2 Thesis

The goal is to define a system capable of automatically integrating relational

database schemas and resolving naming, structural, and semantic conflicts. The system

preserves full autonomy of the underlying databases which have no direct knowledge of

their participation in a global system. The architecture allows transparent querying of all

data sources participating in a global federation without the user’s knowledge of the under-

lying data sources, their location, and their structures. Thus, a key contribution is a system

which provides system transparency to users, while preserving autonomy for all systems.

The integration architecture automatically resolves conflicts inherent in the schema

integration problem. The model integrates database systems into a multidatabase using

CHAPTER I. INTRODUCTION 3

XML [100] and contains four main components: a standard term dictionary, an XML-based

metadata specification language (X-Specs), an integration algorithm for combining X-Specs

into an integrated view, and a query processor for resolving structural conflicts at query-time

and integrating results. A software package, Unity, is developed which demonstrates the

model’s functionality. The architecture contribution is the merging of industry standards

with new research algorithms to create an automatic schema integration methodology used

for the construction of integrated schemas for multidatabases and integrating data sources

on the World-Wide Web.

I.3 Overview of Thesis

This thesis describes the integration architecture and its conflict resolution capa-

bilities. Background information on schema integration and a taxonomy classifying inte-

gration techniques is in Chapter 2. Chapter 3 details the integration architecture, which

utilizes a standard dictionary for identifying similar concepts, a specification language (X-

specs) used to exchange metadata on systems, an integration algorithm for combining the

metadata specifications together into a unified schema, and a query processor for query exe-

cution and result presentation. The implementation issues for the architecture components

in Unity are discussed in Chapter 4. A discussion of the architecture including its conflict

resolution capabilities, applications, and comparisons with other systems is presented in

Chapter 5. Integration examples and results using Unity are in Chapter 6, and the thesis

closes with future work and conclusions in Chapter 7.

I.4 Example Databases

Two database schemas are referenced throughout this thesis to illustrate key ideas.

The standard Northwind database provided with Microsoft Access c© is given in Figure

I.1. The other sample database, called Southstorm, is a fictional order database which is

poorly designed and non-normalized. The Southstorm schema is shown in Figure I.2. As a

convention used throughout this thesis, field and table names appear in text as table name

or field name. Later, as we introduce semantic names for database elements and describe

the implementation, C++ class names and semantic names are in the form: semantic name

and C++ class name. The semantic name mappings are provided in Section VI.3.

CHAPTER I. INTRODUCTION 4

Tables Fields
Categories CategoryID, CategoryName, Description, Picture
Customers CustomerID, CompanyName, ContactName, ContactTitle, Address,

City, Region, PostalCode, Country, Phone, Fax
Employees EmployeeID, LastName, FirstName, Title, TitleofCourtesy, BirthDate,

HireDate, Address, City, Region, PostalCode, Country, HomePhone,
Extension, Photo, Notes, ReportsTo

OrderDetails OrderID, ProductID, UnitPrice, Quantity, Discount
Orders OrderID, CustomerID, EmployeeID, OrderDate, RequiredDate,

ShippedDate, Shipvia, Freight, ShipName, ShipAddress, ShipCity,
ShipRegion, ShipPostalCode, ShipCountry

Products ProductID, ProductName, SupplierID, CategoryID, QuantityPerUnit,
UnitPrice, UnitsInStock, UnitsOnOrder, Reorderlevel, Discontinued

Shippers ShipperID, CompanyName, Phone
Suppliers SupplierID, CompanyName, ContactName, ContactTitle, Address, City,

Region, PostalCode, Country, Phone, Fax, HomePage

Figure I.1: Northwind Database Schema

Tables Fields
Orders tb Order num, Cust name, Cust address, Cust city, Cust pc, Cust country,

Emp name, Item1 id, Item1 qty, Item1 price,
Item2 id, Item2 qty, Item2 price

Figure I.2: Southstorm Database Schema

Chapter II

Background

II.1 Database Interoperability and Schema Integration

The interoperability problem involves combining two or more database systems

into a coherent, integrated system. At first glance, it appears that the interoperability

problem is a straightforward extension of distributed database systems. Unfortunately,

providing interoperability between systems is considerably more challenging than building a

distributed database system. The primary difference in these two architectures is autonomy.

In a distributed database system, a single database is designed to be distributed

across a network. There is typically only one implementation of the database software which

is distributed along with the data. Thus, a distributed system does not typically handle

heterogeneity in the database software and its underlying protocols. More importantly, a

common assumption in distributed database design is the database software at each network

node has knowledge of others which cooperate in processing transactions. This implies that

query scheduling and transaction management is often a cooperative effort between the

distributed sites. Another fundamental difference is the data is organized and agreed upon

between the distributed sites. These systems distribute the data mostly for performance.

They assume that the database schema is designed to facilitate this distribution, and the

data is transacted in such a way that consistency is guaranteed.

The interoperability problem applies to a multidatabase system. Amultidatabase

(MDBS) is a collection of autonomous databases participating in a federation to exchange

data. A multidatabase is different than a distributed database because of database system

autonomy. Autonomy is the independent operation of a database system even though it

5

CHAPTER II. BACKGROUND 6

may be participating in a global federation. Autonomy implies that no changes are allowed

to the implementation, operation, or structure of the database to enable its participation

in the MDBS. A more thorough description of autonomy issues is provided by Barker [7].

The basic multidatabase system (MDBS) architecture (see Figure II.1) consists of

a global transaction manager (GTM) which handles the execution of global transactions

(GTs) and is responsible for dividing them into subtransactions (STs) for submission to the

local database systems (LDBSs) participating in the MDBS. Each LDBS in the system has

an associated global transaction server (GTS) which converts the subtransactions issued

by the GTM into a form usable by the LDBS. Certain algorithms also rely on the GTS

for concurrency control and simulating features, such as visible two-phase commit, that the

LDBS does not provide. Each LDBS is autonomous so modifications are not allowed. Many

proposed algorithms assume the LDBS exhibits certain properties which may violate the

principle of full autonomy. Finally, local transactions, not under the control of the GTM,

are allowed at each LDBS as if the LDBS was not participating in the MDBS.

GTM

LDBS1 LDBS2 LDBSn

GTS GTS GTS

LTs
LTs

...

GT GT...

Subtransactions

...

Figure II.1: MDBS Architecture

Global transactions are posed using the global view constructed by integrating the

local views provided by each LDBS. A local view may be a subset of the entire local view

for the LDBS. Schema integration involves taking the local views provided by the LDBSs

CHAPTER II. BACKGROUND 7

and combining them into a global view by resolving any conflicts between them.

Since databases participating in a multidatabase are automonous, this introduces

several new issues not present in a distributed architecture. First, protocols must handle

database heterogeneity. Autonomous databases are not assumed to be implemented on the

same operating system or have similar architectures, transaction management protocols,

or even data models. Second, since each database is still required to accept local transac-

tions related to its primary function, in addition to global transactions originating from its

participation in the global federation, the issue of transaction management becomes more

complex. Lastly, the knowledge contained in each database must be integrated to provide

an integrated view of the data across all databases. This integration of schemas and data is

especially complicated. There are surveys [92, 69] of the issues involved in the construction

and operation of multidatabase systems and federated systems available.

Providing database interoperability using a multidatabase architecture can be di-

vided into two largely orthogonal problems:

• Schema and data integration - the process of combining multiple database schema
into an integrated view (schema integration) and then matching the individual data
instances and types accordingly (data integration)

• Transaction management - the definition of protocols to allow transactions to be effi-
ciently executed on multiple database systems without modifying the existing systems
(preserving full autonomy)

Constructing an integrated view is difficult because data sources will store different

types of data, in varying formats, with different meanings, and reference it using different

names. Subsequently, the construction of the integrated view must handle the different

mechanisms for storing data (structural conflicts), for referencing data (naming conflicts),

and for attributing meaning to the data (semantic conflicts). Data in individual data sources

must be integrated at both the schema level (the description of the data) and the data level

(individual data instances). Schema integration is the process of combining database

schemas into a coherent, integrated view. Data integration integrates information at the

data item level. This involves such tasks as comparing keys to ensure that they represent

the same entity in different databases, handling spatial or temporal data, or combining

similar data items stored in different formats.

CHAPTER II. BACKGROUND 8

Transaction execution in a multidatabase must maintain consistency in the un-

derlying data sources. Local and global transactions simultaneously query and update

databases. Since the databases have no knowledge of their participation in the MDBS,

transaction management software at the global level is required to preserve consistency.

Global transaction managers maximize concurrency and performance while maintaining

consistency.

Work on transaction management in multidatabase architectures includes Barker’s

algorithm [6] and serialization using tickets [38]. We have simulated several such algorithms

in previous work [61] and have determined via these simulations that Barker’s algorithm is

more efficient in practice. The simulation results are surprising because Barker’s algorithm

is a more serial approach than the Ticket method. Massive parallelism of global transactions

causes escalating conflicts and delays which reduces overall system performance compared

to more regulated, serial-like transaction execution.

Systems which do not allow updates at the global level do not require global level

transaction management to co-ordinate updates across systems. The architecture proposed

in this thesis is a query-only system. Thus, global transaction management is an issue that

will not be further discussed.

II.1.1 Schema Integration

Schema integration is often required between applications or databases with widely

differing views of the data and its organization. Thus, integration is hard because conflicts

at both the structural and semantic level must be addressed. Further complicating the

problem is that most systems do not explicitly capture semantic information. This forces

designers performing the integration to impose assumptions on the data and manually inte-

grate various data sources based on those assumptions. Therefore, to perform integration,

some specification of data semantics is required to identify related data. Since names and

structure in a schema do not always provide a good indication of data meaning, it often

falls on the designer to determine when data sources store related or equivalent data.

Schema integration challenges arise due to differences in how the data is repre-

sented and stored. The task of integrating systems with different views is difficult, and

CHAPTER II. BACKGROUND 9

there are many factors that cause schema diversity [8, 36]:

• Different user or view perspectives.

• Equivalence among model constructs. For example, a designer uses an attribute in
one schema and an entity in another.

• Incompatible design specifications (eg. cardinality constraints, bad name choices).

• Common concepts may be represented differently, although they may be identical,
equivalent, compatible, or incompatible.

• Concepts may be related by some semantic property arising only by combining the
schemas (interschema properties).

Integration conflicts can be classified into three general categories:

• Naming conflicts - occur when systems do not agree on names for concepts.

– Homonym naming problem - the same name is used for two different con-
cepts.

– Synonym naming problem - the identical concept is referenced using two or
more different names.

• Structural conflicts - arise when data is represented using different models, model
constructs, or integrity constraints.

– Model diversity problem - data represented using different models (hierar-
chical, relational, object-oriented).

– Type conflicts - using different model constructs to represent equivalent data.

– Dependency conflicts - contrasting concept interrelationships in schemas (eg.
relationship cardinality, participation)

– Key conflicts - different keys for the same entity.

– Behavioral conflicts - different insertion/deletion/update policies for the iden-
tical concept.

– Interschema properties - schema properties that only arise when schemas are
combined.

• Semantic conflicts - occur when the meaning of the data is not consistent. This
often arises due to differing “world views”.

A survey by Kim [50] of structural conflicts in relational SQL is available. In

this work, structural conflicts are categorized into schema and data conflicts. Schema

conflicts include representational conflicts such as handling the situation when a data item

CHAPTER II. BACKGROUND 10

is represented as a table in one schema and as an attribute in another. Schema conflicts

also include naming, constraint, and cardinality conflicts. Data conflicts include missing or

incorrect data and different data representations (format, units, etc.).

Integrating the Northwind and Southstorm databases illustrates these potential

conflicts. Type conflicts are the most common. For example, the notion of an ordered

item is represented as an attribute of a relation in the Southstorm database and a record-

instance of a relationship in the Northwind database. This representational difference causes

a dependency conflict as the Northwind database can store any number of items per order,

while the Southstorm database can store only two. Both the order and item ids are only

unique within each database which causes both a key conflict (the order tables do not have

the same key) and an interschema conflict as the order id is no longer unique when the

two databases are combined into an integrated system. Finally, a customer can be added

to the Northwind database without association with an order whereas a customer can only

be added to the Southstorm database with an order and may be added redundantly. This

behavior is the result of the poor normalization of the Southstorm database and represents

a behavioral conflict between the two systems.

Due to the wide-ranging types of conflicts, it has been argued [26] that automatic

schema integration is not feasible.

II.1.2 Data Integration

Data integration is the process of combining data at the entity-level and is chal-

lenging because similar data entities may not have the same key. Combining data instances

involves entity identification (determining which instances are equivalent), resolving at-

tribute value conflicts (two different values for the same attribute), and handling data

conflicts related to field types, sizes, precision, and scaling factors. Entity identification

[66] determines the correspondence between object instances from more than one database.

Common methods for determining entity equivalence can be grouped into four areas:

• Key equivalence techniques - assumes a common key between records. This is
especially useful when records have a globally accepted key such as a social security
number for a person or a product SKU number for a retail item.

CHAPTER II. BACKGROUND 11

• User specified equivalence - has a user performing the record matching algorithm.
This manual solution only works with small record sets.

• Probalistic approaches - based on some probability function, match equivalent
records. The integration accuracy depends on the matching algorithm which may only
use portions of the key (probabilistic key equivalence) or use all common attributes
(probabilistic attribute equivalence). Both approaches are subject to incorrect and
undetected matches.

• Knowledge-base approaches - use heuristic rules, prior matching information, or
other metadata to increase the probability of correct matchings.

Data integration is further complicated because attribute values may be range

values. For example, parametric data is spatial as values vary from one point in space to

another. Temporal data is a special case of parametric data. Integrating such data may be

extremely complex. Work on data integration includes Lim’s work on entity identification

[66], using evidential reasoning to resolve attribute conflicts [67], and combining data in

parametric databases [35].

Automated data integration using a variant of SQL [90] is possible by attaching

context information to simple data values. This context information is stored using defined

names and values, so that comparisons between data values under different contexts is

possible. A set of conversion functions is defined to convert from one context to another.

For example, context information on a stock price includes currency value and scaling factor,

and a conversion function can convert a currency between U.S. dollars and Canadian dollars.

Using a form of SQL called Context-SQL (C-SQL), these conversions are automatically

applied transparently within a query or as requested by the user within the query. This

data integration work can be incorporated into any algorithm which implements schema

integration.

II.2 Schema Integration Taxonomy

Three taxonomies are developed in this research for categorizing schema integra-

tion methodologies. The fundamental taxonomy (see Figure II.2) describes the integration

algorithm, while two secondary taxons categorize the inputs to the integration algorithm

(see Figure II.3) and its outputs (see Figure II.4).

CHAPTER II. BACKGROUND 12

manual

NONE

automatic (static)

automatic (dynamic)

Conflicts Resolved

naming interschemastructural semantic all

Automation Level

semi-automatic

Complex

Logical rules

Schema Transformations

Heuristic algs.

Language interface

Global Dictionary

Methodology

Figure II.2: Fundamental Integration Taxonomy

The fundamental taxonomy has three categorizing axes: resolved conflicts, method-

ology, and automation level. The ability of an integration methodology to resolve conflicts

is fundamental as schemas will be developed under different data models and ideologies.

This results in both structural and semantic conflicts between schemas. Ideally, a schema

integration method resolves all conflicts including naming, structural, and semantic con-

flicts. The power of the integration method is measured by the types of conflicts that it

resolves and is a measure of system applicability. Each method resolves or assumes away

these conflicts.

The methodology used to perform the integration is the second classifier. Vari-

ous methodologies such as heuristic algorithms, language-level integration, wrappers and

mediators, AI approaches, and shared dictionary algorithms are proposed. The integration

CHAPTER II. BACKGROUND 13

methodology is intimately connected with the other classification categories. For exam-

ple, if the integration methodology is a language interface, this naturally implies that the

automation level is manual and that the types of conflicts resolved are dependent on the

programmer. Further, the system will demonstrate no transparency.

A historical classification category [8] which divides algorithms based on how the

schemas are combined (eg. one at a time, binary, all at once, etc.) is not included because

it has limited distinguishing properties except for early heuristic algorithms. Most recent

techniques attempt to combine schemas on an as needed basis and not all at once. Thus,

this classifier is a very special case of the methodology classifier.

The automation level measures the ability to automate the integration procedure.

Automation level is a strong distinguishing characteristic because many algorithms are not

suitable for large-scale integrations. Without automation, a human designer is required

to resolve conflicts which is costly and error prone. Automation involves minimal user

interaction and hides integration complexity from users and designers whenever possible.

Thus, it is a form of transparency to the integrator.

The three characteristics of resolved conflicts, methodology, and automation level

form a fundamental integration taxonomy. However, integration algorithms are further

categorized by the inputs they assume or process and their output result after integration is

completed. Although the integrationmethodology commonly affects the inputs and outputs,

different algorithms employing similar integration techniques may vary dramatically in the

types of inputs they use and the results they obtain.

The input taxonomy (see Figure II.3) characterizes methods based on the inputs

to integration including the types of databases combined and their assumed construction.

The integration sources axis distinguishes what types of data representations the integra-

tion algorithm handles including legacy applications, relational databases, object-oriented

databases, or a diverse mixture of data sources. Ideally, an algorithm should handle a di-

verse mixture of data sources, but some algorithms only target a particular type of data

source and then rely on schema translation to convert other data sources into a standard

form. The two other classification categories are metadata content and metadata structure.

Metadata content is the type of metadata used by the algorithm including structural and

CHAPTER II. BACKGROUND 14

operational metadata. The metadata structure categorizes how this metadata is stored

and represented in the system. Metadata may be in the form of logical rules, relations, or

complex objects. Metadata source, referring to how metadata is gathered by the system, is

a possible axis, but current methods are mostly manual so it is a poor classifier.

Sources
Integration

Metadata Structure

Metadata Content

applications +
legacy systems

relational
DBs

semantic
models

OODBS diverse
mixture

complete

limited

structural

operational

NONE

complex

rules

relations

objects

Figure II.3: Integration Inputs Taxonomy

The integration product taxonomy (see Figure II.4) classifies the end result af-

ter integration is performed and how this result is used. Most integration methodologies

are designed to provide a consistent, global view, but others may also provide transaction

management. End-user transparency is a key distinguishing property of schema integration

techniques. Transparency measures how well the integration result hides the system com-

plexity from the user and application. Automation in the fundamental taxonomy measures

the integration transparency, or the user’s involvement during integration, which differs from

end-user transparency that measures how isolated a user querying the integrated systems is

CHAPTER II. BACKGROUND 15

from their implementation and distribution characteristics after integration. Systems which

do not produce a global view generally have poor transparency.

NONE

Transparency (Use)

structural

behavioural

both

Integration Result

global view

integration rules

consistency or global view with
transaction management

Figure II.4: Integration Product Taxonomy

There are two key forms of transparency: structural transparency and behav-

ioral transparency. A system which provides structural transparency hides the integration,

distribution, and organization characteristics of the MDBS. These systems hide the data

structure from the user which manipulates data at a higher conceptual level. Most central-

ized databases provide good structural transparency as the user is abstracted away from

most data organization characteristics. In a MDBS, the user must also be hidden from

distribution and integration conflicts to provide true structural transparency. Behavioral

transparency is a measure of the system’s ability to hide database operational character-

istics from the user. In a centralized database, the scheduling of transactions is hidden

from the user and is a form of behavioral transparency. In a MDBS, behavioral trans-

parency also includes masking distributed updates, handling replication and migration, and

updating component database systems using global transactions. Behavioral transparency

is challenging to achieve as it requires a system executing global transaction updates while

propagating those updates to the local databases as required.

CHAPTER II. BACKGROUND 16

Consistency and integration rules are less desirable than a global view for trans-

parency because they are often context-dependent and integration specific. Moreover, these

rules often relate local database sources to each other, instead of relating local database

sources to a global view. Without a mapping to some form of global view, the rules become

dependent not only on changes to the local database, but to other databases referenced

by the rules. These rules do not scale well when data sources are added or removed from

the system and do not provide the application with a complete, coherent view. Rather,

the “global view” must be extracted by using the rules to achieve mappings between the

diverse data sources. For example, in combining the Southstorm and Northwind databases,

a logical rule could associate the Orders tb table with the Orders table. Although this has

the same logical affect as building an integrated view with both tables, the system must

process this rule during query execution to obtain the combination of the two tables. As the

number of rules increases, the complexity of processing these rules increases dramatically,

especially if the user must be aware of their existence during query submission.

In summary, the fundamental integration taxonomy, along with special taxons

categorizing integration inputs and outputs, classifies work on schema integration. Some of

the axes are interrelated by nature. For instance, the integrationmethodology often dictates

the automation level and the end-user transparency. The goal of all integration algorithms

is to obtain high automation characteristics with high end-user transparency regardless of

how these results are achieved.

II.3 Integration Methodologies

There are various techniques for performing schema integration. This section cat-

egorizes previous work and discusses any shortcomings. The variety of approaches includes

heuristic algorithms, rules and knowledge-base approaches, using lexical semantics, and the

definition of integration languages. Industrial-level work defines standard languages, wrap-

pers, mediators, and protocols to aid the integration process. An early survey by Batini

et al. [8] is one of the few surveys in this area. A more recent survey [83] characterizes

the problems and issues in database integration with limited focus on categorizing and ex-

CHAPTER II. BACKGROUND 17

plaining the various solutions. The sample databases and classification taxonomy are used

in these following sections to review the proposed solutions categorized by methodology as

follows:

• Early Algorithms and Heuristics - including relational, functional, and semantic
canonical models and early heuristic algorithms.

• Schema Transformations - including schema re-engineering (using transformations
to convert schemas) and object-oriented transformations.

• Language-Level Integration - using query languages and programming interfaces
to achieve integration.

• Logical Rules and AI approaches - using logical rules, knowledge bases, or on-
tologies to maintain consistency and store sufficient metadata for integration.

• Global Dictionaries and Lexical Semantics - using a standard dictionary of terms
to describe and integrate knowledge. Related to lexical semantics and expressing
semantics in free-form language.

• Industrial Systems and Standards - real-world implementations and standards
designed for communication and integration including XML [100].

• Wrappers, Mediators, and Interoperability Architectures - provide query ac-
cess to distributed databases and web information sources although the focus is more
on query processing than integration.

II.3.1 Early Algorithms and Heuristics

The earliest and most common methods of schema integration are based on seman-

tic models that capture database information. The semantic models are then manipulated

and interpreted, often with extensive user intervention, to perform the integration.

An early survey [8] of these model-based methods remains one of the few surveys in

the area despite continuing research. These methods define procedures and heuristic algo-

rithms for schema integration in view integration (producing a global view in one database)

and database integration (producing a global view from distributed databases). Their goal

is to “produce an integrated schema starting from several application views that have been

produced independently.” [8]

Early pioneers in the integration area were quick to enumerate the potential dif-

ficulties in their task. They recognized the problems of varying user perspectives, using

CHAPTER II. BACKGROUND 18

different model constructs, and determining equivalent structures representing an identical

concept. The methodology typically consisted of four steps:

• Pre-integration - analyzes schemas before integration to determine the integration
technique, order of integration, and to collect additional information.

• Schema comparison - compares concepts and searches for conflicts and interschema
properties.

• Conforming the schemas - resolves schema conflicts.

• Merging and restructuring - merges and restructures the schemas so they conform
to certain criteria.

Numerous algorithms followed these basic steps to produce integrated schemas that

were judged on the basis of completeness, correctness, minimality, and understandability.

Unfortunately, most of these algorithms exhibit minimal automation and often rely on the

user to manually find and resolve schema conflicts. The inputs to the system consisted of

the enterprise view, some database assertions (constraints), processing requirements, and

mapping rules from component schemas to an integrated schema.

Early integration techniques can be classified in one of two ways: relational models

or semantic models. In relational models, integrators made the Universal Relation Assump-

tion which allowed them to ignore naming conflicts. The Universal Relation Assumption

[71] says that a single relation can be defined that contains all attributes from all rela-

tions. This implies that every attribute in the database has a unique name, which allows

algorithms to use the relational model’s set properties. Semantic models dealt more with

conflicts and did not assume certain naming characteristics or design perspectives as in the

relational models. Thus, the task of integration using semantic models is more difficult but

more realistic.

The diversity of models overviewed [8] is extensive, but one important fact summa-

rized their effectiveness: “...among the methodologies surveyed, none provide an analysis or

proof of the completeness of the schema transformation operations from the standpoint of

being able to resolve any type of conflict that can arise.” In short, early work on schema in-

tegration clearly defined the problems and proposed some heuristic algorithms that assisted

designers in their attempts to integrate diverse schemas.

CHAPTER II. BACKGROUND 19

Semantic models are surveyed in depth by Hull and King [44]. The ER-model is

probably the best known semantic model. Semantic models have rich techniques for data

representation, but are best utilized by database designers and are not specifically designed

to automate database integration. Semantic models are better than relational models be-

cause they achieve better separation between the conceptual and physical views of the data,

have decreased semantic overloading of relationship types, and have more convenient ab-

straction mechanisms. Although semantic models are suited for data description, they are

inadequate for integration because they are not designed for the task.

Model-based methods use a canonical model to represent the global view. Database

schemas are mapped into the canonical model and integrated. The suitability of data

models as canonical models is discussed by Saltor et al. [88] who present a taxonomy of

desirable features required by a canonical model. Saltor et al. [88] argue that object-

oriented models are better canonical models than ER-models (semantic models) because of

their expressiveness and ability to capture additional semantic information not in component

schemas. The issue of the best canonical model remains an open question.

Other modeling techniques considered for the canonical model include DAPLEX

[93] and SDM [42]. DAPLEX is a data definition and query language based on the functional

data model. The model uses functions to describe the database. Queries are formulated by

combining functions defined on the database that return the requested results. DAPLEX

allows very general functions to be defined including aggregation functions, functions rep-

resenting subtype/supertype relationships, and functions that return derived data and con-

ceptual abstractions. Such mechanisms allow the system to support different user views and

to manipulate metadata. This generality could allow DAPLEX to be used as a database

front-end and function as a universal query language. Unfortunately, using DAPLEX for

integration is limited because naming and structural conflicts cannot be readily handled.

Thus, specialized functions are required to map between data sources. Although this map-

ping is achievable using DAPLEX, it is a manual process highly susceptible to schema

changes and must be applied between all databases being integrated.

The Semantic Data Model (SDM) [42] defines a database as a collection of entities

organized into classes. A SDM class is a meaningful collection of entities and attributes.

CHAPTER II. BACKGROUND 20

Database classes are logically related by interclass connections which are similar to relation-

ships in other models. The ability to define complex interclass connections and associate a

semantic meaning with their definition gives SDM its descriptive power. Interclass connec-

tions may be defined as subclass connections relating two classes by a subclass/superclass

relationship or by grouping connections which relate classes based on grouping conditions

that may be based on attribute values or entities present in other classes. Attributes in

different classes are related by defining attribute interrelationships and are accessed from dif-

ferent base classes using mappings based on these interrelationships. Thus, a SDM schema

consists of base classes of “real-world” entities augmented with derived classes using inter-

class connections. This structure allows SDM to capture more semantic data about the

database during its construction.

The major weakness of SDM is the difficulty in reconciling name differences. SDM

stores data semantics intrinsically by the definition of the derived classes. However, the

derived classes often have very complex names which are difficult to reconcile. SDM’s

ability to explicitly capture the relationship between classes, attribute semantics, and in-

terclass connections provides a solid foundation for an integration model, but lacks a model

formulation which is more suitable for automatic integration.

The work on semantic and canonical models has not produced automatic integra-

tion algorithms. Although these models allow for manual integration and heuristic algo-

rithms, they are insufficient for automating the integration process.

In terms of the taxonomy (Figure II.2), heuristic algorithms based on semantic

models offer low automation although they resolve most structural conflicts. Behavioral

conflicts are typically not considered. Any structural or semantic conflicts that arise must be

detected and resolved by the designer. Hence, these algorithms offer low automation during

the design phase. However, once the global view has been created, the operational system

demonstrates high transparency as queries are mapped through the global view. The low

automation characteristics make these systems undesirable for large, complex integration

tasks. More recent work on schema analysis and models [18] provides more semi-automatic

heuristics, algorithms, and techniques for schema analysis and classification but still rely

on designer interaction to achieve integration.

CHAPTER II. BACKGROUND 21

II.3.2 Schema Transformations

A logical extension of semantic modeling is schema re-engineering. In schema

re-engineering, schemas are mapped into one canonical model and then compared by per-

forming semantic preserving transformations until the schemas are identical or are seen

to contain common concepts. By automating the mapping process and providing a set of

suitable transformations, diverse schemas are compared and integrated.

There have been numerous approaches based on schema transformations. One

approach [48] constructed a generic mapping tool to map schemas into a meta model capable

of describing all data models. The schema is subsequently mapped from the meta model

to the target model. A mapping from a relational schema to an ER-diagram with minimal

user input is possible. Miller et al. [79] use a graph structure to represent a database and

its constraints and define a set of equivalence preserving transformations. However, the

transformations are not applied automatically.

Schema integration transformations for the ER-model are studied by McBrien et

al. [72]. In this work, a set of primitive transformations is defined which are used to describe

common schema transformations and create new composite transformations. Further, they

demonstrate variants of schema equivalence such as transformational, mapping, and behav-

ioral equivalence. The work is expanded [73] to produce a general framework to support

schema integration based on a hypergraph common data model and a complete set of re-

versible primitive and composite transformations which allow for transforming schemas to

determine their equivalence. A prototype tool is developed to allow designers to apply the

transformations to merge, conform, and compare schemas.

The major problem in the transformation approach is that the decision of what

transformations to apply to determine schema equivalence is the responsibility of the de-

signer. Although manually applying transformations allows schemas to be compared and

integrated, the designer is still performing the four basic steps of schema integration de-

fined by the earlier algorithms. Even when aided by software tools, this approach offers low

automation and significant complexity for large schemas.

The object-orientedmodel is popular because of its ability to represent complicated

CHAPTER II. BACKGROUND 22

concepts in an organized manner. Using encapsulation, methods, and inheritance, it is pos-

sible to scalably define any type of data representation. Consequently, the object-oriented

model (OO-model) has been used [89] as a canonical model as it has very high expressive-

ness and is able to represent all common modeling techniques present in other data models.

There has been work on defining logical semantics for object-oriented databases [75]. It is

also possible to automatically generate an OODBS schema from an abstract specification

in a high-level language [11].

An in-depth study [97] of schema transformations in an OODBS included renam-

ing, aggregation, and objectify. From the many possible transformations and equivalent

schemas, the target schema is chosen based on the relatedness of the object methods in

the schema. Various measures quantified the object methods’ correspondence with object

attributes and are used to define a heuristic algorithm.

Although this work is a promising first step toward integration using an object-

oriented model, there is still no definition of equivalence. Without a definition of equivalence,

it is impossible to integrate schemas, regardless of the power of the schema transformations.

The ability to generate an OODBS schema from a high-level language is promising because

it may be possible to define equivalence at the language level instead of at the schema level.

Using an object-oriented model as a canonical representation for integration is

reasonable. However, the object-oriented model is very general which makes determining

equivalence between schemas quite complex. Current techniques based on object-oriented

models are in their infancy and tend to rely on heuristic algorithms similar to semantic

models. Thus, most conflict resolution is manual which results in low transparency and low

automation.

Overall, schema re-engineering and mapping methods yield good results when map-

ping from one model to another and provide techniques for mapping diverse schemas into

the same model. For the relational and ER models, transformations are sufficiently pow-

erful to conform and compare schemas, whereas determining equivalence in the OO-model

is challenging because of the many possible resulting schemas obtainable after applying

transformations. Further, the set of equivalence preserving transformations is not sufficient

to determine if schemas are identical. Without the ability to define equivalence, mapping

CHAPTER II. BACKGROUND 23

to a canonical model does not solve the integration problem, but rather transforms it into

the complicated, and no simpler, problem of determining schema equivalence.

Schema re-engineering techniques suffer from the same problems as the heuristic,

semantic model algorithms on which they are based. Mapping between schema represen-

tation models is not a solution to the schema integration problem by itself. The models

must map into a schema representation model which allows equivalence comparisons. The

basic problem with schema re-engineering is that models which define sufficient transforma-

tions to determine equivalence must be manually performed, and algorithms which apply

automatic transformations are unable to determine equivalence because of the complexity

of selecting the appropriate transformations.

II.3.3 Language-Level Integration

In language-level integration, applications are responsible for performing the inte-

gration. This eliminates schema integration at the database level and gives the application

more freedom. However, applications are responsible for resolving conflicts and are not hid-

den from the complexities of data organization and distribution. Thus, although language-

level integration may have benefits in certain situations, it is not a generally applicable

methodology.

In language-based systems, applications are developed using a language which

masks some of the complexities of the MDBS environment. Many languages are based

on SQL. How conflicts are resolved by the language is very important in determining its

usefulness. In Bright’s survey of MDBS issues [13], schema level conflicts are differentiated

from language level conflicts. Schema level conflicts arise from constructing a coherent,

global view from many data sources. As the number of data sources increases, resolving all

semantic conflicts may prove impossible. To combat this scalability issue, language level

integration is proposed where a language library helps the user and local DBA perform the

integration. Although this approach may be more scalable, it suffers from poor automation

and transparency.

One multidatabase query language is IDL (Interoperable Database Language) [53]

which has interoperability features that subsume those of MSQL [68]. The language allows

CHAPTER II. BACKGROUND 24

the user to define higher order queries and views by allowing database variables to range

over metadata in addition to regular data. Metadata includes database names, relational

names, and attribute names. This ability allows queries across database systems in addition

to regular relational expressions.

Integration is achieved by defining higher order views which resolve some of the

naming and structural conflicts between databases. A view is defined using rule-based

expressions that range over data and metadata. MDBS updates are defined using rule-like

expressions called update programs. Although defining views over a language provides some

integration capabilities, these views are constructed manually by the schema administrator

and are subject to change. As more databases are added, constructing these views is more

difficult, and there is limited automation as the schema administrator must be aware of the

data semantics at all integration sites. Thus, although the language provides facilities for

an administrator to integrate MDBS data sources, the amount of manual work and lack of

transparency and automation makes this method only slightly more desirable than early

heuristic algorithms.

Specifying Interdatabase Dependencies

Enforcing consistency across multiple autonomous databases is very difficult and

costly especially when all updates and transactions are atomic. An approach recommended

by Sheth [86, 91] involves specifying interdatabase dependencies and enforcing them period-

ically. Instead of providing immediate consistency, consistency enforcement is time-delayed

or is performed as required by the application and users. Consistency is enforced based on

data characteristics such as updates and accesses.

Interdatabase dependencies are specified using data dependency descriptors (D3)

which are five-tuples defined as: D3 =< S, U, P, C, A > where S is a set of source data

objects, U is a target data object, P is a Boolean-valued interdatabase dependency predi-

cate defining the relationship between S and U , C is a Boolean-valued mutual consistency

predicate that specifies consistency requirements and defines when P must be satisfied, and

A is a collection of consistency restoration procedures specifying actions to be taken to

restore consistency and to ensure that P is satisfied.

CHAPTER II. BACKGROUND 25

Dependency systems at each local site store and execute procedures implied by

these rules. Thus, each dependency system is aware of all transactions submitted to its

local database as it may have to enforce consistency based on local transaction execution.

Although the ability to relax consistency constraints has numerous applications in

industry, specifying interdatabase dependencies has several problems. First, specifying the

dependencies is complex and must be performed at the database object level. Each depen-

dency between all objects effecting a given object must be specified. Thus, the number of

mappings grows tremendously as the number of databases increases because mappings are

specified between local databases and not directed through any form of global view. Up-

date procedures are consistency programs which are undesirable because they are complex,

time-consuming to construct, and subject to underlying database changes. Further, it is

a challenging task for the dependency system to intercept all transactions to a database.

Many older legacy applications do not have clear transaction management rules and the

dependency system may have restricted access to the internal workings of these systems.

A more fundamental problem is that relaxing consistency introduces a new level

of semantic conflicts. With relaxed consistency, an application is only assured consistency

as provided by the rules. However, users expect current information. Further, resolving

conflicts among consistency requirements between applications using the same data may

be complex. One application may expect an object be current for the last 24 hours, while

another may expect the object to always be current. Resolving these types of semantic

timing conflicts is challenging especially when the number of applications grows.

Despite its formal treatment, specifying interdatabase dependencies is essentially

a formalized method for coding integration patches between systems. Although relaxed

consistency may be beneficial to certain applications, others may exhibit poor integration

properties. When this approach is mapped to our taxonomy, the automation level and trans-

parency are low because the programmer or designer is responsible for manually detecting

and coding integration rules to resolve conflicts. No global view is produced, and the system

does not specify a mechanism for executing global queries and updates. In total, specifying

interdatabase dependencies is good for enforcing relaxed consistency but is essentially the

same integration methodology as custom, application integration programming.

CHAPTER II. BACKGROUND 26

II.3.4 Logical Rules and Artificial Intelligence Approaches

Reasoning with incomplete and inconsistent data is a primary focus of artificial

intelligence research. When schemas with limited data semantics are combined, their union

contains both incomplete and inconsistent data. Thus it is natural that AI techniques have

been applied to the integration problem.

The major assumption of AI techniques is that the fundamental database model

is insufficient when dealing with diverse information sources. In the Pegasus project [49] at

HP, databases are combined into “spheres of knowledge”. A sphere of knowledge is data,

which may be spread across different databases, that is coherent, correct, and integrated.

Thus, differences in data representation or data values only occur when accessing different

spheres of knowledge.

Siegel et al. [94] stores metadata as a set of rules on attributes. A rule captures the

semantics of an attribute both at the schema level and the instance level. An application

uses these rules to determine schema equivalence. This approach captures data semantics

in the form of machine-processable rules. Unfortunately, the rules must be constructed by

the system designer and the actual integration of the rules is performed by the application

at run-time. Thus, applications are not isolated from changes in the semantics or data

organization. The rules provide a limited form of transparency as the application uses the

previously defined rules to simplify integration.

Another AI approach consists of storing data and knowledge in packets [101]. A

global thesaurus maintains a common dictionary of terms and actively works with the user

to formulate queries. Each LDBS has its structural and operational semantics captured

in an OO domain model and is a knowledge source. Users access information in LDBSs

(knowledge sources) by posing a query to the global thesaurus. Query results are posted on

a flexible, opportunistic, blackboard architecture from which all knowledge sources access,

send and receive query information and results. This blackboard architecture shows promise

because it also tackles the operational (transaction management) issue in MDBSs. The

difficulty with the system is the complexity of its construction and defining how the global

thesaurus cooperates with the user to formulate queries.

CHAPTER II. BACKGROUND 27

An integration system based on the Cyc knowledge base was developed for the

Carnot project [25]. In this system, each component system is integrated into a global

schema defined using the Cyc knowledge base. This knowledge base contains 50,000 items

including entities, relationships, and knowledge of data models. Thus, any information in-

tegrated into the global schema maps to an existing entry in the knowledge base or is added

to it. Resource integration is achieved by separate mappings between each information re-

source and the global schema. The system uses schema knowledge (data structure, integrity

constraints), resource knowledge (designer comments, support systems), and organization

knowledge (corporate rules governing use of resource) during the integration process.

During the mapping, both a syntactic and a semantic translation is performed.

The syntactic translation consists of converting the local language to the global context

language (GCL). The global schema contains entries about data models (relational, object-

oriented, etc.) which allow the designer to map the local data model into the global context.

Semantic translation occurs between two equivalent expressions in GCL using a set of logical

equivalences called articulation axioms. An articulation axiom is a statement of equivalence

between components of two theories. An object in one view can be converted to an object

in another view (and vice versa) by mapping through the axiom.

The integration procedure proceeds in three phases:

• schema representation - represents the local schema in global context language.

• concept matching - map Cyc concepts to concepts in global schema.

• axiom construction - an axiom is constructed for each match found.

This integration method has several desirable characteristics including:

• Individual mappings - information sources are included in the global schema one
at a time independent of other sources.

• Global view constructed - the system maps to a global view consistent across all
sites which provides query transparency.

• Handles schema conflicts - using mappings to GCL, representational (structural)
conflicts are resolved by using a common integration language.

The Carnot project has many desirable features as can be seen when it is mapped

onto the taxonomy. The transparency of the system is high as it only requires the designer to

CHAPTER II. BACKGROUND 28

map an information source to the global view once. Then, all query translation and mapping

is handled through the global schema and GCL. This results in a high automation level as

resources are integrated independently, quickly, and are relatively free from changes in other

resources. Further, most conflict types are resolved. Structural conflicts are resolved by

mapping data model concepts into the GCL. Behavioral conflicts are not studied, although

a global transaction model is proposed [102].

The Carnot project clearly has much to offer our understanding of the integration

problem. The key problem is that knowledge base systems, especially one this large, re-

quire significant computational resources and complexity in determining related concepts.

Further, it is unclear how all semantic conflicts are resolved. Mapping a local data model

into GCL can be used to address structural conflicts, but conflicts within the GCL are not

discussed. For example, one designer could integrate a concept into the global schema using

an entity while another could use a relationship. In this case, the concepts are identical but

the integration problem is now at the global level in GCL. Depending on the frequency of

these types of conflicts, this may be a serious problem.

A knowledge base is also used by Embury et al. [28] to capture metadata and

database semantics. The knowledge base is organized as a semantic network, and new terms

are integrated by determining and merging into the knowledge base the best subnetwork

that spans the concepts common to the existing knowledge base and the newly added

schema. An important contribution is the knowledge base is organized into 4 layers: concept

layer, view layer, metadata layer, and the database layer. The authors correctly realize

that integrating databases occurs at higher levels (conceptual, view) than metadata and

structural organizations. The knowledge base is organized to capture and link information

at all layers.

Like other knowledge base approaches, the fundamental problem with the tech-

nique is imprecision. Although common concepts are often well integrated by using spanning

subnetworks, this is not guaranteed. Further, the resulting knowledge base does not pro-

vide a “unified” global view sufficient for SQL-type querying as it only supports imprecise

queries or is used as an integration tool.

Other related projects include the work by Gruber in defining ontologies for knowl-

CHAPTER II. BACKGROUND 29

edge sharing [40, 41], and the definition of KQML [32]. Although the focus of these projects

is on the communication of knowledge between knowledge bases and intelligent agents,

knowledge communication and languages are related to database integration. More theo-

retical treatment of integrating logical views is performed by Ullman [98] in his discussion

of Datalog programs, conjunctive query containment, and related integration architectures.

II.3.5 Global Dictionaries and Lexical Semantics

Lexical semantics [27] is the study of the meaning of words. Lexical semantics is a

very complicated area because much of human speech is ambiguous, open to interpretation,

and context-dependent. Nevertheless, lexical semantics may have a role to play in schema

integration.

Lexical semantics plays a prominent role in the Summary Schemas Model (SSM)

proposed by Bright et al. [14]. The Summary Schemas Model is a combination of adding

metadata and intelligent querying based on the meaning of words. The SSM provides

automated support for identification of semantically similar entities and processes imprecise

user queries by constructing an abstract view of the data using a hierarchy of summary

schemas. Summary schemas at higher levels of the hierarchy are more abstract, while those

at the leaf nodes represent more specific concepts. The target environment is a MDBS

language level system which provides the integration. Thus, the SSM is a user interface

method for dealing with diverse data sources rather than a method for integrating them.

The actual integration is still performed at the MDBS language level. However, the SSM

could be used on top of another integration architecture as its support for imprecise queries

is easily extendible.

The heart of the SSM is the linguistic knowledge stored in an on-line taxonomy, the

1965 version of Roget’s Thesaurus. The taxonomy contains an entry for each disambiguated

definition of each form from a general lexicon of the English language. Each entry has a

precise definition and semantic links to related terms. Links include synonymy links (similar

terms) and hypernymy/hyponymy links (related hierarchically).

Using this taxonomy, a semantic distance between words is constructed. The

semantic distance allows the system to translate user-specified words (imprecise terms) into

CHAPTER II. BACKGROUND 30

database terms using the hierarchy of summary schemas. A leaf node in the hierarchy

contains all the terms defined by a DBA for a local database. Local summary schemas

are then combined and abstracted into higher-level summary schemas using hierarchical

relationships between words. The system allows the user to specify a query using their

own key words and the system translates the query into the best fit semantically from the

information provided in summary schemas. However, no schema integration is performed.

The summary schemas do not represent integrated schemas but rather an overview of the

data summarized into English-language categories and words.

Related to knowledge bases and ontologies, semantic dictionaries and concept hi-

erarchies allow database integrators to capture system knowledge and metadata in a more

manageable form. Castano [17] defined concept hierarchies from a set of conceptual (ER)

schemas from Italian government databases. Concepts at the top of the hierarchy are more

general than lower level concepts. Concepts are connected in the hierarchy by instance-of-

links (if an entity is an instance of a given concept), kind-of links (links concepts based on

super-concept/sub-concept relationships), and part-of links (links concepts related by ag-

gregation relationships). Concept hierarchies are defined using either an integration based

approach, where the integrator maps data sources to a pre-existing concept hierarchy, or

using a discovery-based approach, where concept hierarchies can be incrementally defined

one schema at a time by integrating with known concepts.

Using a concept hierarchy to define similar concepts is a useful idea. By also

defining formulas to determine semantic distance between concepts in the hierarchy, it

is possible to estimate semantic equivalence across systems. The authors also present a

mechanism for querying the MDBS based on the concept hierarchy and concept properties.

Semantic distance calculations are used to evolve and create the hierarchy by adding new

concepts or grouping concepts appropriately as they are integrated.

The major problem with this approach is that it does not produce a concept hierar-

chy which can easily be queried. The authors propose querying the MDBS for entities which

are “similar” by virtue of having related structural and behavioral properties. Although this

may be sufficient in some cases, the majority of applications require more precise querying

using a variant of SQL. Another problem is that constructing the concept hierarchy in a

CHAPTER II. BACKGROUND 31

discovery-based approach requires human intervention and decision making. The hierarchy

may be more useful if the structure and behavior of the concepts are removed and it solely

focuses on identifying similar concepts.

Other work involving global dictionaries includes the definition of SemQL [62]

which allows semantic querying of databases using a version of SQL and semantic words

from the WordNet [78] online dictionary. By choosing appropriate terms from the WordNet

dictionary and querying on these words, transparent querying of a multidatabase is possible.

II.3.6 Industrial Systems and Standards

Industrial Systems

Despite considerable research effort on schema integration, current techniques do

not apply well to industrial problems. Many of the approaches are not scalable or require too

much human intervention. Custom-coding of translations or wrappers is used in industry

because it is simple, despite being time-consuming and capital intensive.

Although the Interbase system [16] was developed at Purdue University, the ar-

chitecture has a framework which is similar to many industrial systems. These systems

focus more on transaction management and distributed data access than the conflict reso-

lution procedures involved in schema integration. The Interbase system is a framework for

integrating diverse data sources based on a distributed flexible transaction manager which

guarantees global consistency. The system codes interfaces to individual data sources and

provides a high-level programming language and graphical interface for access to the data

sources. The global transaction manager guarantees resource ordering and most of the in-

tegration is performed manually. Nevertheless the Interbase system represents a workable

architecture for industrial applications. There are other similar projects [4, 84] but all rely

primarily on human coding and manual resolution of integration conflicts.

XML and Integration Standards

Internet and industrial standards organizations take a more pragmatic approach to

the integration problem by standardizing the definition, organization, and exchange mecha-

CHAPTER II. BACKGROUND 32

nisms for data communications. Instead of integrating entire database systems, their goal is

to standardize the exchange of data between systems which is a more straightforward prob-

lem because it is widely accepted that communications occur using standardized protocols

and structures. Communication standards require capturing data semantics for only the

data required in the communication and formatting it using a standard during transmission.

Work on capturing metadata information in industry results in the formation of

standardization bodies for exchanging data. An early data exchange standard is Electronic

Data Interchange (EDI) which provides a mechanism for communicating business infor-

mation such as orders and shipments between companies. As the web has become more

prevalent, standards have been proposed for exchanging data using Extensible Markup Lan-

guage (XML) and standardized XML schemas based on it. Microsoft leads a consortium

promoting BizTalk [77, 76] which allows data to be exchanged between systems using stan-

dardized XML schemas. There is also a metadata consortium involving many companies

in the database and software communities whose goal is to standardize ways of captur-

ing metadata so that it may be exchanged between systems. The consortium defined the

Metadata Interchange Specification (MDIS) version 1.1 [23] as an emerging standard for

specifying and exchanging metadata. Other standardization efforts include the Standard

Interchange Language (SIL) [45].

Rather than attempting to define global dictionaries to capture data semantics

within a database schema, industrial approaches define data schemas for data exchange.

EDI, SIL [45], and Microsoft BizTalk [77] use standardized formats and structure for repre-

senting data communications. The standardized dictionaries are typically defined by indus-

try as each type of business has slightly different terms for data elements. Further, the type

and size of data elements are also standardized which results in less flexibility. However,

the standardization of dictionaries allows data transfer between differing systems without

any semantic confusion because the dictionaries are standardized schema with well-defined

structure, types, and sizes. There is no schema integration in these systems per se, rather

data that previously existed in a database is mapped into a standardized schema docu-

ment and transmitted to another database which decodes the document using the standard

schema. Although communication is achieved between systems, no integration occurred.

CHAPTER II. BACKGROUND 33

XML

Extensible Markup Language (XML) [100, 43] is a standard for web communica-

tions. XML is a subset of Standard Generalized Markup Language (SGML). A description

of XML given by W3C [100] is:

XML documents are made up of storage units called entities which contain
either parsed or unparsed data. Parsed data is made up of characters, some of
which form character data, and some of which form markup. Markup encodes
a description of the document’s storage layout and logical structure. XML
provides a mechanism to impose constraints on the storage layout and logical
structure.

The power of XML as a description language is its ability to associate markup

terms with data elements. These markup terms serve as metadata allowing formalized

description of the content and structure of the accompanying data. XML appears destined

to subsume HTML as the communication language for the Internet, although graphical

display properties of an XML document are still being defined. By associating metadata

terms with data elements, XML documents can be communicated between organizations

and their semantics completely understood both by human and machine agents.

Although XML is a powerful language for exchanging semantics between systems,

XML is not the total solution to standardized business communications and system inter-

operability. XML does not have a standard set of markup terms. For data and metadata to

be automatically combined and parsed, organizations must standardize on a set of markup

terms to capture concept semantics. Various standards organizations and private companies

are actively defining XML term dictionaries and web sites for exchanging knowledge and

transacting business via standard dictionaries and commerce portals. Defining a general,

powerful set of XML tags would allow for the integration of knowledge between systems.

Unfortunately, most industrial efforts focus on subsets of the problem as it applies to indi-

vidual domains.

Industrial vs. Research Approaches

There are fundamental differences between the database research approach and

the industrial approach. The research approach defines mechanisms for combining entire

CHAPTER II. BACKGROUND 34

database systems so that they interoperate as if they were one large database. Approaching

the problem in this manner is beneficial because you can argue about integration problems

at a conceptual level and design database protocols abstractly. The pragmatic approach in

industry results in the definition of standards for communication and software translation

allowing systems to communicate. The important distinction is that the communication be-

tween systems is standardized not the actual data contained in the systems. These systems

do not generally attempt schema integration across databases, and their standardized dic-

tionaries are limited to the data involved in exchanges. This implies that they are unsuitable

for integration of entire systems because they do not capture the entire database semantics.

Rather, they merely exchange data after the semantics are completely understood.

Integration of the two approaches may be possible. By utilizing standardized

dictionaries and languages developed in industry, a multidatabase architecture could be built

allowing SQL-type queries and updates of the underlying, autonomous database systems

by using the algorithms developed in the research community.

II.3.7 Wrappers, Mediators, and Interoperability Architectures

Related to communication standards and industrial projects are architectures

which rely on wrappers or mediators to achieve integration. The basic idea of these systems

is that additional wrapper software is installed above each data source to be integrated

so that it can interact with the global database federation. The wrapper software acts as

a mediator between the global transaction requests and the implementation of the data

source. The mediator provides transaction management and data access methods for global

transactions in a standard form, even though many of the legacy systems may not have

the necessary features. These systems focus on answering queries across a wide-range of

data sources including unstructured and semi-structured data sources such as web pages

and text documents.

Although wrappers provide general, standard facilities for querying data sources,

automatic schema integration is not a primary focus. Mediator and wrapper based systems

such as Information Manifold [64], Infomaster [37], TSIMMIS [65], and others [5, 25, 12] do

not tackle the schema integration problem directly. Some of these systems [5] do not attempt

CHAPTER II. BACKGROUND 35

to provide an integrated view. Rather, information is integrated based on best-match

algorithms or estimated relevance. Systems such as TSIMMIS [65] and Infomaster [37] that

do provide integrated views typically construct these integrated views using designer-based

approaches. That is, mediator systems either assume an integrated view of the data sources

is constructed a priori by designers or do not construct an integrated view. This integrated

view is then mapped to the local views of the mediators by logical rules or query expressions

specified by the designer. Thus, these systems achieve database interoperability by providing

an integrated view and its associated mappings to local systems, then automatically process

a query specified on the integrated view into queries on the individual data sources. Global

queries are mapped using a query language or logical rules into views or queries on the

individual data sources. The definition of the integrated views and the resolution of conflicts

between local and global views are manually resolved by the designers. Once all integration

conflicts are resolved and an integrated global view and corresponding mappings to source

views are logically encoded, wrapper systems are systematically able to query diverse data

sources.

Wrapper and mediator systems provide interoperability by explicitly defining map-

pings from a global view to individual source views. However, they do not define algorithms

for resolving conflicts, or producing the global view and its associated mappings from data

source information. The global view is a mediated view constructed manually. A list of

wrapper and industrial systems compiled from various surveys [47, 34] is given in Figure

II.5, and short overviews of some of these systems follows.

System Institution Data Model Global
View/

Target Data Sources

Updates
Multibase [30] Computer Corp. Functional + generalization Yes/Yes Structured databases
MRDSM [69] INRIA, France Relational No/Yes Relational databases
TSIMMIS [65] Stanford Object Exchange Model (OEM) No/No Structured/Unstructured
HERMES [1] U. of Maryland Two-Stage Entity Relationship Yes/No Knowledge bases
Information AT&T Bell Labs Relational + class hierarchies Yes/No Web-based data sources
Manifold [64]

Metadatabase [22] Rensselaer None (metadata in ER model) No/No Enterprise databases
COntext MIT Description Logic (axioms) No/No Structured
INterchange [39]

Informia [5] Ubilab IT Lab ODMG model No/No Structured/Unstructured
Infomaster [37] Stanford Translation Rules Yes/No Structured/Web Sites

Figure II.5: Selected Wrapper, Mediator and Interoperability Systems

CHAPTER II. BACKGROUND 36

Multibase [30] is a multidatabase system based on the functional data model de-

signed by Computer Corporation of America. The user queries on a single global view

called the superview which hides the details of the individual databases. The superview

is constructed using the DAPLEX language in a two-step process. First, DBAs translate

source database schema into the functional model and record metadata information. Then,

a global administrator combines these schemas into a global view. The system is a tightly-

coupled federated database system because it produces a static, global view in advance

before query submission. Thus, this system is related to multidatabase systems which are

surveyed by Bright et al. [13].

MRDSM [69] is a loosely-coupled federated database system because dynamic

integration is performed by end-users using a data manipulation language. This is an

example of a language-level integration system, such as IDL [53], which was previously

mentioned.

TSIMMIS [65] is a mediator system developed at Stanford for simplifying the

extraction and integration of data from unstructured or semi-structured data sources. The

approach defines the Object Exchange Model (OEM) which allows self-describing data

items. That is, instead of using a schema, object structure is encoded with every data item.

Each OEM object has the structure: (Object-ID, Label, Type, Value). OEM supports

object nesting. Queries are posed using OEM-QL which is similar to SQL and supports

wild-card matching. Another contribution is the Mediator Specification Language (MSL).

MSL is a declarative language which uses rules and functions for translating objects and

integrating data sources.

HERMES [1] is a mediator system for integrating knowledge bases and domains

into a single reasoning system. Individual systems are combined into the global semantic

model called the Generalized Annotated Program (GAP) Framework. This system also

defines a rule-based mediator language and supports uncertainty. The Carnot system [25]

is similar and uses the Cyc knowledge base.

Information Manifold [64] is a logic system for integrating web-based data sources.

Queries are specified declaratively against a static view. There is a single global view for all

users called the World View expressed using the relational data model and class hierarchies.

CHAPTER II. BACKGROUND 37

Integration is achieved by specifying the attributes that are accessible in the world view

using content records and binding, and selection criteria using capability records. Capability

records are necessary because web data sources often have limited query functionality and

may not be able to return attributes in all possible combinations.

Metadatabase [22] is a dynamic integration system which does not construct a

global view. Instead, Metadatabase allows the user access to metadata used to formulate

global queries. Queries are constructed by graphically traversing data source metadata and

generating a Metadatabase Query Language (MQL) query for retrieving the results.

The COntext INterchange (COIN) system [39] performs data integration based on

logical axioms. COIN is designed to automatically combine structured and semi-structured

data sources. Data source information is encoded into elevation axioms (for mapping val-

ues), context axioms (for representing context semantics), and conversion functions for

converting from one context to another. Rather than building an integrated view, a con-

text mediator is used for querying to reconcile potential conflicts between the data source

information expressed as axioms.

Informia [5] is a mediator system for web integration that combines information

using estimated relevance calculations. It uses an object model and object query language

similar to Garlic [85] which was developed at IBM Alamaden Research center.

Infomaster [37] combines data sources using wrappers and translation rules. Trans-

lation rules are logical rules that map from a global view to individual data sources. Struc-

tural and semantic conflicts are resolved by the definition of these translation rules and

provide a form of global view. Infomaster allows the definition of a reference schema which

is essentially a standardized, global view of all sources. Each user can subsequently modify

the reference schema for their own personal use using additional translation rules.

Related work includes web source querying such as WebSQL [74], WebOQL [3],

STRUDEL [31], and others [70]. These systems focus on modeling and querying the web and

integrating query results for the user. Since web sources are typically semi-structured with

no schema information, these systems must deal with limited metadata information, data

inconsistencies, and unstructured information. The query languages are modeled after SQL

and use link and document information for querying. Thus, the focus of web integration

CHAPTER II. BACKGROUND 38

systems is the transparent querying of web information sources and the integration of results

for the user. This is a different problem than schema integration. Wrapper and mediator

systems are especially suited to the Web environment. Florescu et al. [34] survey web

integration techniques. Other work on wrappers and mediators includes determining the

computing capabilities of mediators [103]. There is also work [33, 20, 9, 82, 63, 46] on query

optimization and formulation in wrapper systems.

II.4 Integration and Semantics

A fundamental requirement for automatic schema integration is the ability to

capture data semantics. Computer systems have been developed in a user-centric way.

Describing data semantics in a system-centric way allows the computer system to determine

the semantics of the data it processes, thus freeing the user from this mundane task. By

using data semantics, the following section overviews a general methodology for automatic

schema integration.

II.4.1 General Semantic Integration Methodology

A general integration algorithm (see Figure II.6) based on a global dictionary has

the following basic steps:

1. Determine integration scope.

2. Enumerate global concepts with appropriate names.

3. Transform application data into the integration language.

4. Combine application specifications into a global view.

5. Refine integrated schema.

The first step common to any integration methodology is determining the integra-

tion scope. This process defines what data sources are integrated and which data contained

in the sources is used and summarized in the global schema. Further, this process defines

a high-level mechanism for resolving data conflicts. Basically, this step produces a list of

CHAPTER II. BACKGROUND 39

Determine Scope

Enumerate Concepts

Transform Data

Integrate Specifications

Refine Schema

Figure II.6: General Integration Methodology

global concepts that are represented in the global view, and a set of abstract mechanisms

for handling conflicts. This is the organizational view of the data.

Enumerating global concepts is the second step. In this step, global concepts and

entities defined in the preliminary step are given meaningful names to be used throughout

the integration process. Unique names are required for all entities, attributes, and possibly

relationships. These unique names are given to system integrators to represent application

data in the integration language. By defining the global names before integration, the

metadata gathered from the applications should be free of naming conflicts.

The first two steps are performed at a high level of abstraction by management

and information technology personnel working together to decide what data is stored in the

global view. Once the data in the global view is agreed upon, the subsequent mapping of

application data to the global view is started.

CHAPTER II. BACKGROUND 40

Given the set of global concepts and entities with their standardized names, ap-

plication integrators work independently on mapping application data into the integration

language. Although this process may be performed semi-automatically by extracting schema

information using schema re-engineering techniques, much of the additional metadata re-

quired for the integration language is inserted manually. At the minimum, the integrator

has to convert names used at the local level into the globally defined names. When this rep-

resentation procedure is complete, there is a mapping to and from the integration language

for each application.

For some applications, automatically extracting information is impossible. Such

applications generally have a poor mechanism for schema definition or may not have a

schema. For database systems, schema information can be used to fill in fields in the inte-

gration language including local names and sizes, relationships, entities, and some foreign

key information. This information is readily extracted using schema re-engineering tech-

niques discussed previously.

Most of the metadata on the schema is inserted by the designer but it only ap-

plies to the local application. The only connection an integrator has with the rest of the

integrators is the standardized global names used in the mapping. Manually extracted data

includes operational behavior, data semantics, and relationship semantics. Although this is

a complicated task, it is easier to capture semantics when examining one application at a

time rather then when examining them all at once.

After mapping into the integration language, automatic integration of data using

schema equivalence rules is possible. Many of the conflicts previously resolved manually are

now handled automatically by using global, standardized names for concepts. Further, the

integration language is structured to automatically detect equivalent semantic representa-

tions. After automatic integration is completed, a uniform, global view representing the

concepts outlined in the preliminary phases is produced.

During integration, mappings are generated from the global view to the individual,

local application views. The application views are stored in the integration language which

itself is a mapping of the integration data. Thus, two levels of mapping are needed to

convert from the original application view to the global view.

CHAPTER II. BACKGROUND 41

The final phase of integration is refining the integration. In this step, designers use

the application specifications in the integration language to discover new data which could

be represented in the global view, add or change concepts in the global view, and tune the

system for performance.

The integration architecture is based on this general methodology. The goal is to

define a system capable of automatically integrating diverse data sources to provide inter-

operability between systems which preserves full autonomy of the underlying data sources

that have no direct knowledge of their participation in a global system. The contribution

of the architecture is the merging of industry standards with research algorithms to create

an automatic schema integration methodology.

II.5 Remaining Challenges and Future Directions

Despite extensive research on schema integration, it is not a solved problem. Over

20 years of research has enhanced our understanding of integration conflicts and challenges,

interoperability constraints, and methodologies for manually resolving conflicts. Industrial

systems and standardized languages and protocols demonstrate that interoperability is pos-

sible and semantic exchange is feasible.

The time has come to revisit the schema integration issue. It is no longer suffi-

cient to accept that schema integration is exclusively the sophisticated domain of database

administrators and system integrators. Automatic schema integration is possible with a

systematic method for capturing data semantics.

What new approaches are required to sufficiently express database semantics as

metadata? The answer may require shared ontologies, dictionaries, logical rules, or knowl-

edge bases. Do we have to accept standardization to achieve automation? Unquestionably,

the greatest advances in interoperability and networking all have their foundations in stan-

dards such as TCP/IP, HTML, XML, ODBC, and others. Is it time for database design to

be standardized instead of treated more as an art-form? Maybe the most important achieve-

ment will be the realization that some standardization is required, but to what extent and

in what role may be debatable. Regardless, as a society we have accepted standardization

CHAPTER II. BACKGROUND 42

in order to effectively communicate and interoperate, and the benefits of standardization

will eventually be felt in the database community.

In summary, the integration architecture is built to answer these questions. The

goal is to construct an architecture combining standards for semantic exchange with research

algorithms capable of automatic schema integration. The result is a system with unique

properties and exciting potential and challenges.

Chapter III

Integration Architecture

III.1 Integration Architecture Overview

The integration architecture (Figure III.1) is based on the standard multidatabase

architecture. At the bottom level are automonous local databases which continue to process

local transactions. At the top level is a multidatabase layer with which global users interact

to query the database federation.

Within the multidatabase layer, the architecture consists of four components: a

standard term dictionary, a metadata specification language (X-Specs) for capturing data

semantics, an integration algorithm for combining metadata specifications into an integrated

view, and a query processor for resolving conflicts at query-time. The dictionary provides

a set of terms for describing schema elements and avoiding naming conflicts. The integra-

tion algorithm matches concepts to produce an integrated view, and the query processor

translates a semantic query on the integrated view to structural query expressions.

The architecture utilizes these components in a three phase process to construct

an integrated view of data source information:

• Capture Process: A capture process is independently performed at each data source
to extract and format database schema information and metadata into an XML doc-
ument called an X-Spec.

• Integration Process: The integration process combines X-Specs into a structurally-
neutral hierarchy of database concepts called an integrated context view.

43

CHAPTER III. INTEGRATION ARCHITECTURE 44

Client Client

X-Spec
Editor

Standard
Dictionary

Integration
Algorithm

Database

X-Spec X-Spec

Database

Integrated Context View
Multidatabase Layer

Subtransactions
Query Processor and ODBC Manager

Local Transactions

Figure III.1: Integration Architecture

• Query Process: The user formulates queries on the integrated view that are mapped
by the query processor to structural queries, and the results are integrated.

There are two main target environments for deploying the architecture:

• Centralized System: In a centralized deployment, the multidatabase layer resides
on a single server. The central server pre-combines all X-Specs and provides integrated
querying for all users in a central location.

• Distributed System: Distributing the system involves implementing the multi-
database layer across systems such as in the web browser of all database clients. The
clients then independently connect to the database systems, download the X-Specs,
and produce an integrated view for their own local use.

The distinguishing feature of the architecture is that wrapper or mediator software

is not required. A database schema is encoded into an X-Spec independently of other data

sources and the integrated view itself. Once an X-Spec has been created for the data source,

the multidatabase layer uses this information to produce an integrated view, and queries

are mapped to SQL and communicated directly with the database.

CHAPTER III. INTEGRATION ARCHITECTURE 45

In the capture process, the X-Spec for a given data source is constructed, and the

semantics of the schema elements are mapped to semantic names consisting of terms from

the standardized dictionary. This capture process is performed independent of the capture

processes occurring at other data sources. The only “binding” between individual capture

processes at different data sources is via the dictionary that provides standard terms for

referencing data. The specification editor tool is used to extract database schema, add the

semantic names and additional metadata, and store the result in an X-Spec.

The key benefit of the three phase process is the isolation of the capture process

from the integration process. This allows multiple capture processes to be performed con-

currently and without knowledge of each other. The capture process at one data source is

not affected by the capture process at any other data source. Thus, the capture process

is performed only once per source, regardless of how many data sources may actually be

integrated. This is a significant advantage because the semantics of the database can be

captured at design time. If the database is then integrated with other systems, its semantic

description is already available as provided by its creator.

The multidatabase layer takes the X-Specs of the individual data sources and

executes the integration algorithm to produce an integrated view. This integrated view is

provided to clients allowing them to issue SQL-type transactions against it. The integrated

view displays a context hierarchy of semantic name terms. A SQL query is then constructed

by the user using the semantic names. The system performs the necessary mapping from

semantic names to system names and divides the query into subqueries against the data

sources. Once results are returned from the individual data sources they are integrated

based on the unified view and subsequently returned to the user.

The architecture does not require translational or wrapper software at individual

data sources. Once the X-Spec has been provided for the data source and integrated in the

multidatabase layer, the software communicates directly with the data source. All transla-

tion, integration, and global transaction management is handled at the multidatabase layer.

This allows full autonomy of the underlying participating databases as the multidatabase

layer appears as just another client submitting transactions to the database.

CHAPTER III. INTEGRATION ARCHITECTURE 46

III.2 Standard Dictionary

To provide a framework for exchanging knowledge there must be a common lan-

guage in which to describe the knowledge. During ordinary conversation, people use words

and their definitions to exchange knowledge. Knowledge transfer in conversation arises from

the definitions of the words used and the structure in which they are presented. Since a com-

puter has no built-in mechanism for associating semantics to words and symbols, an on-line

dictionary is required for the computer to determine semantically equivalent expressions.

The foundation of the architecture is the acceptance of a standard term dictionary

which provides terms to represent concept semantics that are agreed upon across systems.

Thus, the architecture operates under the assumption that naming conflicts are prevented

by utilizing standard terms to exchange semantics.

The standard dictionary is organized as a hierarchy of concept terms. Concept

terms are related using ‘IS-A’ relationships for modeling generalization and specialization

and ‘HAS-A’ relationships to construct component relationships. The dictionary is repre-

sented using XML, which guarantees systems can communicate provided they conform to

the XML standard, and is used to construct XML tags that represent data semantics.

Creating a standard dictionary has many desirable features:

• Standardized set of base concepts - the dictionary provides a standard set of terms for
representing common database concepts.

• Flexibility - Unlike industrial approaches, the standard dictionary provides a set of
common terms used to describe existing database schema, not a standard schema.
The dictionary can be expanded to include new terms.

• Hierarchical organization - The dictionary terms are organized in a concept hierarchy
to model how terms are related to each other.

A term dictionary has been constructed (see Appendix G) starting from the top-

level ontological categories proposed by Sowa [95]. Note that the exact terms and their

placement is irrelevant. The dictionary is treated as a standard whether within an or-

ganization or for the whole Internet community. Individual organizations may modify the

dictionary, but successful integration within a domain is only guaranteed with total standard

acceptance. Thus, we will not argue about the correctness of the dictionary organization,

CHAPTER III. INTEGRATION ARCHITECTURE 47

but simply assert that by conforming to any standard term dictionary allows the archi-

tecture to function properly. Ultimately, dictionary evolution could be directed by some

standardization organization to ensure that new concepts are integrated properly over time.

The exact terms and organization of the standard dictionary is irrelevant. Al-

though this may seem surprising, any language is simply a standard for expressing seman-

tics. For example, there is no intrinsic reason why the word “apple” should describe an

apple. Conceivably, the word “orange” could be used or “X123” as long as that was the ac-

cepted terminology to represent the concept of an apple. Similarly, the exact organization of

the concept hierarchy and the terms used to represent concepts is irrelevant as long as they

are agreed upon. For example, the Standard Interchange Language (SIL) uses standard-

ized field names like F01, F02, and F03 to represent data elements. However, the goal of

XML is to be human readable, so the dictionary terms should be recognized English words

for their concepts and the base hierarchy should be evolved in a way that models current

standardization efforts and real-world organizations. Thus, we will not debate the exact

definition of the standardized dictionary because it does not affect the correctness of the

approach. Any standardized dictionary can be used as long as it is formatted correctly and

has the necessary terms to capture the semantics of every schema element to be integrated

from the corresponding data sources.

The problem in defining a standard dictionary is the complexity of determining

semantically equivalent words and phrases. The English language is very large with many

equivalent words for specifying equivalent concepts. Thus, simply using an on-line English

dictionary for the computer to consult is not practical. Not only is the size of the database

a problem but it is complicated for the computer to determine when two words represent

semantically equivalent data.

By using English words instead of abstract field names, the metadata specification

is more readable and is easier for the designer to assign correct terms to represent data

semantics. However, a word may have a slightly different semantic connotation to different

people which may affect their choice of a “correct” term. For the purpose of this discussion,

we will assume that a designer correctly associates the proper dictionary term to represent

the semantics of an element. For example, consider the case where two databases contain

CHAPTER III. INTEGRATION ARCHITECTURE 48

home phone numbers. One designer correctly uses the term “Home Phone#” from the

dictionary where another uses the more general term “Phone#”. Although integration

would still occur correctly, the second designer lost some semantics in his choice of term

and technically should have chosen the other term. We assume that these mis-naming

problems are handled using an external error-checking mechanism.

In summary, the standard dictionary is a tree of concepts related by either IS-A or

HAS-A links and stored in XML format. We have defined a basic standard dictionary but

allow organizations to add terms as required. Unlike a BizTalk schema or simple set of XML

tags, the dictionary terms are not used independently to define data semantics. Since the

actual organization of the data (schema) is not defined in the dictionary, it is impossible to

assume that a given dictionary term has the same meaning every time it is used. Therefore,

the context of the term as it is used in the metadata specification describing the database

determines its meaning.

By analogy, the dictionary is like an English dictionary as it defines the semantics

of accepted words used to convey knowledge. However, overall semantics are communi-

cated by organizing words into a structure such as sentences. The structure for semantic

communication is a semantic name whose simplified structure is easily parsed.

III.2.1 Top-level Standard Dictionary Terms

The top-level terms for the standard dictionary are those proposed by Sowa [95].

Sowa proposes the top-level categories in Figure III.2 by combining previous work by philoso-

phers and computer scientists.

These categories serve as the root of our standard dictionary tree and all new

concepts are subconcepts of these categories. The root of the tree, T , “is a neutral repre-

sentation for the ultimate”[95](679). T is everything and nothing at the same time. Below

the root is the first level of categorization which separates physical matter and information.

“Information is pure structure whose nature does not depend on the objects it describes or

the physical medium used to record it.”[95](680) Thus, the second level of the dictionary

divides concepts into physical (tangible) concepts and information (intangible) concepts.

The third level consists of a ternary division of concepts under both the physical

CHAPTER III. INTEGRATION ARCHITECTURE 49

Form Proposition Theory

T

Physical Information

Entity Role Circumstance

Figure III.2: Top-level Dictionary Terms

and information branches. This ternary division is the result of dividing concepts into first,

second, and third level concepts. The notion of firstness, secondness, and thirdness is as

follows:

First is the conception of being or existing independent of anything else.
Second is the conception of being relative to, the conception of reaction with,
something else. Third is the conception of mediation, whereby a first and a
second are brought into relation. [95](677)

Placing database concepts into the categories of firstness, secondness, and thirdness

is non-trivial. For example, the concept of “Woman” is a first level concept because it

represents a person existing independent of anything else. A concept at the second level

has some additional semantic notion attached to it. The notion of a “Wife” is a second level

concept as a “Woman” becomes a “Wife” by marriage to a “Husband.” The “Husband” is

the concept that adds the additional semantics to “Woman” to make her a “Wife”. Finally,

“marriage” is the thirdness, or mediating circumstance, relating the first level concept

“Woman” to the second-level concept “Wife”.

Formalizing the concepts of firstness (F), secondness (S), and thirdness (T), we

arrive at a functional specification:

f(T1, A1, A2, ..., AN) => R, where T1 in F, A1..AN in F or S, R in S, and f in T .

Using the previous example, f(woman, husband) => wife, where f = marriage. For

simplicity, we often abbreviate the function specification to omit the concepts which react

with the first level concept to produce a second level concept. The function then becomes:

CHAPTER III. INTEGRATION ARCHITECTURE 50

f(T1) => R. In our example, f(woman) => wife, f = marriage, and we omit the husband

in the functional specification as it is often not required.

Given this top-level ontology, there are some general rules and procedures for

adding new terms to the dictionary:

• Terms should be added on an as-needed basis to keep the size of the dictionary small.

• A term should not be added if its semantics can be accurately represented by the
combination of existing terms in the dictionary.

• A term should be placed in the hierarchy as close as possible to terms with similar
semantics.

• More general concepts appear at the top of the hierarchy so specific terms should
appear near the leaf nodes.

• Always add the more general definition of a term that captures the necessary concept
semantics. For example, add the term Id to represent an id for a book table not Book
Id.

Once it has been determined that a term represents a new concept that must be

added to the dictionary, there are several decisions that must be made before adding the

term:

• Choose the most general English term to represent the concept.

• Determine if the concept is physical (tangible) in nature or information (intangible)
in nature. This corresponds to choosing the correct branch at the second level of the
hierarchy.

• Determine if the item is a first, second, or third level concept. Typically, database
concepts are first or second order concepts. The easiest way to determine if a concept
is a first order concept is to determine if its semantics require a relationship with
another concept. If the element is a base level term with no relationship semantics it
is most likely a first level concept. If the term requires a relationship with another
term to define its existence, it is probably a second level concept.

A standard dictionary constructed as a product of test integrations is listed in its

entirety in Appendix G. A demonstration of how the dictionary evolves as terms are added

is given in Section VI.3, which illustrates how the Northwind database concepts are added

to the base hierarchy.

CHAPTER III. INTEGRATION ARCHITECTURE 51

III.2.2 Constructing Semantic Names

A semantic name captures system-independent semantics of a relational schema

element including contextual information by combining one or more dictionary terms. A

semantic name is a context if it is associated with a table and a concept if it is associated

with a field. A context contains no data itself and is described using one or more concepts.

Similar to a field in the relational model, a semantic name which is a concept represents

atomic or lowest-level semantics.

A semantic name consists of a context and concept portion. The context portion

is one or more terms from the dictionary which describe the context of the schema element.

Adjacent context terms are related by either IS-A (represented using a “,”) or HAS-A

(represented using a “;”) relationships. The concept portion is a single dictionary term

called a concept name and is only present if the semantic name is a concept (maps to a

field). Thus, a semantic name for a table never has a concept name because it contains only

context information. The formal specification of a semantic name is as follows:

semantic name ::= [CT Type] | [CT Type] CN

CT Type ::= CT | CT ;CT Type | CT , CT Type

CT ::=< context term >, CN ::=< concept name >

A dictionary term is a single, unambiguous word or word phrase present in the standard term

dictionary. Each term represents a unique semantic connotation of a given word phrase,

so words with multiple definitions are represented as multiple terms in the dictionary. A

context term is a dictionary term used in a semantic name which describes the context of the

schema element associated with the semantic name. A concept term is a single dictionary

term used in a semantic name which provides the lowest level semantic description of a

database field. For example, the semantic name [Category] Id is a concept because it

maps to the database field CategoryID. The semantic name [Category] is a context because

it maps to the database table Categories. The concept portion of [Category] Id is Id, and

the context portion is [Category].

Formally, a semantic name Si consists of an ordered set of dictionary terms T =

{T1, T2, ..., TN} where N ≥ 1 which uniquely describe the semantic connotation of a schema

CHAPTER III. INTEGRATION ARCHITECTURE 52

element. If N = 1, then T1 is a context term. The last term TN is a concept name if

Si has a concept name, otherwise it is the most specific context of Si. When integrating

semantic names into a context view, it is necessary to match semantic names based on their

associated terms. For this purpose, it is useful to define the context closure of a semantic

name.

Definition. The context closure of a semantic name Si denoted S∗
i is the set of semantic

names produced by extracting and combining ordered subsets of the set of terms

T = {T1, T2, ...TN} of Si starting from T1.

Example 1. Given a semantic name Si = [A;B;C]D the context closure is:

S∗
i = {[A], [A;B], [A;B;C], [A;B;C]D}.

The algorithm for properly constructing semantic names is represented by a flow chart in

Figure III.3. The first decision to be made when assigning a semantic name is to determine

if the semantic name is for a field (concept) or a table (context). If the schema element

is a table, then its semantic name will only have context terms. However, if the table is

dependent on another table either due to a dependency relationship or a generalization

relationship, then typically its context terms are related to the context terms of the table to

which it is related. For example, OrderDetails ([Order;Product]) is dependent on Orders

([Order]). Thus, the context [Order;Product] of OrderDetails is a subcontext of [Order].

Assigning a semantic name to a field is slightly more complex. First, if the field

is a foreign key to another table, then its semantic name must be the context portion of

the semantic name of the field’s parent table plus the semantic name of the primary key

of the table related by the foreign key. For example, CustomerID ([Order;Customer] Id)

in Orders ([Order]) consists of the [Order] context combined with the semantic name

of CustomerID ([Customer] Id) from Customers. The reason for defining the semantic

names in this way is to ensure that when contexts are merged and queried in later steps

there is an implicit connection based on the semantic name. By assigning the semantic

name [Order;Customer] Id, it is obvious to both the user and the system that this field

is a foreign key linking field which combines the Order context in the Orders table with the

Customer context in the Customers table using the CustomerID field.

Assuming a field is not a foreign key, then it must be determined if the field is an

CHAPTER III. INTEGRATION ARCHITECTURE 53

Is field a foreign key

to another table?

Is table dependent on

another table?

Is schema element

a table?

default context?

Is field attribute ofcontext = context of

related table + more

terms for subcontext
dictionary terms

Assign context using

context portion =

context of table

related foreign key

name = context of

parent table + SN of

Describe context using

new terms

new subcontext?

Is attribute describing a

to describe subcontext

Add context terms

Assign dictionary term

for concept name

Semantic Name Found

Find Semantic Name

No

Yes

NoYes

Yes

Yes

NoNo

NoYes

Figure III.3: Constructing a Semantic Name

CHAPTER III. INTEGRATION ARCHITECTURE 54

attribute of the default context. The default context of the table is the semantic name of the

table. Thus, the default context of Orders is [Order] indicating that fields (attributes) of

this table are describing an order context. However, it is possible that a field in a table does

not relate or describe the default context. In this case, the context portion of the semantic

name would be different than that of the table, and the designer has to use judgement to

determine the proper context. Presumably, this should be an extremely rare occurrence

because a field which is not modifying the default context in a table must be out of place

as it contains orthogonal information that probably should not be stored in the table. The

only reasonable exception to this rule is key fields in a dependent table. For example, since

OrderDetails ([Order;Product]) is dependent on Orders ([Order]), the key field OrderID

([Order] Id) is present in OrderDetails as part of its key. However, the context of OrderID

does not match the context of its parent table [Order;Product].

The most common case is that the field is describing the default context of the

table. Thus, the first context terms in the field’s semantic name are identical to those of

the table. However, if the concept being described by the attribute is sufficiently general to

warrant its own subcontext, then additional terms may be added to fully describe this new

subcontext. For example, in the Customers table, address information is stored in the field

Address. The semantic name assigned to this field is [Customer;Address] Address Line

1 because although the field is describing information about a customer, it is more specifi-

cally describing information about a recognizable subcontext (an address). The additional

context term Address is used to identify this subcontext and effectively group attributes

more explicitly by subcontext.

Finally, in all cases, a field is assigned a single dictionary term as a concept name

to describe its lowest level semantics. Typical concept names include dictionary terms Id

for keys, Name for people and company names, and address information.

There are several properties of semantic names which are important to note:

• Every semantic name always has at least one context term.

• A table does not have a concept portion as part of its semantic name, while a semantic
name for a field does have a concept portion.

• The context portion for primary key fields of a table must be identical to the context

CHAPTER III. INTEGRATION ARCHITECTURE 55

portion of the table unless the primary key results from a dependency relationship.
(e.g. OrderID = [Order] Id and Orders = [Order])

• Semantic names for foreign key fields are always assigned such that they are the
combination of the context portion of the field’s parent table plus the semantic name
of the key field in the other table related by the foreign key.

• The context portion of a field F1 in a table T1 should be identical or a subcontext of
T1 unless F1 is not describing the default context of T1.

The definition of a semantic name for a given database element is not a straight-

forward mapping to a single dictionary term because a dictionary term provides only a

name and definition for a given concept without providing the necessary context to frame

the concept. In BizTalk [77] schemas, the required context is assumed because a standard

schema only applies to a very limited communication domain. For example, there are sepa-

rate schemas for a purchase order, a shipment notification, and order receipt confirmations.

Hence, by defining separate schemas, forcing the communication software to choose a spe-

cific schema, and defining separate terms for each schema, a single dictionary term provides

both context and concept information. For our system to utilize a single dictionary, it is

necessary to combine dictionary terms to provide both context and concept information.

III.3 X-Spec - A Metadata Specification Language

The definition of a standard dictionary is not sufficient to achieve integration

because it does not define a standard schema for communication. It only defines the terms

used to represent data concepts. These data concepts can be represented in vastly different

ways in various data sources, so it is unreasonable to assume a standardized representation

and organization for a given data concept. Thus, a system for describing the schema

of a data source using dictionary terms and additional metadata must be defined. Our

integration language uses a structure called an X-Spec to store semantic metadata on a

data source. The X-Spec is essentially a database schema encoded in XML format and is

organized in relational form with tables and fields as basic elements.

An X-Spec stores a relational database schema including keys, relationships, joins,

and field semantics. Further, each table and field in the X-Spec has an associated semantic

CHAPTER III. INTEGRATION ARCHITECTURE 56

name as previously discussed. Information on joins including their cardinality, join fields,

and connecting tables is stored so that the query processor may identify which joins to

apply during query formulation. Similarly, field relational dependencies are also stored so

that query-time result normalization is possible.

An X-Spec is constructed using a specification editor during the capture process,

where the semantics of schema elements are mapped to semantic names. Capture pro-

cesses are performed independently because the only “binding” between individual capture

processes is the use of the dictionary to provide standard terms for referencing data.

X-Specs are constructed using XML because XML is an emerging semantic ex-

change standard. However, X-Specs may also be represented as formatted text files or

structured binary files. XML is used to support interoperability with emerging standards.

Describing a database using an X-Spec is very similar to standard schema devel-

opment in BizTalk. We attempt to follow emerging industry standards in the description of

schemas using XML and model an X-Spec schema description after BizTalk schemas. The

important distinction between an X-Spec schema and a BizTalk schema is that an entire

BizTalk schema is standardized whereas an X-Spec schema only uses standardized terms

from the global dictionary. An X-Spec describes a database dependent schema rather than

conform to one. As an X-Spec is intended to capture as much metadata as possible about a

database schema, additional XML tags are used in its specification that are not in BizTalk

schemas.

The specification editor allows the user to modify the X-Spec to include informa-

tion that may not be electronically stored such as relationships, foreign key constraints,

categorization fields and values, and other undocumented data relationships. More impor-

tantly, the specification editor requires the user to build a semantic name for each field

and table name in a relational schema. The semantic name captures the semantics of the

schema element using standard terms. During integration, the integration algorithm parses

the semantic name to determine how to combine the element into the unified view. Once

in the unified view, the semantic name acts as a user’s portal to the database; the semantic

name is used in SQL-queries, and the architecture maps the semantic names back to system

names before the actual execution of a transaction.

CHAPTER III. INTEGRATION ARCHITECTURE 57

<?xml version="1.0" ?>

<Schema

name = "Southstorm_xspec.xml"

xmlns="urn:schemas-microsoft-com:xml-data"

xmlns:dt="urn:schemas-microsoft-com:datatypes">

<ElementType name="[Order]" sys_name = "Orders_tb" sys_type="Table">

<element type = "[Order] Id" sys_name = "Order_num" sys_type = "Field"/>

<element type = "[Order] Total Amount" sys_name = "Order_total" sys_type = "Field"/>

<element type = "[Order;Customer] Name" sys_name = "Cust_name" sys_type = "Field"/>

<element type = "[Order;Customer;Address] Address Line 1" sys_name="Cust_address"

sys_type="Field"/>

<element type = "[Order;Customer;Address] City" sys_name = "Cust_city" sys_type = "Field"/>

<element type = "[Order;Customer;Address] Postal Code" sys_name="Cust_pc" sys_type="Field"/>

<element type = "[Order;Customer;Address] Country" sys_name="Cust_country" sys_type="Field"/>

<element type = "[Order;Product] Id" sys_name = "Item1_id" sys_type = "Field"/>

<element type = "[Order;Product] Quantity" sys_name = "Item1_quantity" sys_type = "Field"/>

<element type = "[Order;Product] Price" sys_name = "Item1_price" sys_type = "Field"/>

<element type = "[Order;Product] Id" sys_name = "Item2_id" sys_type = "Field"/>

<element type = "[Order;Product] Quantity" sys_name = "Item2_quantity" sys_type = "Field"/>

<element type = "[Order;Product] Price" sys_name = "Item2_price" sys_type = "Field"/>

</ElementType>

</Schema>

Figure III.4: Southstorm X-Spec

Consider designing an X-Spec for the Southstorm database. The semantic name for

the Orders tb table is [Order] because its records represent an order context. A semantic

name for the field Order num is [Order] Id since the order number is the identifying

attribute of an order. The context term is [Order] and the concept name Id represent the

semantics of the id attribute for the context. Similarly, the field Item1 id is mapped to the

semantic name [Order;Product] Id, as the Id concept applies to a Product which is part

of an Order. The complete X-Spec (types and field sizes omitted) is in Figure III.4.

The X-Spec is a simple XML schema storing the Southstorm database schema. The

additional tags sys name and sys type define the system name for the database element and

indicate whether it is a table or a field. The names assigned to the individual elements are

semantic names consisting of multiple terms from the standardized dictionary. A complete

X-Spec is augmented with additional metadata about the field types and sizes.

In summary, an X-Spec is a database schema and metadata encoded in XML

that stores semantic names to describe schema elements and is exchanged between systems.

Although XML is used for transmission, an X-Spec is more than XML because it uses XML

tags to capture metadata. An X-Spec is different than a BizTalk schema because it is not

CHAPTER III. INTEGRATION ARCHITECTURE 58

intended as a standardized schema for data communication. It is a document describing an

existing database schema which uses terms out of the standard dictionary to capture data

semantics. As such, there will be a different X-Spec for each data source.

III.4 Integration Algorithm

Integration algorithms for industrial systems are straightforward because there is

total uniformity. To participate in EDI and BizTalk communications; one must rigorously

follow the standardized schema. Since the standardized schema dictates the exact structure,

organization, and types of all fields, an EDI or BizTalk parser must only match fields based

on their location or name. There is no room for interpretation; either an EDI/BizTalk

document conforms to the schema or it does not. This standardization makes it relatively

straightforward to define the necessary software to perform the integration task and com-

municate data between systems. The drawback to such rigid standardization is that it is

inflexible. Transforming data into the correct standard format may require considerable ef-

fort. Further, definitions of the standard schemas will increase in complexity in accordance

with the legacy system’s complexity.

Integration algorithms proposed in the database research community have been

incapable of achieving automation because they do not accept standardization. Theoreti-

cal research tends to be wide ranging so some constraints must be placed to ensure only

tractable contexts are considered. A standard dictionary is required as a framework for

communication but integration of database schema is possible without rigid conformity to

an exact standard schema.

An X-Spec describing a database is not guaranteed to exactly match the X-Spec

describing an almost identical database. There are also no guarantees that two X-Specs

created by two different designers describing the exact same database will be identical,

although they should be very similar. The reason for this is that the X-Spec does not

format data according to a standardized schema, rather it describes the current structure

of the database and uses terms out of the standard dictionary to express semantics.

Thus, integration is achieved not by the exact parsing of a document but by match-

CHAPTER III. INTEGRATION ARCHITECTURE 59

ing standard terms to relate concepts. The same term used in two different X-Specs is known

to represent the identical concept regardless of its representation. Since one X-Spec may

represent a concept as a field while another represents it as a table, the integration algorithm

must handle this diversity and organize the resulting integrated schema accordingly.

The integration algorithm processes one or more X-Specs describing database

schema. It then uses the semantic names present in the X-Specs to match related concepts.

The integration algorithm is a straightforward term matching algorithm. An overview of the

integration algorithm is provided in Figure III.5, and the C++ implementation is given in

Appendix D. The product of the integration algorithm is a structurally-neutral, hierarchical

representation of database concepts called an integrated, context view (CV).

Definition. A context view (CV) is defined as follows:

• If a semantic name Si is in CV , then for any Sj in S∗
i , Sj is also in CV .

• For each semantic name Si in CV , there exists a set of zero or more mappings Mi

which associate a schema element Ej with Si.

• A semantic name Si can only occur in the CV once.

That is, for every semantic name that exists in the context view, all its associated

semantic names, formed by taking a subset of its terms, are also in the context view.

Each semantic name in the view can be mapped to physical fields and tables by the set of

mappings provided by the system.

The integration architecture combines schema elements into the context view by

merging their associated semantic names with the semantic names currently present in

the CV. Matching proceeds term-wise until a complete match is found or until no further

matches are found. Thus, the CV is a tree of nodes N = {N1, N2, ..., Nn}, where each node

Ni has a full semantic name Si consisting of one or more dictionary terms {T1, T2, ..., Tm}.

When a node is added, each of its corresponding terms are recursively added starting at

the root.

Consider the Southstorm database example. Start with an empty integrated view

V . The semantic name [Order] is automatically added to V as it is empty. When adding

[Order;Product], the first term [Order] matches with the order term already in V . The

CHAPTER III. INTEGRATION ARCHITECTURE 60

algorithm searches for the term [Product] in V under [Order] which is not present so

[Product] is added to V under [Order]. Similarly, when [Order] Id is integrated into

V , Id gets added under [Order] in V . Repetition of the process produces the integrated

view in Figure III.6.

Procedure Integrate(X as X Spec, ByRef V as View)
SN as Semantic name
T array as Array of Term
E as ElementType

For each E in X (1)
SN = get semantic name(E) // Extract SN from XML definition of E (2)
get terms(SN,T array) // Parse SN to extract its component terms (3)
match sname(SN,T array,1,X,V,V.get root()) (4)

Next (5)
End Procedure

Procedure match sname(SN as Semantic name, T array as Array of Term, term# as Int,
X as X Spec, ByRef V as View, cur node as View node)

If term# == T array.count()Then (1)
add DB map(SN,X,V) // Store DB mapping (2)
Return // Matched all terms (3)

End if (4)

If cur node == NULL Then (5)
Return (6)

// Otherwise, match all children of cur node with the current term
For each child node of cur node (7)

If child node.sem name.term[term#] == T array[term#] Then (8)
// Match at this level, so recursively match at next level

Return match sname(SN,T array,term#+1,X,V,child node) (9)
End If (10)

Next (11)

// There is no further match - add all remaining terms (including this one)
For term num to T array.count (12)

add node(SN,X,V) // Add term to V and record mapping to X (13)
If term num == T array.count Then (14)

add DB map(SN,X,V) // Store DB mapping (15)
End if (16)

Next (17)
End Procedure

Figure III.5: Integration Algorithm

Given this integrated view, a user constructs queries by choosing which fields

should be displayed in the final result. The required joins between the tables are automati-

cally inserted by the query processor. This example illustrates the integration of an X-Spec

with an empty integrated view but it is no more complex to now integrate with another

CHAPTER III. INTEGRATION ARCHITECTURE 61

Integrated View Term Data Source Mappings (not visible to user)
V (view root) N/A

- [Order] SS.Orders tb
- Id SS.Orders tb.Order num
- Total amount SS.Orders tb.Order total
- [Customer]
- Name SS.Orders tb.Cust name
- [Address]
- Address Line 1 SS.Orders tb.Cust address
- City SS.Orders tb.Cust city
- Postal Code SS.Orders tb.Cust pc
- Country SS.Orders tb.Cust country

- [Product]
- Id SS.Orders tb.Item1 id, SS.Orders tb.Item2 id
- Quantity SS.Orders tb.Item1 quantity, SS.Orders tb.Item2 quantity
- Price SS.Orders tb.Item1 price, SS.Orders tb.Item2 price

Figure III.6: Southstorm Integrated View

X-Spec describing a different database. Actually, the integration is identical because during

this example the X-Spec was integrated into the view with itself. That is, as each new

term was added to the view, the following term was integrated with all the terms that were

already added. Integrating another X-Spec with the same semantic names would yield the

same result. The order in which X-Specs are integrated is irrelevant and the same X-Specs

can be integrated several times with no change. As more X-Specs are integrated, the number

of fields and concepts would grow, but assuming the semantic names are properly assigned,

the integration effectiveness is unchanged.

Once all semantic names of an X-Spec are integrated, a second optional integration

phase is performed. The second step uses metadata in the individual data sources to refine

the integrated view. The metadata phase of the integration algorithmperforms the following

actions:

• Uses relationship information (1-1, 1-N, M-N) in the specification to validate match-
ings and re-organize the integrated view.

• Uses field sizes and types to validate initial matchings.

• Creates mechanisms for calculating totals and functions to derive attributes in one
data source which are not explicitly stored in others.

CHAPTER III. INTEGRATION ARCHITECTURE 62

III.4.1 Concept Promotion

Since there are only two modeling constructs in the context view, a context and

a concept, the only possible structural conflict in the integrated view occurs when two

semantic names have the same terms and one is a context and the other is a concept.

In this case, the context term is more general than the concept term which implies that

in one database the idea is more detailed than in another. For example, if one database

stores an employee’s name as a single field with semantic name [Employee] Name and

in a second database, an employee’s name is further subdivided into first and last names

[Employee;Name] Last Name, [Employee;Name] First Name, during integration, the se-

mantic names [Employee] Name and [Employee;Name] will be combined. However, one is

a concept and the other is a context.

These conflicts at the integrated view level are caused by conflicts in the relational

model such as the table versus attribute conflict or representing a concept using different

numbers of attributes. The solution to this problem is promotion. The more general context

term [Employee;Name] is added to the integrated view. The concept term is promoted

to a concept of this new context. The semantic name becomes [Employee;Name] Name.

Abstractly, promotion is a mechanism for handling generalization related conflicts.

III.4.2 The Context View as a Universal Relation

A fundamental database model is the Universal Relational Model which provides

logical and physical query transparency by modeling an entire database as a single relation.

We will demonstrate the similarity of the context view with the Universal Relation Model

[71], and thus argue that our system also provides logical and physical query transparency.

There has been substantial work presented on querying in a Universal Relation environment

[15], and more generally in the theory of joins [2] and querying [87, 52].

There is an underlying similarity between a context view and a Universal Relation.

A Universal Relation (UR) contains all the attributes of the database where each attribute

has a unique name and semantic connotation. Although further extending assumptions on

the Universal Relation related to access paths and attribute interrelationships are proposed

CHAPTER III. INTEGRATION ARCHITECTURE 63

by Maier et al. [71], the fundamental feature of the UR is that all attributes are uniquely

named with a unique connotation.

Lemma. A context view (CV) is a valid Universal Relation if each semantic name is

considered an attribute.

Proof. For a given data source, each field is assigned a semantic name. The semantic

name defines a unique semantic connotation for the field. To violate the Universal Relation

assumption, a given semantic name must either occur more than once in the CV (non-unique

attribute names) or two or more semantic names must have identical connotations (non-

unique semantic connotations). A semantic name can only occur once in a CV by definition.

Hence, each semantic (attribute) name is unique. The construction of a semantic name by

combining terms defines its semantics such that two different semantic names cannot have

the same semantic connotation. Thus, a context view is a valid Universal Relation.

Essentially, the automatic construction of a context view by combining semantic

names builds a Universal Relation describing a data source. However, the context view is

a hierarchy of contexts and concepts which serve to semantically subdivide the attributes

of the relation.

Although a given semantic name occurs only once in a CV, it is entirely possible

that there is more than one mapping to physical fields in even a single data source. For

example, consider the Northwind database with tables Orders and OrderDetails. The field

OrderID in both tables is assigned the exact same semantic name [Order] Id. This makes

sense because each field has the same semantic connotation and is only represented as two

fields due to the normalization of the tables. When these two tables are combined into a

UR, only one instance is retained. However, the query system must decide on the correct

and more efficient mapping when generating query access plans.

A context view examined as a Universal Relation addresses several of the problems

of the UR model. First, the context view is automatically created by the system when the

database semantics are systematically described by the DBA. In the construction of the

semantic names, the DBA uniquely defines the semantics and name for each field. The

system then uses the supplied semantics, schema and join information to automatically

build the context view. As we will demonstrate, this process can be applied in reverse

CHAPTER III. INTEGRATION ARCHITECTURE 64

to extract query results from normalized database tables given a query expressed on the

context view.

The context view also resolves the issue of large and complex Universal Relations.

Since the context view is organized hierarchically by context, there is an explicit division of

the context view into semantically grouped topics as opposed to one, flat relation containing

all attributes. This reduces the semantic burden on the user when selecting query fields.

The context view is more than a Universal Relation. It is a hierarchically organized,

integrated view of database knowledge in one or more systems. It is designed for easy

integration of databases by capturing the semantics of their schema elements. Unlike a

strict Universal Relation implementation, the context view is never physically constructed.

Rather, like a view, it is an amalgamation of data stored in other structures which is built as

needed. Queries posed through the context view can be physically realized by an automatic

algorithm which maps from semantics to structure and produces SQL expressions on the

underlying databases to extract the relevant data.

CHAPTER III. INTEGRATION ARCHITECTURE 65

III.5 Query Processor

The integrated view of concepts is not a structural view consisting of relations and

attributes. Rather, the context view is a hierarchy of concepts and contexts which map to

tables and fields in the underlying databases. Thus, querying the integrated view is different

than existing systems, and implementing the query processor results in new challenges.

The system implements querying by context that allows the user to formulate

queries by manipulating elements in the context view. As discussed, the context view

provides physical and logical access transparency similar to the Universal Relation [71].

Users generate queries by manipulating semantic names. The user is not responsible for

determining schema element mappings, joins between tables in a given data source, or joins

across data sources which are all determined by the system.

The query processor performs two basic steps. The first step is dynamic view

creation which extracts the relevant query data from each database. The second step

automatically integrates the views constructed for each database. The query processor

executes the following procedures:

• Dynamic ViewConstruction - Given the user’s query and semantic names selected,
determine data mappings at each database to generate an SQL query. The query result
produces a dynamic view of relevant information.

– Enumerate Semantic Names - required by the user.
– Determine Relevant Fields and Tables - For each data source, determine
the best field mapping(s) for each semantic name and their associated tables.

– Determine Join Conditions - Given a set of fields and tables to access in a
data source, determine which joins to insert to connect database tables.

– Generate and Execute SQL Queries - created in the previous steps.

• Automatic View Integration - involves retrieving the individual local views from
the databases and reconciling any remaining conflicts including result normalization,
global field orderings, global joins and keys, and formatting to resolve data conflicts.

– Result normalization - is required when the local views are not in the same
normalization state.

– Global Keys and Joins - may be automatically applied if databases have keys
which transcend their local database scope and can be compared across systems.

– Data Integration - resolves lowest level field value conflicts resulting from dif-
ferent data representations, scaling factors, precision, and data types.

CHAPTER III. INTEGRATION ARCHITECTURE 66

III.6 Dynamic View Construction

III.6.1 Enumerating Semantic Names

In some cases, a real-world concept may be represented multiple times in the

database and possibly with different semantic names. The first task for the user is to

determine the correct semantic name for querying. For example, in Northwind there are

two semantic names that map to the concept of a “Shipper ID”: ShipperID ([Shipper]

Id) in Shippers and Shipvia ([Order;Shipper] Id) in Orders.

The choice of semantic name depends on the query requirements. Selecting

[Shipper] Id will select all shipper ids whether or not they have transported an order,

whereas [Order;Shipper] Id only returns shippers who have sent orders. Notice that the

difference between the semantic names is based on the additional constraint that one is

dependent on order information while the other is not.

When there is only a single database integrated into the context view, choosing the

correct semantic name is not a problem. The user will be able to select the correct instance

based on their query requirements. However, when such semantic constraints differ across

databases, the system becomes responsible for choosing the correct semantic name for each

database. Even more generally, the query system must be able to support the notion of

joins between contexts which may exhibit slightly different semantic properties.

There is no concept of a “join” in the integrated view because it does not specify

a structure for data representation. However, an operation equivalent to a join in the

integrated view is a context merger. A context merger is the combination of two contexts

by applying a relationship condition. A relationship condition may be a join between tables

if a join exists between the contexts or a cross-product if it does not.

The user never directly specifies the relationship condition between two contexts

in the integrated view, so the system must determine how to relate the two contexts in each

data source. Since the user is able to query on any semantic name in the integrated view,

the semantic concepts chosen may be related by being in the same table, by joins between

tables, or not related at all. For example, if the user requires the names of all customers

that have placed orders ([Order;Customer] Name), the relationship between the [Order]

CHAPTER III. INTEGRATION ARCHITECTURE 67

and [Customer] contexts must be determined. In Southstorm, no join or cross-product is

applied because the field is directly present in the Orders tb table. For Northwind, the query

processor must insert a join from Orders to Customers to retrieve the same information.

Context merging is also applied to discover mappings which result from inter-

schema relationships. Using the customer name example, there are actually two terms

for customer names: [Customer] Name (Northwind) and [Order;Customer] Name (South-

storm). Although related, these terms are not identical because in Southstorm, unlike

Northwind, a customer name cannot exist without an order. The extra context [Order] in

Southstorm implicitly captures this structural constraint by indicating that a [Customer]

context is only valid as part of an order. However, if the user requires the names of all

customers ([Customer] Name), the implicit assumption in this query is that customers

in Southstorm should be displayed even though they exist only as order information.

Thus, since Southstorm has no direct mapping for [Customer] Name, the system searches

for a semantic name in the Southstorm X-Spec containing [Customer] Name and finds

[Order;Customer] Name which is used in the query mapping.

III.6.2 Determining Relevant Database Fields and Tables

The query system determines which physical tables and fields to access in the data

source based on the semantic names chosen by the user. In most cases, a semantic name

in the integrated view has only one mapping to a physical field. However, in special cases,

especially when considering key fields, a semantic name may map to several physical fields.

Since the choice of field (and its parent table) may affect the semantics of the query, the

query system must have well-defined rules which are logical and easily conveyed to the user.

Semantic names are selected by the user for display in the final result (projection)

or for specifying selection criteria. Regardless, if the field is being used in a selection or

projection operation, all fields are treated uniformly by the query system.

Determining the correct field instance to select if a given semantic name can be

mapped to multiple fields in the underlying database is complex. Fortunately, it is unlikely

that a semantic name has multiple field mappings when the database is normalized if the

field is not a key field. However, the choice of a key field with multiple mappings is especially

CHAPTER III. INTEGRATION ARCHITECTURE 68

important as it affects the join semantics. Depending on the field mapping chosen, different

tables are joined together. For example, the semantic name [Order] Id maps to two

physical fields: OrderID in the Orders table and OrderID in the OrderDetails table. In both

cases, the field has the same semantics. However, depending on which of the two mappings

is selected, a new join may be introduced into the query if the table is not currently in the

query. The general heuristic is to choose the primary key instance (Orders) unless the user

selects attributes from the OrderDetails table.

There is one other special case when a semantic name may have multiple field

mappings. When a database is not normalized, multiple fields in a single table may map

to a semantic name. For example in Southstorm an order has only two items (Item1 id,

Item2 id) stored in the Orders tb table, and the semantic name [Order;Product] Id has

two mappings in the table. The semantically correct query should accept both field map-

pings, and then automatically normalize the data by splitting one order record into two

normalized records when the results are presented to the user.

To handle multiple mappings, the query system first selects a field which is cur-

rently present in the tables already in the query. Otherwise, it chooses the field whose

parent table context matches the field context. This is done to identify the most logical

semantic choice for the field. Presumably, this identifies the most common occurrences of

the field and often is the primary key of the parent table. Finally, the system takes the

first field mapping encountered if no other heuristic applies. The algorithm presented (see

Figure III.7) constructs a set of fields (F) and tables (T) which best map to the set of query

nodes (semantic names) Q = {Q1, Q2, ..., Qn} given by the user.

III.6.3 Determining Join Conditions

Given a set of fields and tables to access in the query, the query system must

determine a set of join conditions between the tables. It is important to isolate the user

from join construction while choosing appropriate joins to preserve the query semantics.

We define a join graph as an undirected graph where each node corresponds to a

table in the database, and there is a link from node Ni to node Nj if there is a join between

the corresponding two tables. For this discussion, we ignore multiple joins between two

CHAPTER III. INTEGRATION ARCHITECTURE 69

Procedure find field mappings()
For each term Qi in Q (1)

SNi = semantic name of Qi (2)
search XSpec(Xj,SNi,num,R) // Search X-Spec for SN. Return results in R. (3)

If num = 1 // Only one occurrence of semantic name (4)
Add field Rk to F (5)
Add parent table of Rk to T (6)

Else (7)
If multiple occurrences but only in one table Then (8)

For each result Rk in R (9)
Add field Rk to F (10)

Next (11)
Add parent table of R1 to T (12)

End if (13)
End if (14)

Next (15)

// Second pass to resolve multiple occurrences
For each term Qi in Q (16)

SNi = semantic name of Qi (17)

If Qi has not been mapped (18)
search XSpec(Xj,SNi,num,R) // Search X-Spec for SN. Return results in R. (19)

If there exists any mapping Rk of R with parent table Tj already in T Then (20)
Add field Rk to F (21)
Add parent table of Rk to T (22)

ElseIf Find parent table Tj of Rk with context portion = context portion of Qi Then (23)
Add field Rk to F (24)
Add parent table of Rk to T (25)

Else (26)
Add field R1 to F // Otherwise, add first mapping (27)
Add parent table of R1 to T (28)

End if (29)
End if (30)

Next (31)
End Procedure

Figure III.7: Field Selection Algorithm

tables on different keys. A join path is a sequence of one or more joins interconnecting two

nodes (tables) in the graph, and a join tree is a set of one or more joins interconnecting two

or more nodes. Assume without loss of generality1 that the join graph is connected. The

join graph for the Northwind database is illustrated in Figure III.8.

Lemma 1. If a join graph is acyclic, there exists only one join path between any two nodes.

Proof. Proof by contradiction. Assume that two join paths exist between node Ni and

node Nj where i �= j. Then, we could take the first path from Ni to Nj, and return on the

second path from Nj to Ni. This implies that the graph has a cycle.

1Otherwise, we apply the algorithm to each connected subset and connect them using a cross-product.

CHAPTER III. INTEGRATION ARCHITECTURE 70

Suppliers Products Categories

OrderDetails

OrdersShippers Employees

1 N N 1

N

1

1

N

1 N 1N

1

N

Customers

Figure III.8: Join Graph for Northwind Database

Lemma 2. If a join graph is acyclic, there exists only one join tree between any subset of

its nodes.

Proof. Proof by induction. The statement is true for two nodes as per Lemma 1. Given a

subset of m nodes with only one join tree connecting them in the join graph, add another

node N to the set. Assume that by adding N there exists more than one join tree in the

new subset of m+1 nodes. Since, there was only one join tree for the previousm nodes, this

implies that N must be connected to more than one node in the subset. If N is connected

to two nodes Ni and Nj in the m nodes where i �= j, then there must be a path from N to

Ni, Ni to Nj, and Nj to N by Lemma 1. This produces a cycle. Thus, the statement holds

for m+ 1 nodes, and the result follows by induction.

The consequences of Lemma 2 are important. If the join graph for a database is

acyclic, there exists only one possible join tree for any of its tables. This implies that the

query system does not have any decisions involving which joins to apply. We must only

identify which joins are needed to connect the required tables by constructing the join tree.

The actual order in which the joins are applied is a join optimization problem which has

been actively studied but will not be discussed here.

From this result, it is possible to construct an algorithm which builds a matrix

M where entry M [Ni, Nj] is the shortest join path between any pair of nodes Ni and Nj.

CHAPTER III. INTEGRATION ARCHITECTURE 71

By combining join paths, the query system can identify all the joins required to combine

database tables by constructing the only possible join tree. The general algorithm is pre-

sented later in the section. Theorem 1 proves how the join tree can be constructed for any

tables in the join graph using the shortest join path matrix M . Determining the join tree

allows the query system to insert the correct join conditions during SQL generation.

Theorem 1. Given a matrix M , which stores shortest join paths for an acyclic join graph,

and a set of tables T to join, a join tree can be constructed by choosing any table Ti from T

and combining the join paths in M [Ni, N1], M [Ni, N2], ...,M [Ni, Nn] where N1, N2, ..., Nn

are the nodes corresponding to the tables in T .

Proof. Proof by contradiction. Since the graph is connected, the matrix entriesM [Ni, N1],

M [Ni, N2], ...,M [Ni, Nn] represent join paths from Ni to all other nodes in the subset.

Assume a join tree is not constructed. Thus, there is no path between some two nodes Nj

and Nk where j �= k. However, there is a path from node Ni to Nj and from node Ni to

Nk. Combining these paths results in a path from Nj to Nk. Thus all nodes are connected

with the join tree, and it is the only possible join tree as per Lemma 2.

Normalized databases often have acyclic join graphs. However, the general case

of a cyclic join graph must be considered. A cyclic join graph arises when redundant joins

are present in the database or when tables serve multiple semantic roles in a database.

A given table can assume multiple semantic roles in several ways. One way is by acting

as a lookup table for several other tables. For example, assume the Northwind database

(see Figure III.9) also stored information on the employee who entered each order product

in addition to the employee who entered the overall order. In this case, Orders and Or-

derDetails have foreign keys to the Employees table storing the employee who entered the

record. This produces a cycle between Orders, OrderDetails, and Employees. Notice that

the join path chosen between the tables represent different semantic queries. The join path

Orders → Employees; Orders → OrderDetails represents the orders entered by employee

with their products; OrderDetails → Orders;OrderDetails → Employees represents the or-

ders with their products grouped by the employee entering the product; and Employees

→ Orders;Employees → OrderDetails represents which employees entered both an order

product and its overall accompanying order.

CHAPTER III. INTEGRATION ARCHITECTURE 72

Suppliers Products Categories

OrderDetails

OrdersShippers Employees

1 N N 1

N

1

1

N

1 N 1N

1

N

Customers

1

N

Figure III.9: Cyclic Join Graph for Northwind Database

A second instance of cyclic join graphs appears when a table stores a generalized

concept which may have multiple subconcepts. Using Northwind as an example, assume the

Shippers and Suppliers table are combined into one table called Companies. The Companies

table effectively stores the general notion of a company and the specific types of companies:

shippers and suppliers. Cycles occur when tables join to the different semantic instances

(shipper,supplier) in the Companies table.

Finally, cycles occur when redundant joins are added to the database. For example,

the CategoryID field could be added to OrderDetails for a direct link to Categories instead

of joining through Products. This results in a cycle involving OrderDetails, Products, and

Categories. Note that joins of this nature may be lossy when used in combination with other,

valid lossless joins. An invalid lossy sequence of joins contains a join with an N-1 cardinality

followed by a join with an 1-N cardinality. There may be other joins between these two

joins. The result is a lossy join because it results in an M-N cardinality relationship between

the merged tables. Effectively, this leads to invalid information being created by using these

joins. Also, a join of cardinality M-N between two tables is always lossy because invalid

information is introduced because of the join. Thus, the algorithm first attempts to find

join paths without using these types of lossy joins.

Consider the case of a join cycle between the tables Categories, Products, and

CHAPTER III. INTEGRATION ARCHITECTURE 73

OrderDetails. The cycle is caused by a redundant join between OrderDetails and Categories

on CategoryID. Now, consider that OrderDetails has one record, {(OD,P1,C1)}, Categories

has one record, {(C1)}, and Products has two records, {(P1,C1), (P2,C1)}. If the system

joins these tables on CategoryID from OrderDetails to Categories and from OrderDetails

to Products, the result is {(OD,P1,C1),(OD,P2,C1)}. Although this may be a valid result

in some cases, incorrect information (the second record) was introduced because of this

sequence of joins. Hence, the query system will try to avoid such lossy joins and only apply

them if a cross-product is the only other alternative. A similar example can be constructed

for the “employee and order join” example mentioned previously where the Employees table

had multiple joins because it had two different semantic roles.

To handle cycles, the query system must make a determination of the best join

paths between nodes. The query system uses join semantics, path length, and join properties

(total participation, lossless vs. lossy) to determine best join paths. The breadth-first search

based algorithm (Figure III.10) constructs the matrix M of best join paths. It works for

both cyclic and acyclic join graphs. The algorithm selects the shortest join paths with no

lossy joins. Equal length join paths may be differentiated based on total participation or

other join properties. Lossy joins are only used if there exists no other path between nodes

(i.e. when a cross-product would be necessary).

It would be ideal if the algorithm in Figure III.10 and Theorem 1 would produce

a single correct join tree for a cyclic join graph. However, if the graph is cyclic, there will

be multiple join trees possible depending on the choice of starting node. These join trees

are each semantically valid depending on the semantics of the query. The system cannot

differentiate for the user without more knowledge about the intended query semantics.

Although it may be possible to define heuristic algorithms to choose the correct join tree

based on the attributes chosen for the query, it is more desirable to have a precise mechanism

for the user to exploit. Thus, we define extensions to the query model that allow the user

to more precisely define the semantics of the query such that the system can uniquely

determine the join tree required.

CHAPTER III. INTEGRATION ARCHITECTURE 74

Procedure calc join paths(ByRef M as matrix, G as graph)
// M is an N x N matrix where N is the number of nodes in the graph
// NQ is a FIFO queue structure

count as Integer
F, N, LTN as Node
L as Link
accept lossy as Boolean
join type as Integer // Type of join by cardinality: 1-1,1-N,N-1,M-N

For each node F in G (1)
M[F,F] = Null // Empty join path to itself (2)
count = 0 (3)
accept lossy = false (4)

repeat label: (5)
add F to NQ (6)

While NQ is not empty (7)
remove first node N from NQ (8)
For each outgoing link L of N (9)

LTN = destination node of link L from N (10)
join type = cardinality of join for L (from N to LTN) (11)
If LTN is not visited and (accept lossy

or not((M[F,N] has a N-1 join and join type=1-N)) or join type=M-N) Then (12)
add LTN to NQ (13)
mark LTN as visited (14)
M[F,LTN] = M[F,N] + LTN (15)
count++ (16)

ElseIf accept lossy or not ((M[F,N] has a N-1 join and join type = 1-N))
or join type = M-N) Then (17)

// May want to replace a join path already constructed (M[F,LTN]) if
// - new join path is the same length as current one and
// - new join path has better properties (eg. total participation)

Endif (18)
Next (19)

End while (20)

clear flags() // Clear all visited flags for all nodes in G (21)

If count ≤ # of nodes in G and accept lossy = false Then (22)
accept lossy = true (23)
Goto repeat label // Repeat algorithm accepting all joins (even lossy) (24)

Endif (25)
Next (26)

// Note: For any matrix entries not assigned no join path exists and a cross-product is required

Figure III.10: Algorithm to Calculate Join Paths

CHAPTER III. INTEGRATION ARCHITECTURE 75

III.6.4 Query Extensions

To enable the user to more precisely define the semantics of the query, extensions

to the integrated view are possible. The extensions allow the user to more accurately convey

the semantics of the query or to override the system default semantics. The first extension

is to allow the user to pick the root join table. Essentially, this gives the user the ability

to choose which row in the join matrix to use. Semantically, the root join table chosen by

the user is the starting point of all join paths. This allows the system to unambiguously

construct a join tree which matches the users’ intended query semantics. This extension is

required because there are multiple join trees in a database with a cyclic join graph, each

of which has different query semantics.

The second optimization is an enhancement of the integrated view presentation.

Currently, the integrated view consists of a hierarchy of contexts and concepts. The join

conditions relating the individual concepts are largely hidden to the user. However, these

join conditions are automatically inserted by the query system as required. To make these

interrelationships more apparent, the system can automatically display them. If a given

semantic name (node) in the integrated view is actually a foreign key to another concept

(table) then when the user clicks on this concept, the attributes of the linked concept are

displayed.

For example, in Northwind the field EmployeeID in Orders has a semantic name

[Order;Employee] Id corresponding to the foreign key from Orders to Employees. When

the user clicks on this semantic name, the system automatically performs the join to the

Employees table and displays to the user the fields of Employees (EmployeeID, LastName,

FirstName) which can be added to the query.

This approach has several benefits. First, it reduces the semantic burden on the

user by automatically displaying concept interrelationships. More importantly, it reduces

the query generation complexity for the system. By explicitly displaying the join information

and associated fields, the system now has an unambiguous reference from the user on which

fields to use, from what tables, and the corresponding join condition (attribute) to use to

relate the two different contexts.

CHAPTER III. INTEGRATION ARCHITECTURE 76

For example, if the user selects the LastName field for inclusion into the query

directly from the Employees table, it may be ambiguous how to join Orders and Employees

if there are multiple join trees. (This is not a problem in the original version of Northwind

but could be an issue in other cases as discussed.) However, if the user selects the mapping

to LastName which results from expanding the join through [Order;Employee] Id, the

system and the user now know the exact join path.

III.6.5 Generation and Execution of SQL Queries

Given the set of database fields and tables to access and a set of joins to apply, it

is straightforward to construct an SQL select-project-join type query. The field mappings

are used to form the Select portion of the SQL statement. The parent tables of the

fields are included in the From section. The Where section contains the join conditions

determined by constructing the appropriate join tree for the query. In cases where there

are multiple join trees, the user’s input when selecting semantic names allows the system

to uniquely determine the join tree and use the shortest join paths in the join path matrix

M to determine the correct joins to apply. The Where clause also includes any query

conditions selected by the user. Ordering information is added to the OrderBy clause.

After building an SQL query string, the query is transmitted to the database for

execution. Although there are multiple open standards and proprietary protocols for each

database and environment, the architecture is designed to utilize the ubiquity of the ODBC

standard to access all major database systems. Results returned from each ODBC query

are then processed by the client to perform global level conflict resolution and formatting.

CHAPTER III. INTEGRATION ARCHITECTURE 77

III.7 Automatic View Integration

III.7.1 Global Keys and Joins across Databases

Since X-Spec information is produced independently for each data source, the

query processor does not have join information available to merge contexts across databases.

To provide joins across databases, the architecture requires a common key to relate contexts.

Even though key fields may be identical semantically, unless the scope of the key transcends

the database itself, that key cannot be used to join across systems. The scope of a key is

the context in which it is valid. We define two scope hierarchies:

• Geographical hierarchy: International, National, and Regional.

• Organizational hierarchy: Organization, Group, and Database.

The hierarchies are not mutually exclusive, although in practice they tend to be

used in that manner. For example, a key in a book database may be ISBN. An ISBN is

an internationally recognized key, so the scope of the key is International. Obviously, the

international scope of ISBN subsumes the Organization scope.

At each level of the scope hierarchy, scope instances are defined. For example,

under the National scope there are country names such as Canada, United States, etc. Under

the organization scope, there are organization names such as Northwind, Southstorm, etc.

Similarly, under the Database scope there are database names. Thus, a key scope consists

of a hierarchy level and a scope instance. For example, a social security number (SSN)

is a common government key. However, the scope of a Canadian database with a SSN

key is National and “Canada”, whereas the same key in an American database is National

and “United States”. Although both fields store the concept of SSN, this key will not be

integrated across the databases because of their different scope.

The overall database scope is also important and is stored in an X-Spec. For

instance, the database context information for Northwind is: National = “United States”,

Regional = “Texas”, Organization = “Northwind”, and Database = “Northwind.mdb”.

The database context for Southstorm is: National = “Canada”, Regional = “Manitoba”,

Organization = “Southstorm”, and Database = “Southstorm.mdb”.

CHAPTER III. INTEGRATION ARCHITECTURE 78

Given these two database contexts, consider the order id key field. In both cases,

the order is only guaranteed unique within the organization. Thus, the scope of Order num

in Southstorm is Organization = “Southstorm”, and the scope of OrderID in Northwind is

Organization = “Northwind”. If order records are queried from both databases, no inte-

gration of results is performed because the scopes of the order keys are different. However,

if the product keys are internationally recognized SKU numbers, then the key scope of

ProductID and Item1 id/Item2 id is International. When products are queried, the system

matches product ids because their key scopes are identical.

Although this system is simplistic, the scope hierarchy can easily be tailored to

meet specific application needs as required. The important benefits are:

• The context information of a database is easily captured.

• The scope of a key is stored for the system to automatically determine if information
across databases should be joined or unioned together.

• The user can filter databases accessed at query time by specifying particular database
contexts.

III.7.2 Result Normalization at Query-Time

The integrated view has no implied structural representation and organizes con-

cepts hierarchically. The underlying databases may have similar data represented in various

structural organizations. The previous sections demonstrated how structural and naming

conflicts are resolved by mapping through the integrated view to produced dynamic views

of each data source. However, the normalization states of each local database view may

be different. For example, the Northwind database is in third normal form (3NF), but the

Southstorm database is not normalized. Thus, the system is responsible for “normalizing”

results returned at query-time to reconcile the different database normalization states.

The task of the view integration system is two-fold. First, there must be a mech-

anism for specifying dependencies between fields. Second, the system must process these

dependencies, reconcile them with the integrated view, and normalize the query results.

Functional dependency information is stored in X-Specs. The system restricts the

specification of functional dependencies such that a field may only specify one field which

CHAPTER III. INTEGRATION ARCHITECTURE 79

functionally determines its value even if there are several, and a functional dependency is

only specified for a field if its value is not functionally determined by the primary key of the

table. The system builds dependency trees for each database table requiring normalization.

Definition. Define a dependency tree, DT = (N,D), of functional dependencies for a

database table such that:

• N is the set of nodes of the tree and D is the set of dependency links

• The root of the tree (R) represents the relation (table).

• There is a link from R to field F1 if there is a field F2 where F1 → F2 and there does
not exist a field F3 where F3 → F1.

• If F1 → F2, then there is a link from field F1 to field F2.

Thus for each table T , there is a set of attributes N which require normalization

and are present in the dependency tree. The remaining attributes are uniquely deter-

mined by the primary key and thus require no normalization. For example, in Southstorm,

Item1 id → Item1 price and Item1 id → Item1 qty because given the item id, the quan-

tity and price fields can be uniquely determined. The dependency tree of the Orders tb

table is given in Figure III.11. The Northwind database does not require any query-time

normalization.

A dependency tree may contain several different semantic concepts. A normalized

dependency tree is a dependency tree where at each level of the tree all fields have the same

semantic name. Normalized dependency trees for Southstorm are in Figure III.12.

Item1_id

Item1_qty Item1_price Item2_qty

Item2_id

Item2_price

R

Figure III.11: Dependency Tree for Orders tb in Southstorm Database

Given a set of normalized dependency trees, the resulting combinations of fields

to produce normalized rows are easily constructed. For a single normalized dependency

CHAPTER III. INTEGRATION ARCHITECTURE 80

Item1_id Item2_id

R

Item1_id Item2_id

R

Item1_priceItem2_qtyItem1_qty Item2_price

Figure III.12: Normalized Dependency Trees for Orders tb in Southstorm Database

tree, the set of fields for each normalized row is produced by constructing the set of all

depth-first search paths from the root node to any child node. Integrating result sets

from multiple normalized dependency trees requires performing a cross-product between

the result sets. During the cross-product procedure, filtering is performed because not all

results from the cross-product are valid. A result is valid if and only if for each semantic

name in the result there is a unique field mapping. For example, in Southstorm the semantic

name [Order;Product] Id has mappings to Item1 id and Item2 id. If a row produced by

forming the cross-product has [Order;Product] Id map to both of these fields then the

row result is invalid and is discarded.

Given a result set which contains a mapping from semantic names to system field

names for each row, the client-side processor iterates through the result set for each row

returned by the query extracting the appropriate fields and inserting normalized rows in

the final result. A normalized row consists of all attributes not requiring normalization plus

an instance of the attributes requiring normalization. For example, normalizing [Order]

Id and [Order;Product] Id for Southstorm, results in the normalized row sets of:

{(Order num, Item1 id), (Order num, Item2 id)}.

III.7.3 Query Examples

This section gives four example queries on the integrated view of the Northwind

and Southstorm databases, and the SQL statements generated by the query processor.

Construction of the integration view used in these examples is explained in Section VI.3,

and the entire integrated view is given in Figures VI.10 and VI.11.

CHAPTER III. INTEGRATION ARCHITECTURE 81

Example 1. The user requires the order id ([Order] Id) and order date ([Order] Date)

for all available orders and selects the semantic names from the context view.

Southstorm Northwind
Select Order num Select OrderID, OrderDate
From Orders tb From Orders

Execution 1. Notice that no date field is available in the Southstorm database. This field

is left blank when a row result is displayed. The query system receives the output of both

queries and displays them to the user. No join is applied on the order ids because the order

keys are only valid within each database.

Example 2a. The user requires all customer names of orders ([Order;Customer] Name).

Southstorm Northwind
Select Cust name Select CompanyName
From Orders tb From Customers, Orders

Where Customers.CustomerID = Orders.CustomerID

Execution 2a. In this example, a structural conflict is inherently resolved by mapping

through the context view. The customer name is retrieved from the Orders tb table for

Southstorm and from the Customers table for Northwind. The query processor performs a

context merger by combining the [Order] context with the [Customer] context. A join is

required between Orders and Customers in Northwind to merge the two contexts.

Example 2b. The user requires all customer names ([Customer] Name).

Southstorm Northwind
Select Cust name Select CompanyName
From Orders tb From Customers

Execution 2b. This query is almost identical to the previous query except that it requests

customers whether or not they have an order. In Northwind, this query can be answered

without accessing the Orders table. However, due to the structural constraint in South-

storm, this information is embedded in order information. Since Southstorm has no direct

mapping, the query system searches for related mappings with more specific contexts and

finds [Order;Customer] Name and its associated system field Cust name.

Example 3. The user requires all product ids ([Product] Id).

Southstorm Northwind
Select Item1 id, Item2 id Select ProductID
From Orders tb From Products

CHAPTER III. INTEGRATION ARCHITECTURE 82

Execution 3. This example requires a context merger in Southstorm because the product

ids are only specified within an [Order] context. Second, assuming the product ids are in-

ternationally recognized keys such as a product SKU number, they can be integrated across

databases. Finally, Southstorm requires result normalization because multiple products ids

appear in a single result row.

Example 4. Query for orders ([Order] Id) and products ([Order;Product] Id).

Southstorm Northwind
Select Order num, Item1 id, Item2 id Select OrderID, ProductID
From Orders tb From OrderDetails

Execution 4. The system does not match record instances across the two databases because

although the product id has international scope, the order id key is only valid within each

database. Southstorm requires result normalization.

As shown in these simple examples, physical and logical query transparency is

provided to the user who queries the system by semantic name. The system handles the

necessary mapping from semantics to a structural query and inserts join conditions as

required. The query processor discovers and constructs the query in a dynamic fashion

based on the supplied mappings.

III.7.4 Comparison with SQL

The overwhelming acceptance of the SQL standard [29] has curtailed continuing

research work in relational database query languages and processing. Since all commercial

relational database systems conform with the SQL standard, there is little motivation for

developing new query languages.

Despite its benefits and wide-spread acceptance, SQL is not a perfect query lan-

guage. Complex database schemas challenge even experienced database programmers dur-

ing query formulation. As increasing numbers of less sophisticated users access numerous

data sources within an organization or across the Internet, their ability to accurately con-

struct queries with the appropriate structure and semantics diminishes. SQL can be hard

to use as it provides only physical access transparency not logical transparency. That is, a

user is responsible for mapping the semantics of the query to the semantics and structure of

CHAPTER III. INTEGRATION ARCHITECTURE 83

the database. Although graphical tools for query construction and high-level programming

languages mask some of the complexity, the notion of querying by structure is intrinsic to

most forms of data access.

Despite dramatic changes in database size, complexity, and interoperability, SQL

has remained fundamentally unchanged. The wide-variety of applications, users, and in-

dependent systems accessing databases rely on Structured Query Language (SQL) [29] to

retrieve the required information. Although the complexity of SQL generation has been

partially hidden by graphical design tools and more powerful programming languages, the

fundamental challenges of SQL remain.

The basic problem of SQL is also one of its greatest benefits. SQL allows a database

to be queried by a clearly defined language which is a vast improvement over hierarchical

methods and direct access technologies that require explicit navigation between records.

Unfortunately, an SQL user is responsible for understanding the structure of a database

schema, the names associated with schematic elements, and the semantics of the data stored.

Query formulation involves mapping query semantics into the semantics of the database and

then realizing those semantics by combining the appropriate database structures.

The SQL standard allows users to query different database platforms using one

language. This provides a degree of interoperability between systems and prevents users

from learning query languages for each database platform. SQL provides an efficient and

structured way for accessing relational data. However, specifying complex SQL queries

with numerous join conditions and subqueries is too complex for most users [10]. Further,

developing SQL queries requires knowledge of both the structure and semantics of the

database. Unfortunately, database semantics are not always immediately apparent from

the database schema, and mapping the required query semantics into an SQL query on

database structure is often complex.

There are graphical query tools [21, 19, 96] to aid in the formulation of SQL queries

and proposed extensions to the SQL language exist [99]. Many commercial databases use

similar tools to aid the user in query construction. However, at the lowest level, a user is

still responsible for mapping the semantics of the query into a structural representation suit-

able for the database. Unfortunately, this semantics-to-structural mapping is non-trivial,

CHAPTER III. INTEGRATION ARCHITECTURE 84

especially in large databases.

SQL is unsuitable for querying multidatabases or federated databases. These sys-

tems are a collection of two or more databases operating to share data. Extensions of SQL

such as MSQL [68] and its successor IDL [53] provide features for multidatabase querying

as discussed in Section II.3.2. The fundamental weakness in multidatabase query languages

is the reliance on the user’s knowledge of the database structure and semantics to con-

struct queries. Further, data organization is optimized for efficiency not understanding.

Understanding the structure and semantics of one data source is complicated in itself and

the in-depth knowledge required to formulate queries on multiple databases is extremely

rare. Although multidatabase query languages allow for the construction of multidatabase

queries, they do not reduce the need for the user to thoroughly understand the semantics.

To simplify querying, systems [81, 24, 51] have been developed which allow users to

query by word phrases. These systems are not powerful enough for a general multidatabase

environment because they do not allow the user to precisely define the exact data returned.

Unlike an SQL query which is deterministic and precise, “query by word” systems which

simplify query formulation by ignoring structure, sacrifice query precision. Other systems

which augment a relational database with logical rules or knowledge [54, 80] or change or

add to the database in some manner to enable advanced queries to be posed violate database

autonomy and thus are not desirable.

In a general environment, a query system must isolate the user from structure

and system details and at the same time provide a query language powerful enough to

produce precise, formatted results. SemQL [62] attempts to support semantic querying

using semantic networks and synonym sets from WordNet [78]. Although their approach is

similar to ours, using a large online dictionary such as WordNet increases the complexity of

matching word semantics. Also, since no integrated view is produced, it is not clear to the

user which concepts are present in the databases to be queried. Our approach improves on

SemQL by providing a condensed term dictionary, an integrated view to convey database

semantics to the user, and a systematic method for SQL generation.

Chapter IV

Unity - The Architecture

Implementation

IV.1 Unity Overview

Our overall integration architecture has four components: a standard term dictio-

nary, a metadata specification for capturing data semantics, an integration algorithm for

combining metadata specifications into an integrated view, and a query system for gener-

ating and executing multidatabase queries. Unity implements all four components in one

software package. The following sections describe each component in detail.

Unity is written in Visual C++ 6 and is intended for deployment on a Windows

NT platform. The entire functionality of the integration architecture is built into Unity

which displays the concepts in a graphical form. The system is constructed following the

Microsoft Document/View architecture, and hence is highly modular.

Although Unity runs on a Windows platform, this does not limit the software from

integrating databases run under different operating systems and database managers. All

Unity requires is a text file description of a database schema or the ability to automatically

connect to a database to retrieve its schema via ODBC, so it can begin the initial integration

steps. The integration algorithm itself is C++ code that can be easily ported to different

environments.

85

CHAPTER IV. UNITY - THE ARCHITECTURE IMPLEMENTATION 86

Unity is considered a multiple-document interface (MDI) application which sup-

ports multiple document types. The four document types Unity supports are: a global dic-

tionary (GD) document, an X-Spec document, an integrated view document, and a query

document. Any combination of these four types of documents can be open for manipulation

in Unity at the same time.

IV.2 The Global Dictionary Editor

The global dictionary editor component of Unity allows a user to create and main-

tain the standard dictionary of terms. This component of Unity has been used to construct

our base dictionary and new terms are continually added as required. For this discussion,

the terms standard dictionary and global dictionary are used interchangeably.

Global dictionary (GD) information is stored in a document derived from the

Microsoft Foundation Classes (MFC) document class. This document, called CGDDoc, is used

for serialization, event handling, and view representation. The GD data itself is contained

in the class CGD, an instance of which is an attribute of CGDDoc. The data is stored and

retrieved from disk in binary form and is implemented using MFC serialization routines for

each class.

In memory, the CGD structure is functionally a tree, although it is implemented as

a linked-list of node pointers. The CGD has a defined root and allows various mechanisms

for adding, renaming, and deleting nodes. Other methods include an iterator, which allows

the node list to be traversed sequentially, and routines for performing breadth-first and

depth-first searches. Display routines graphically display the structure, and search routines

allow the GD to be searched by name for a given term or closely matching terms.

Each term in the global dictionary is represented by a single node in the CGD struc-

ture. The node class, CGD node, has a unique key allowing the node to be identified. The

unique key is constructed by combining the semantic name of the node with its definition

number in the form: key = sem name + “ − ” + str(def num). The semantic name of

a node is an English word or phrase. The definition number is added by the system to

ensure that two instances of the same English word in the dictionary can be distinguished.

CHAPTER IV. UNITY - THE ARCHITECTURE IMPLEMENTATION 87

For example, the word “order” could appear in two different places in the dictionary. One

definition of “order” may be “a request to supply something”, whereas a second definition

of “order” may be “an instruction or authorization”. Since the word “order” has (at least

these) two different semantic connotations, it would be represented in the dictionary as two

nodes. The first node would have a key of Order-0 as its definition number would be 0,

and the second node would have a key Order-1 as its definition number would be 1. The

assignment of a definition number to a given term definition is arbitrary when the term

is first added to the global dictionary. However, once a definition number is assigned, the

user of the dictionary must choose the correct definition number when using the dictionary

term. Not only does the use of a definition number allow the system to uniquely determine

a node, it also allows the system to uniquely determine its semantics. If a single node is

used for the term “order”, it may not be completely obvious what connotation of “order”

should be used. This approach eliminates confusion. Each definition or connotation of a

word is given its own node and key.

A node also contains a link to its parent node and a list of pointers to its child

nodes. It is important to note that the entire GD structure is virtually created by the

linking of pointers. All CGD nodes are created at run-time in memory. Once a node is

created, it is first added to the list of all nodes in the CGD structure. The node is then

added to the list of child pointers for its parent node and the node’s parent link is updated

accordingly. This structure gives very good flexibility and allows excellent performance in

both searching the tree by traversing tree links or sequentially scanning the entire tree.

Finally, a CGD node contains information on its display characteristics, a synonym list of

terms which have a similar meaning, and provides methods for adding, deleting, and finding

its child nodes. The link between two nodes is defined using a CGD link structure which

contains information on the link type (IS-A or HAS-A), and other attributes such as a link

weighting which are not currently used. The C++ implementation of these classes can be

found in Appendix A.

Updating the global dictionary is done through a GUI (see Figure IV.1). A single

CGDDoc is displayed in Unity using two different views: a Windows-Explorer, tree-style

view on the left-hand side (CLeftView), and a graphical representation of the tree structure

CHAPTER IV. UNITY - THE ARCHITECTURE IMPLEMENTATION 88

on the right-hand side (CGDView). These views represent a user’s window into the global

dictionary structure and manipulation routines.

Figure IV.1: Editing a Global Dictionary in Unity

The CLeftView class is derived from the CTreeView class which represents a tree-

structure of items similar to how Windows Explorer displays a directory list. Instead

of directories, CLeftView displays the nodes of the global dictionary according to their

organization in the tree. Open and closed folder icons are used to represent non-child nodes

and items related by HAS-A and IS-A links have separate icons as well. The text for

each tree item is the node’s key. CLeftView allows in-place renaming and drag-and-drop

movement of nodes. Although some of the functions to add and remove nodes are in the

CHAPTER IV. UNITY - THE ARCHITECTURE IMPLEMENTATION 89

menu for the main frame, most of the functionality of Unity is accessed by pop-up menus.

Pop-up menus appear when a user right-clicks on a given element in the view and are

context-sensitive to the element that is clicked.

For CGDDoc, a pop-up menu is displayed if the user right-clicks on a tree node in

CLeftView or on a link or node in the graphical view of CGDView. These pop-up menus

allow the user to perform functions such as adding nodes, editing node/link properties, and

finding nodes in both views. Right-clicking on empty space in CLeftView displays a pop-up

menu to add a new root only if the tree is empty. Right-clicking on empty space in CGDView

shows a menu to adjust the display properties of the graphical representation of the tree.

The CGDView class displays the same global dictionary information as CLeftView

in a graphical form. The nodes of the GD are displayed as a tree structure on a large,

scrollable canvas. The CGD class has routines for calculating how to display the tree. The

user is unable to move the display nodes, though this is seldom necessary as the tree is

displayed in a very organized manner. The user selects nodes and links by left or right

clicking on them and they become hilighted in blue. A right click on a node or link displays

a pop-up menu. Right-clicking on a link brings up the link pop-up menu which allows a

user to view the link properties. The node pop-up menu allows the user to add a new node,

edit the parent link properties, find the node in the CLeftView, delete the node, or view

the node properties. Right-clicking on an open area of the canvas allows the user to change

the display properties including the scaling factor of the display, the maximum depth to

display, and the type of links to display. Further, a user can have the display show a certain

subset of the tree by right-clicking on the node and selecting View as Root. This makes

the selected node the root of the display. Selecting View All from the display’s pop-up

menu re-displays the entire tree from the normal root.

A selected node in one view can be found in another view by selecting the appro-

priate pop-up menu item. Other display classes are also required to allow the user to edit

a node’s properties (CNodeDialog), a link’s properties (CLinkDlg), and the graphical view

properties (CViewProp).

In summary, the standard dictionary is a tree of concepts related by either IS-A or

HAS-A links. We define a base dictionary but new terms can be added as required. Unity

CHAPTER IV. UNITY - THE ARCHITECTURE IMPLEMENTATION 90

contains a global dictionary editor which allows the user to add, remove, and change terms.

Each dictionary term consists of a standard name, definition number, and text definition

along with synonym and system name information.

IV.3 The X-Spec Editor

Unity allows a user to quickly and easily construct an X-Spec for a given database.

Unity contains a specification editor that parses existing relational schema and formats the

schema information into an X-Spec. The software allows the user to modify the X-Spec to

include information that may not be electronically stored such as relationships, foreign key

constraints, categorization fields and values, and other undocumented data relationships.

More importantly, the specification editor requires the user to match each field and table

name in a relational schema to one or more terms in the standard dictionary to form a

semantic name for the element. The semantic name is intended to capture the semantics of

the schema element using the standardized terms.

Before describing how X-Specs are created and modified in Unity, it is necessary

to describe the data structure that they represent. A relational schema is parsed and

translated into a metadata document (CMDDoc) which contains the metadata information

(CMDSource) that describes the relational schema and its component metadata. Although

a metadata document is not one of the four major documents handled by Unity, source

metadata information can be loaded, viewed, and saved in the process of creating an X-Spec

to describe the data source. Classes are used to display field properties (CMDFldPropDlg),

table properties (CMDTblPropDlg), join properties (CMDJoinDlg), keys (CMDKeysDlg), and

overall source properties (CMDSrcPropDlg). The C++ definitions for these data classes are

in Appendix B.

Similar to the construction of global dictionary documents, X-Specs are contained

in specification documents (CSpecDoc) which contain the specification class (CSpec). Spec-

ification documents are loaded and saved using MFC serialization routines. An X-Spec

is represented by a CSpec class which contains all the information of the metadata class

plus additional information such as semantic names for the elements. A CSpecDoc has two

CHAPTER IV. UNITY - THE ARCHITECTURE IMPLEMENTATION 91

views (see Figure IV.2). A tree view on the left-hand size of the screen (CSpecLView) and

a metadata document view (CSpecMDView) on the right-hand side of the screen.

Figure IV.2: Editing an X-Spec in Unity

The CSpecMDView is used to load, save, and view metadata sources in a tree form.

This view manages a dynamic connection to a CMDDoc document. Using the menu item,

Add all to Spec., a user is able to add the entire metadata source in the CSpecMDView to

the current X-Spec. The system copies over the corresponding metadata information and

constructs the appropriate specification structures.

Similar to the global dictionary tree view, CSpecLView provides a tree-view of

the current X-Spec. Since an X-Spec describes a data source there will be typically only 3

CHAPTER IV. UNITY - THE ARCHITECTURE IMPLEMENTATION 92

“levels” to this view. The root node is the root of the specification and contains information

on the entire specification. The direct children of the root node are specification tables

(CSpecTable) which provide metadata information on data source tables. Nodes at depth

3 are children of a CSpecTable and represent specification fields (CSpecField) which map

to data source fields. These classes are presented in Appendix C.

The main function of the specification editor is to allow the user to assign semantic

names to fields and tables in the X-Spec. The first step is to associate a standardized

dictionary with the X-Spec by selecting the Set GD menu item and loading a saved global

dictionary file from disk. Once an X-Spec is associated with a GD, this GD is loaded into

memory every time the specification is loaded and allows the user to look-up terms from

the dictionary in the construction of a semantic name.

The construction of a semantic name is performed by the class CSnameDlg. This

dialog class allows the user to search for a dictionary term and to combine dictionary terms

into a semantic name. As mentioned previously, a semantic name consists of one or more

dictionary terms, and typically consists of context terms and possibly a concept name. A

context term simply provides a context for describing knowledge. A semantic name with

only context terms is used to describe a table in an X-Spec. A concept name is a single term

typically used in describing a field of a table. It is considered an end point. A concept name

is a “final context” and cannot be broken down any further. A semantic name for a field

consists of the context, which is generally the context of its corresponding table (although

not always), and a concept name for describing the semantics of the field itself. Thus, the

specification editor makes a distinction between assigning a semantic name to a field and to

a table. Once semantic names are assigned to all fields and tables in an X-Spec, sufficient

information is present for the X-Spec to be integrated by the integration algorithm.

The X-Spec component contains dialog classes to edit the database scope and

global properties (CSPPropDlg), field (CSPFldPropDlg) and table (CSPTblPropDlg) prop-

erties, keys (CSpecKeysDlg), and joins (CSpecJoinDlg).

In summary, an X-Spec contains database schema and metadata information on

a given data source. Unity allows a user to automatically extract metadata information

from a data source and insert it into an X-Spec. Unity also provides an easy mechanism

CHAPTER IV. UNITY - THE ARCHITECTURE IMPLEMENTATION 93

for associating a semantic name with a database element by combining terms from a global

dictionary, and for specifying key and join information.

IV.4 The Integration Algorithm

The integration algorithm is a straightforward term matching algorithm, and its

C++ implementation is provided in Appendix D. The integration result of combining one or

more X-Specs is stored in a schema integration document (CSchDoc). The CSchDoc contains

an instance of the CSchema class which actually contains the schema data. Similar to the

CSpecDoc, the schema document has a left-hand and right-hand view (see Figure IV.3). The

left-hand view (CSchLView) displays the current schema document in tree-form. The right-

hand view (CSchSPView) is used to load, save, and integrate previously constructed X-Specs.

When an X-Spec is loaded into CSchSPView, it can be integrated into the current schema by

selecting the Add all to Schema menu item. This will perform the integration algorithm

previously described and update the schema view on the left-hand side. Subsequently, the

schema may be queried by the user to generate transactions against the individual systems.

The actual structure of CSchema is more related to the global dictionary tree-

structure than the X-Spec structure. This is because CSchema is organized by contexts

which can be of arbitrary depth since there can be an arbitrary number of context terms

in a semantic name. Correspondingly, an X-Spec only has a depth of 3 (source, tables,

and fields), although the knowledge contained in these structures may have deeply nested

contexts. The CSchema classes are defined in Appendix E.

The mappings for a semantic name in the schema are displayed by right-clicking on

an item in CSchLView and selecting Properties from the pop-up menu. In the properties

dialog (CSchnPropDlg), default display and query properties can also be set. Further, the

menu item Schema Contexts under the Schema menu displays the database names and

organizations associated with all X-Specs integrated into the schema.

CHAPTER IV. UNITY - THE ARCHITECTURE IMPLEMENTATION 94

Figure IV.3: Integrating a Schema in Unity

IV.5 The Query Processor

Integrating concepts into an integrated view has little benefit without an associated

query system to query the database using that view. We have developed algorithms [56] for

querying the integrated view and have implemented them in Unity.

The query system performs a mapping from semantic names in the integrated

view to structural names in the underlying data sources. Given a set of semantic names

to access, the query system generates a SQL query with the appropriate join conditions.

The information required to select the appropriate fields and tables is present in X-Specs.

X-Specs also contain information on the keys (CKey) and joins (CJoin) for the tables. This

CHAPTER IV. UNITY - THE ARCHITECTURE IMPLEMENTATION 95

information allows the query processor to select appropriate joins as required. Joins within

a database are calculated by constructing a path matrix of all joins in the database and

constructing an appropriate join tree to combine the required tables. The C++ definitions

for these and other related query classes are in Appendix F.

A query is stored in a query document class (CQryDoc) and displayed in a frame

(CQryFrame). The actual data is stored in the CQuery class. The frame is divided into two

sides (see Figure IV.4). The left-hand side (CQryLView) contains semantic names selected

by the user for inclusion in the query. The right-hand side (CQrySchView) displays the

integrated view on which the query is posed.

When a query is first created, the integrated view it uses must be defined using the

Load menu item under the Schema menu. After a schema is loaded into the right-hand side,

the user can add or remove semantic names for the query. Since a query is structured as a

tree, there are 3 add/remove operations: add/remove a single semantic name (Add/Remove

Item), add/remove a branch (subtree) of the tree (Add/Remove Branch), or add/remove the

entire tree (Add/Remove Tree). These functions can either be accessed by using the menu

items under the Query and Schema menus, or by selecting the appropriate tree node, right-

clicking, and choosing the desired function out of the pop-up menu. The system ensures

that a semantic name cannot be added to the query twice. Using the pop-up menu, a user

can edit the query properties (CQryNProp) for each semantic name including the display

width and format.

To filter the databases accessed by a query, the user selects Set Scope, under

the Query menu and sets their target locations (CQryCtx). Result ordering information is

modified using the dialog CQryOrderBy opened with the Ordering menu item. Selection

criteria is created in the CQryCriteria dialog using the Set Criteria menu item.

Once the user has selected the appropriate semantic names, the SQL queries used

to access the individual data sources can be displayed by selecting the Show SQL menu item

under the Query menu. This displays a pop-up dialog box (CQrySQLDlg) which displays the

generated SQL for each data source.

To execute a query, the user selects the Executemenu item under the Querymenu.

The query processor then generates the SQL query, executes it for each data source using

CHAPTER IV. UNITY - THE ARCHITECTURE IMPLEMENTATION 96

Figure IV.4: Querying in Unity

ODBC, and normalizes and integrates the results as required. Results for each subquery

are stored in a record set structure (CRecSet) as they are returned via ODBC. Integration

of subquery results are stored in a second record set structure (CResultSet). Finally, the

results are then displayed to the user in a result dialog (CQryResDlg).

The algorithms for generating the SQL queries and performing normalization and

integration are implemented in the CSpec and CQuery classes. Implementation of the join

path matrix and its associated algorithms are relatively straightforward. However, imple-

menting query-time normalization is more complex. Query-time normalization is achieved

by constructing dependency trees (CDepTree) for each table of a data source that requires

CHAPTER IV. UNITY - THE ARCHITECTURE IMPLEMENTATION 97

normalization. These dependency trees are built using information in X-Specs. Dependency

tree construction currently occurs before query execution, but may be pre-compiled in the

future to avoid repeating the procedure for every query execution.

Using normalized dependency trees, the system is able to construct normalized

result sets. These result sets contain a subset of the fields retrieved by the original query.

That is, one row returned from the database (in CRecSet) becomes multiple normalized

rows in the query result (in CResultSet).

Overall, the query system is continually evolving and is an active research area.

The system currently supports union of results across databases and automatic SQL gen-

eration of semantic queries. The implementation and efficiency of Unity will be enhanced

as the query algorithms are refined. An implementation of the algorithms for joins across

databases and multidatabase conflict resolution are ongoing improvements being imple-

mented in Unity.

Chapter V

Architecture Contributions and

Discussion

V.1 Architecture Contributions

The integration architecture contributes several new ideas:

• The definition of a hierarchical, standard term dictionary that can be used across
industries and organizations.

• A system for representing, in XML, entire database schemas using the standard dic-
tionary and metadata about the data sources (X-Specs).

• An integration algorithm that combines X-Specs into a structurally-neutral integrated
view that hides the structural, organizational, and distribution characteristics of the
integrated systems.

• A query processor capable of translating from high-level semantic queries generated by
the user to SQL queries extracting relevant information (views) from each data source.
Further, generated local views are automatically combined by resolving structural
conflicts, normalizing results, and applying joins across databases.

The importance of the work is the unification of two different approaches to a sim-

ilar problem. By combining the work done in defining industry standards for data exchange

with protocols for integrating database systems, we have constructed an integration archi-

tecture that utilizes a standard protocol (XML) to exchange data semantics on database

systems and thereby allows them to interoperate. The integration architecture goes beyond

98

CHAPTER V. ARCHITECTURE CONTRIBUTIONS AND DISCUSSION 99

simple data communications and captures the semantics of the data source itself. This

allows future data sources to be added into an organization with minimal integration effort.

It also allows databases connected on the WWW to interoperate and provides exciting new

opportunities for the integration of knowledge across systems.

V.2 Implementation Applications

V.2.1 Multidatabases and Data Warehouses

Multidatabases and data warehouses provide an integrated view of data. These

architectures combine and summarize data from numerous data sources into a single, orga-

nizational view. Thus, creation of a multidatabase and a data warehouse requires that the

data in the underlying sources be understood, interpreted, and manipulated. The approach

of constructing X-Specs to capture data semantics greatly simplifies this task by providing

a formalized method for capturing data semantics.

An X-Spec is used to capture the semantics of each data source. Then, when the

data from this source is integrated into the data warehouse, its exact semantics are known,

and it can be more readily combined with other data sources in the system. As the number

of data sources grows, the data semantics present in the X-Specs provide the data warehouse

designer with an easily accessible specification of all organizational data, and they can be

integrated using the integration algorithm to display the data available.

V.2.2 World-Wide Web

Integrating data sources automatically would have a major impact on how the

World-Wide Web is used. The major limitation in the use of the WWW, besides the limited

bandwidth, is in the inability to find and integrate the extensive databases of information

that exist. When a user accesses the Web searching for something, they are often required

to access many different web sites and systems, and manually pull together the information

presented to them. The task of finding, filtering, and integrating data consumes the majority

of the time, when all the user really requires is the information. For example, when the

user wishes to purchase a product on-line and wants the best price, they must visit the

CHAPTER V. ARCHITECTURE CONTRIBUTIONS AND DISCUSSION 100

appropriate web sites and “comparison shop”. It would be useful if the user’s web browser

could do the comparison shopping for them.

Our architecture supports these types of queries. To achieve this, each web site

would specify their database using an X-spec. The client’s browser would connect to the

integration site to pose queries on data sources that it has integrated. A portal like Yahoo

could combine data sources together as a central site for the user to gather information

from. Even more exciting would be a distributed version of the architecture, where there

is no central site and the user’s browser is responsible for the necessary translation and

management. When the user wishes to purchase an item, the browser downloads the X-

Specs from the on-line stores, integrates them using the standardized dictionary, and then

allows the user to query all databases at once through the “global view of web sites” that

is constructed. Obviously, the integration itself is complex, but a system which achieves

automatic integration of data sources would have a major impact on how the Web is used

and delivered.

V.3 Integration Validity

The validity of the integration result depends directly on our use and construc-

tion of the standard dictionary. By defining a standard term dictionary and basing our

integration architecture on the matching of those terms, we are effectively assuming that

no naming conflicts are present in the system. If naming conflicts do occur, caused by the

incorrect construction of semantic names, the integration procedure yields less desirable

results. Since identical concepts are identified solely by semantic name, incorrect or missed

matchings can only occur if the semantic names are not properly assigned.

Standardization of structure and naming conventions are used to provide interop-

erability and communication between systems in industry. Thus, assuming away naming

conflicts has been applied in other architectures. Our assertion is that naming conflicts must

be assumed away in some fashion for interoperability to be successful. Without a standard

set of terms or names to communicate knowledge, knowledge cannot be integrated or ex-

changed because its semantics are not known. Names represent a standard for exchanging

CHAPTER V. ARCHITECTURE CONTRIBUTIONS AND DISCUSSION 101

semantics and are required in some form for any communication to be effective. Thus,

by accepting a standard dictionary, schema, or set of XML tags, a system assumes away

the naming problem by accepting a lexical semantic framework for the expression of data

semantics. Whether this framework is defined based on tags or names as in our approach

and XML, or structure and position of data elements as in EDI, a language framework

is required to exchange knowledge between systems, similar to our human acceptance of

spoken languages to facilitate communication.

Although our architecture assumes away the naming problem, it does not impose

a structural organization on the concepts represented by the names. XML tags, BizTalk

schemas, and EDI documents in addition to standardizing concept names also standard-

ize their structure, organization, and relationships. Thus, these architectures also assume

away all structural conflicts as well. This results in inflexible standards which have limited

applicability across domains.

Accepting a linguistic framework to prevent naming conflicts is required for inte-

gration, but imposing a structural organization to concepts is unnecessary. Our architecture

identifies similar concepts by name regardless of their physical or logical representations in

the individual data sources. Thus, concept knowledge from data sources is combined even

though the actual representation of the data may be very different.

The integration result is a hierarchy of contexts and concepts which implies no par-

ticular physical representation. Users access data sources through semantic names which

consist of a hierarchical organization of those contexts and concepts. The physical rep-

resentation of the concepts is irrelevant to the user. Thus, by not imposing structural

constraints on concept representation, knowledge from systems may be combined regard-

less of data representation characteristics, and the user is provided with only the relevant

information.

In summary, our integration is valid because it correctly combines database schemas

into an integrated view given the assumption of no naming conflicts. The architecture

avoids naming conflicts by developing and using a standard dictionary of terms and com-

bining them appropriately into context and concept information to express schema element

semantics. Since the semantic names constructed are known to represent the same concept

CHAPTER V. ARCHITECTURE CONTRIBUTIONS AND DISCUSSION 102

if their names match, integration of concepts across schemas is possible simply by matching

the semantic names, regardless of their implementation or physical structure. The auto-

matic construction of the integrated view isolates the user from the complexities of data

distribution, organization, structure, and from local naming conventions.

V.4 Automatic Conflict Resolution

The integration architecture performs automatic conflict resolution. The capture

process avoids naming conflicts by using a standard term dictionary. Physical and logical

access transparency is provided to the user by transforming schema element semantics into

semantic names which are combined into a structurally-neutral concept hierarchy. The

query processor then uses X-Spec information to map from the context view to structural

queries, and in the process of this mapping, structural differences in schema and data

representation are resolved. Based on previous work [50] classifying conflicts present in

the relational model, the types of conflicts resolved by the architecture are summarized in

Figure V.1. Conflicts resolved by the architecture can be attributed to four basic features:

• Using a standard dictionary to build semantic names.

• Constructing a structurally-neutral integrated view from semantic names and mapping
semantic queries to structural query expressions.

• Concept promotion and manipulation in the integrated view.

• Explicitly specifying data contexts and mappings and executing conversion functions
to exchange data between different contexts.

The standard dictionary foundation of the architecture resolves the most basic,

yet hardest to solve, naming conflicts. Using a standard dictionary and building seman-

tic names to capture schema element semantics solves the table naming conflict and the

attribute naming conflict because contexts (tables) and concepts (attributes) will not be

integrated unless they have the same semantics. Thus, it also implicitly resolves semantic

conflicts related to naming. Fundamentally, the most basic semantic conflict of what a

schema element represents is resolved by agreeing on the proper names to represent concept

semantics.

CHAPTER V. ARCHITECTURE CONTRIBUTIONS AND DISCUSSION 103

Schema Conflicts
Conflict Type Description Resolution
Table Name
Conflicts

Using different names for
equivalent tables or the same
name for different tables

Using standard dictionary to build
semantic names

Table Structure
Conflicts

One table contains more at-
tributes than another table
with equivalent concepts

Mapping from structurally-
neutral integrated view to
structural queries

Table Constraint
Conflicts

Incompatible key and update
constraints

Update procedures not currently
considered.

Multiple Table
Conflicts

Using different numbers of ta-
bles to store information

Mapping from structurally-
neutral integrated view to
structural queries

Attribute Name
Conflicts

Using different names for
equivalent attributes or the
same name for different at-
tributes

Using standard dictionary to build
semantic names

Multiple Field
Conflicts

Representing a concept using
more fields in one database
than another

Mapping to structurally-neutral
integrated view and promoting
concepts to contexts

Table versus
Attribute Conflict

Representing a concept as a
table in one database and as
a field in another

Mapping to structurally-neutral
integrated view and promoting
concepts to contexts

Data Conflicts
Conflict Type Description Resolution
Different Data
Representations

Using different words, strings,
and codes for same data

Explicitly specifying mapping of
concept to data representation in
X-Spec and applying conversion
functions.

Data Type
Inconsistencies

Fields with different data
types (integer, string, etc.)

For query purposes only, fields are
converted to strings for display.
Updates not considered.

Different Units and
Precisions

Numerical data represented
using different units, preci-
sion, or scaling factors

Conversion functions applied dur-
ing result integration

Figure V.1: Conflicts Resolved by Architecture

CHAPTER V. ARCHITECTURE CONTRIBUTIONS AND DISCUSSION 104

Structural conflicts such as tables having different numbers of attributes or mul-

tiple tables representing a concept are resolved by constructing the structurally-neutral

integrated view. If a table in one database does not have all the identical fields as a table in

another database with which it is integrated, the query processor only queries and extracts

the fields which are present. Multiple tables storing fields about the same context are seem-

lessly combined into the integrated view by virtue of related semantic names. If two tables

have fields describing the same context, then they will have identical context portions of

the semantic name. These context portions are then matched in the integrated view, and

it appears to the user that the fields describing the context are not actually structurally

distributed between tables. At query-time, the query processor extracts the fields using

mappings and applies joins to connect the tables into a single context.

As discussed in Section III.4.1, conflicts are possible within the integrated view

only when two semantic names have the same terms and one is a context and the other

is a concept. In this case, the context term is more general than the concept term which

implies that in one database the idea is more detailed than in another. These conflicts

at the integrated view level often arise because of conflicts in the relational model. For

example, a concept may be represented as a field in one database and as multiple fields in

another. This typically results in semantic names with identical terms but one is a concept

and the other is a context. The solution to this problem is promotion, where a new context

is created which contains all the relevant attributes.

The final layer of conflict resolution is at the data-item layer. Data level conflicts

include differences in types, sizes, precision, units, and scaling factors. These conflicts are

resolved by defining functions which convert from one context to another and by formally

expressing context semantics. For example, if one database uses “F” for Female and “M”

for Male, this mapping is stored in the X-Spec. If another database, uses “1” and “0”, the

data is converted to “F” and “M” by applying a transformation function. Similar conversion

functions have been previously proposed [39, 90].

CHAPTER V. ARCHITECTURE CONTRIBUTIONS AND DISCUSSION 105

V.5 Architecture Discussion

The integration architecture is a combination of standardization and intelligent

conflict resolution algorithms. We believe that some level of standardization is required

to achieve more automatic integration. Specifically, by accepting a standard term dictio-

nary for describing schema element semantics and thus avoiding naming conflicts, structural

conflicts are automatically resolved. We approach the integration problem from a different

perspective than mediator systems. Our goal is to separate the specification of database

semantics from the integration procedure, and then apply automatic integration procedures

to combine semantic specifications and resolve conflicts. The combination of industrial stan-

dards such as XML and standardized dictionaries with research algorithms in application

to the schema integration problem is unique.

The key benefit of the architecture is that the integration of data sources is au-

tomatic once the capture processes are completed. This is a substantial improvement over

systems [69] which require the user to query all databases by structure. Our work is unique

because it automatically produces an integrated view from data source specifications de-

veloped independently of other data sources and the global view itself. The architecture

uses standardization to achieve more automatic integration but does not force a structural

representation on the data which allows for greater flexibility and for existing systems to

be unmodified during integration. Thus, the system preserves full autonomy of all data

sources and no translational or wrapper software is required.

The major challenge inherent in the architecture is the definition of the standard

dictionary. Although defining terms to represent concepts is challenging, it is not without

precedent. Industrial systems such as EDI, XML, and BizTalk all rely on the acceptance

of standardized formats. Our architecture is even less restrictive as only names are stan-

dardized not structure and organization. Further, common ideas such as customers, orders,

names, keys, identifiers, and addresses are well understood and easily mapped into a stan-

dard dictionary. In addition, even if a total standard is not achievable across the whole

Internet, it is still possible to define localized standards. The architecture allows an orga-

nization to define its own dictionary. As long as the standard dictionary is conformed to

CHAPTER V. ARCHITECTURE CONTRIBUTIONS AND DISCUSSION 106

within that domain, integration is possible. This allows easy integration of data sources

within an organization. However, the ultimate goal is the definition of a standard dictionary

applicable across all domains not just certain industries and environments as targeted by

EDI, BizTalk, and E-commerce portals. Acceptance of standardization is a benefit, but it

is not a common practice in the database community as it is difficult to acknowledge that

some problems may require standardization to be solved.

Since the integrated view is constructed as needed with no designer input, chal-

lenges arise in ensuring correct integrations. First, the architecture has no built-in mecha-

nism for validating the assignment of semantic names. If a semantic name does not correctly

capture the semantics of the schema element, it may be poorly integrated into the integrated

view. Naming problems result from either poor conformance to the standard or inadequate

construction of the X-Spec. Either problem can be resolved by re-examining and updating

information in the X-Spec and re-integrating.

Chapter VI

Integration Examples

In this section, we briefly describe three simple examples and show how the archi-

tecture achieves the necessary integration. These examples provide a good overview of how

Unity is used in practice but many details are omitted to ensure a clear presentation of the

key concepts.

VI.1 Combining Two Order Databases

Consider ABC Company which stores an order database consisting of orders,

Order(Id,Customer,Total amount), and items,

Order item(Order num,Item id,Quantity,Price,Amount), tables.

The first step is to construct an X-Spec describing the database using the specification

editor. First, we extract the metadata information from the database schema including

table and field names, types, sizes, keys, and relationships. This information is added to

the X-Spec. Now, the X-Spec designer uses terms from the standard dictionary to describe

each table and field. The Order table has a semantic name of [Order], and its id field is

[Order] Id. Similarly, the Order item table has a name [Order;Product] as it contains

items (or products) for orders. After each field and table is assigned a semantic name, an

X-Spec is produced as shown in Figure VI.1.

The X-Spec is then passed through the integration algorithm to produce the output

shown in Figure VI.2. Notice that although only one data source is integrated, we already

107

CHAPTER VI. INTEGRATION EXAMPLES 108

<?xml version="1.0" ?>

<Schema

name = "order_xspec.xml"

xmlns="urn:schemas-microsoft-com:xml-data"

xmlns:dt="urn:schemas-microsoft-com:datatypes">

<ElementType name="[Order]" sys_name = "Order" sys_type="Table">

<element type = "[Order] Id" sys_name = "Id" sys_type = "Field"/>

<element type = "[Order] Customer" sys_name = "Customer" sys_type = "Field"/>

<element type = "[Order] Total Amount" sys_name = "Total_amount" sys_type = "Field"/>

</ElementType>

<ElementType name="[Order;Product]" sys_name = "Order_item" sys_type = "Table">

<element type = "[Order] Id" sys_name = "Order_num" sys_type = "Field"/>

<element type = "[Order;Product] Id" sys_name = "Item_id" sys_type = "Field"/>

<element type = "[Order;Product] Quantity" sys_name = "Quantity" sys_type = "Field/>

<element type = "[Order;Product] Price" sys_name = "Price" sys_type = "Field"/>

<element type = "[Order;Product] Amount" sys_name = "Amount" sys_type = "Field"/>

</ElementType>

</Schema>

Figure VI.1: Order X-Spec

Integrated View Term Data Source Mappings (not visible to user)
V (view root) N/A

- [Order] ABC.Order
- Id ABC.Order.Id, ABC.Order item.Order num
- Customer ABC.Order.Customer
- Total Amount ABC.Order.Total amount
- [Product] ABC.Order item
- Id ABC.Order item.Item id
- Quantity ABC.Order item.Quantity
- Price ABC.Order item.Price
- Amount ABC.Order item.Amount

Figure VI.2: Integrated View

achieve some advantages. First, the user is no longer responsible for generating SQL using

system names and joins. The structure and location of the database is hidden as the user

formulates queries by picking which fields they wish to see in the result. The system is

responsible for generating the SQL and join conditions, mapping from semantic to system

names, and communicating with the database. Second, full autonomy of the database is

preserved as the system appears to be just another client issuing database transactions.

Now, if ABC Company buys XYZ company, a similar business, and we assume

that XYZ company has a similar database for storing their orders, it would be useful if the

two could be integrated easily. Initially, we do not want to change the database at either

CHAPTER VI. INTEGRATION EXAMPLES 109

company. We would prefer both company databases to function unchanged, but we need

to enable management to see a global-view of all orders at both companies as required.

We already have an X-Spec for the ABC database which we do not have to change.

We must generate a new X-Spec for the XYZ database. Since both databases store almost

identical data, the X-Spec will be very similar for the XYZ database except the system

table and field names may be different. Integrating the XYZ X-Spec with the ABC X-Spec

produces the exact same integrated view. However, in this case when a user issues queries

against the integrated view, they are actually issuing queries against both databases. The

query processor at the integration site divides the user query into two separate transactions

at the component databases and then integrates the results that they return. From the

user’s perspective, they cannot tell that they were accessing two different databases, each

of which is operating as if they were not participating in a MDBS.

Obviously, this is a very simple example but the algorithm scales to any number

of concepts and databases. By proper assignment of semantic names, the users are isolated

from the database details and full database autonomy is preserved. Integration is performed

on an as-needed basis and does not have to be re-done when a new database is added to

the integrated view.

VI.2 Comparison Shopping on the WWW

The ultimate goal is a distributed version of the architecture where a user’s browser

is responsible for performing the integration. The browser would contain the standard

dictionary and the integration algorithm and receive from web sites X-Specs to integrate

and present to the user. Such a system allows knowledge to be combined across web sites

even though they were not originally intended to work together and simplifies the problem

of searching the web for the required information.

As Internet commerce, or E-Commerce, becomes more prevalent, an outstanding

issue is comparison shopping. As in the off-line world, users would like to visit different

“stores” to compare prices and options. Currently, the user is either forced to go to each site

individually to search for the required item or attempt to go through dedicated comparison

CHAPTER VI. INTEGRATION EXAMPLES 110

shopping sites which may or may not contain all the stores they are interested in and

present the information in the desired form. Our architecture allows a user to comparison

shop only the sites that they require and query the information in a form with which they

are comfortable.

The integration of web sites begins at each individual web site. For this discussion,

consider two web sites that sell books. The first site, calledBooks-for-Less, stores its book

catalog using the structure: Book(ISBN, T itle, Author, Publisher, Price). The second

site, called Cheap Books, stores its book database with the structure:

Book(ISBN,Author id, Publisher id, T itle, Price,Description),

Author(Id, Name), and Publisher(Id, Name).

Each web site independently creates an X-Spec to describe their data without any knowledge

of the X-Specs at other sites. Unity is used to parse the schema at a data source and assign

semantic names to the schema elements.

Constructing the X-Spec for the Books-for-Less database is the easier of the two.

First, the X-Spec designer imports the database schema into the X-Spec to get the system

names, types, and sizes. The next step is to assign semantic names to the table and fields of

the database. The semantic name for the table name Book will be [Book] as it is describing

a book context. The name for the field ISBN is [Book] ISBN as it describes the concept

of an ISBN for a book. Similarly the fields, Title and Price have semantic names [Book]

Title and [Book] Price. The name for the Author field is not quite as straightforward.

Although technically it would be correct to give it the name [Book] Author, what this

name really assumes is that the concept of Author is defaulting to the author’s name.

Thus, it makes more sense to represent this explicitly as [Book;Author] Name. Likewise,

the Publisher field is called [Book;Publisher] Name. The final X-Spec is in Figure VI.3.

The database schema for Cheap Books is more complex because the database is

more normalized and uses relationships and joins to combine the information appropriately.

However, since the key notion of the database is about books, the fundamental concept is

[Book], which is the semantic name of the Book table. The semantic names of the rest of

the fields in the Book table are straightforward except for Author id and Publisher id which

have semantic names of [Book;Author] Id and [Book;Publisher] Id, respectively. We

CHAPTER VI. INTEGRATION EXAMPLES 111

<?xml version="1.0" ?>

<Schema

name = "Books-for-Less.xml"

xmlns="urn:schemas-microsoft-com:xml-data"

xmlns:dt="urn:schemas-microsoft-com:datatypes">

<ElementType name="[Book]" sys_name = "Book" sys_type="Table">

<element type = "[Book] ISBN" sys_name = "ISBN" sys_type = "Field"/>

<element type = "[Book] Title" sys_name = "Title" sys_type = "Field"/>

<element type = "[Book] Price" sys_name = "Price" sys_type = "Field"/>

<element type = "[Book;Author] Name" sys_name = "Author" sys_type = "Field"/>

<element type = "[Book;Publisher] Name" sys_name = "Publisher" sys_type = "Field"/>

</ElementType>

</Schema>

Figure VI.3: Books-for-Less X-Spec

have a choice when assigning the semantic name of the Author table. Technically, the name

[Author] is correct because it describes authors. However, it may be more beneficial to as-

sign a semantic name of [Book;Author]meaning that the context is authors of books. The

difference between the two semantic name possibilities for Author relate to how the data is

queried. If author information is always presented as related to books, then [Book;Author]

is the better semantic name as it makes this relationship more apparent to the user. How-

ever, in general, the semantic name [Author] would be used as author information can

exist without relation to book information and may be queried separately. The fields Id

and Name in the Author table have names [Book;Author] Id, and [Book;Author] Name.

Similarly the Publisher table has a name [Book;Publisher], and fields [Book;Publisher]

Id and [Book;Publisher] Name. The final X-Spec is shown in Figure VI.4.

The reason for representing the Author and Publisher tables with the semantic

names of [Book;Author] and [Book;Publisher] becomes obvious when performing the

integration. At this point, each web site has independently expressed their database using

an X-Spec. When the user wants to query the databases for the best book price, the

user’s browser connects to the web site, logs in, and downloads the X-Specs from each site.

Combining the X-Specs produces the integrated view in Figure VI.5.

The information from both databases has been seemlessly combined even though

the data representation was quite different. The binding element was the choice of semantic

names which allow the integration algorithm to relate concepts despite their representation.

Selecting the semantic names [Author] and [Publisher] for the Author and Publisher

CHAPTER VI. INTEGRATION EXAMPLES 112

<?xml version="1.0" ?>

<Schema

name = "Cheap_Books.xml"

xmlns="urn:schemas-microsoft-com:xml-data"

xmlns:dt="urn:schemas-microsoft-com:datatypes">

<ElementType name="[Book]" sys_name = "Book" sys_type="Table">

<element type = "[Book] ISBN" sys_name = "ISBN" sys_type = "Field"/>

<element type = "[Book] Title" sys_name = "Title" sys_type = "Field"/>

<element type = "[Book] Price" sys_name = "Price" sys_type = "Field"/>

<element type = "[Book] Description" sys_name = "Description" sys_type = "Field"/>

<element type = "[Book;Author] Id" sys_name = "Author_id" sys_type = "Field"/>

<element type = "[Book;Publisher] Id" sys_name = "Publisher_id" sys_type = "Field"/>

</ElementType>

<ElementType name="[Book;Author]" sys_name = "Author" sys_type="Table">

<element type = "[Book;Author] Id sys_name = "Id" sys_type = "Field""/>

<element type = "[Book;Author] Name" sys_name = "Name" sys_type = "Field"/>

</ElementType>

<ElementType name="[Book;Publisher]" sys_name = "Publisher" sys_type="Table">

<element type = "[Book;Publisher] Id" sys_name = "Id" sys_type = "Field"/>

<element type = "[Book;Publisher] Name" sys_name = "Name" sys_type = "Field"/>

</ElementType>

</Schema>

Figure VI.4: Cheap Books X-Spec

Global View Term Data Source Mappings (not visible to user)
V (view root) N/A

- [Book] CB.Book, BfL.Book
- ISBN CB.Book.ISBN, BfL.Book.ISBN
- Title CB.Book.Title, BfL.Book.Title
- Price CB.Book.Price, BfL.Book.Price
- Description CB.Book.Description
- [Author] CB.Author
- Id CB.Book.Author id, CB.Author.Id
- Name CB.Author.Name, BfL.Book.Author

- [Publisher] CB.Publisher
- Id CB.Book.Publisher id, CB.Publisher.Id
- Name CB.Publisher.Name, BfL.Book.Publisher

Figure VI.5: Integrated View of Books Databases

CHAPTER VI. INTEGRATION EXAMPLES 113

Integrated View Term Data Source Mappings (not visible to user)
V (view root) N/A

- [Book] CB.Book, BfL.Book
- ISBN CB.Book.ISBN, BfL.Book.ISBN
- Title CB.Book.Title, BfL.Book.Title
- Price CB.Book.Price, BfL.Book.Price
- Description CB.Book.Description
- [Author] CB.Author
- Id CB.Book.Author id
- Name BfL.Book.Author

- [Publisher] CB.Publisher
- Id CB.Book.Publisher id
- Name BfL.Book.Publisher

- [Author] CB.Author
- Id CB.Author.Id
- Name CB.Author.Name

- [Publisher] CB.Publisher
- Id CB.Publisher.Id
- Name CB.Publisher.Name

Figure VI.6: Integrated View of Books Databases with Different X-Specs

tables produces the integrated view given in Figure VI.6.

This integrated view is as correct as the previous one and the user can issue

the same queries as before. However, the relationship between the author and publisher

information is not as explicit to the user as in the previous view. The system still combines

the information using the appropriate joins as there is just a slightly different conceptual

view of the data. The choice of integrated view is application dependent and there is nothing

preventing the integration algorithm from rearranging the second view to look like the first

view if that is the user’s preference.

Issuing queries on the integrated view is as simple as choosing which fields to

display in the query result. The query generator uses the X-Spec information to generate

the proper joins and mappings from semantic to system names. A “global key” such as

ISBN is important in query generation as it is guaranteed unique across databases. Such

keys allow the system to perform joins across databases.

CHAPTER VI. INTEGRATION EXAMPLES 114

VI.3 Integrating the Northwind and Southstorm Databases

The last (and largest) example integrates the Northwind and Southstorm databases.

This example also details how the standard dictionary is evolved by adding terms needed

to represent concepts in the Northwind database. As we build the Northwind X-Spec, we

simultaneously describe how the concept terms are added to the dictionary.

VI.3.1 Creating an X-Spec for the Northwind Database

In this example, terms are added to the dictionary as required to represent the

semantics of the Northwind database. Starting with a base-level dictionary, the user parses

the metadata information of the Northwind database into an X-Spec using Unity and starts

associating semantic names to tables and fields of the database. The first table encountered

is Categories which stores product categories. An initial thought is to add the term Product

Category to the dictionary. However, the more general and correct term to add is Category

representing the general notion of a category regardless of what type of category. A category

is information and is a concept that exists independent of other concepts. Thus, Category

belongs under Form on the Information side of the hierarchy. There are many types of

categorizers, so the first term added is Categorizers under Form. Then, the term Category

is added under Categorizers. With the term Category now in the dictionary, the user

can assign the Categories table the semantic name of [Category].

The first field in the Category table is CategoryID. The notion of an id or iden-

tifier is the most common concept encountered in databases. By nature, an “id” is in-

formation which is independent of other information. Thus, the notion of Id belongs on

the Information side under Form. We add the term Identifiers under Form, and then

Id under Identifiers. Thus, the semantic name for the CategoryID field is assigned as

[Category] Id. Naming is another common concept which is encountered in the Cate-

goryName field. A name is an information descriptor, so we add the term Descriptors

under Form, and then Name under Descriptors. This allows us to assign the semantic name

[Category] Name to the CategoryName field. Another descriptor is a regular description

field, like Description, so we add the term Description under Descriptors and assign the

CHAPTER VI. INTEGRATION EXAMPLES 115

Description field the name [Category] Description. Finally, the Picture field is a visual

form of descriptor, so we added the term Picture under Descriptors and assign the field

the semantic name [Category] Picture. At this point, we have added sufficient terms to

the dictionary to assign semantic names to the Category table and all its fields.

The next table is the Customers table. The concept of Customer is a new one

which must be added to the dictionary. What is a customer? A customer is definitely

on the physical side because it is a physical entity. A human is a first level entity on the

physical side so customer is not a first level concept. Actually, a customer must be a second

level concept because a customer is a human which becomes a customer by engaging in a

transaction (f(human) => customer, where f = transaction). Thus, the concept of a

customer belongs under Role. Since we anticipate that a human may have numerous roles,

we first add the term Discretionary under Role indicating that these roles are undertaken

at a person’s discretion. Then, we add the term Customer under Discretionary and assign

the Customer table the semantic name [Customer].

The semantic name for CustomerID is [Customer] Id. Since both of these terms

are already in the dictionary, no terms are added. Notice that the term Id initially added for

CategoryId is re-used. An id applies to any context (or table) such as customer, product, and

category. Thus, we re-use the Id term for any table id just by assigning the proper contexts

terms to which it applies. The CompanyName field stores the name for the customer

which can be represented by [Customer] Name without adding new terms. Similar to the

Id term, the Name term is a general term which can be re-used across different contexts.

The ContactName field requires the concept of Contact to be added to the dictionary.

Similar to being a customer, being a contact is a discretionary role of a human, thus we

place the term Contact under Discretionary, and assign the name [Customer;Contact]

Name to the field. This is the first semantic name with more than one context. The

first context, Customer, implies the information is about a customer. The next context is

Contact which means that a customer has a contact and the field is storing the contact’s

name. The semantics of the ContactTitle field are ambiguous when examining only the

field name. By examining the data values, it is obvious that this field actually stores

the contact’s employment or job title. First, the dictionary has no notion of a Title

CHAPTER VI. INTEGRATION EXAMPLES 116

which is a descriptor, so we add the term Title under Descriptors. Also, there is no

notion of employment. Placing the concept of employment is considerably harder than

previous concepts because it can have several possible semantic connotations. In this case,

consider employment as the mediating circumstance that causes a human to become an

employee. Thus, employment is a third-level concept on the physical side so the term

Employment is added under Circumstance. This allows us to assign the semantic name of

[Customer;Contact;Employment] Title to the field.

The next fields in the customer table are very common database concepts such

as addresses and phone numbers. An address is basic information so it belongs under

Form. We insert the general term Locators under Form, then add the terms Physical

Address and Virtual Address to subdivide the types of addresses. The term Address

is placed under Physical Address to represent a typical mailing address. A mailing ad-

dress consists of several common components such as city, state, and postal code. Thus,

under Address, we add HAS-A links to the concepts Address Line 1, City, Region,

Postal Code, and Country. Assign the semantic names [Customer;Address] Address

Line 1, [Customer;Address] City, [Customer;Address] Region, [Customer;Address]

Country, and [Customer;Address] Postal Code to the fields Address,City, Region, Coun-

try, and Postal Code, respectively.

Phone and fax numbers are virtual addresses, so we add Phone # under Virtual

Address, and add Fax # under Phone #, as it is a special type of phone number. Then,

the fields Phone and Fax are assigned the semantic names of [Customer] Phone # and

[Customer] Fax #. This completes assigning semantic names to the Customer table.

The Northwind database has an Employee table storing information on its own

employees. The Employee concept is a second level concept. Under Role we add the

term Work, then place Employee under Work. The semantic name for the Employee table

then becomes [Employee]. The EmployeeId is assigned a semantic name of [Employee]

Id without any dictionary additions. The LastName and FirstName fields require the

concept of a Person Name under Name. Then, HAS-A links are created under Person

Name to the concepts Last Name and First Name. The semantic names for these fields

become [Employee;Name] Last Name and [Employee;Name] First Name. Similar to the

CHAPTER VI. INTEGRATION EXAMPLES 117

Customer table, the TitleOf an employee has a semantic name of [Employee;Employment]

Title. The TitleofCourtesy field ([Employee] Title) requires a HAS-A link to add the

concept of Title as part of a person’s name.

An employee’s birthdate is the first instance of the very common date concept.

The general notion of a date is simply information, so under Form we add a Temporal term,

then place Date under Temporal to represent the concept of a generic date. A birthdate is

a date with the additional semantics of representing a time of birth. Thus, it is a second

order information concept. We add the term Temporal under Proposition, then Date

under Temporal, and finally Birthdate under Date. The Birthdate field is then assigned a

semantic name of [Employee] Birthdate. The HireDate field is given the semantic name

[Employee;Employment] Date without adding new terms. Similarly, all the address related

fields are assigned names without adding additional terms. A Home Phone # term is added

under Phone # for use in the name [Employee] Home Phone # for the HomePhone field.

A HAS-A link is added under Phone # to put the Extension term into the dictionary, and

the term Note is added under Description for describing the Notes field. Finally, the term

Supervisor is added under Work, so that the ReportsTo field can be assigned the semantic

name [Employee;Supervisor] Name.

The OrderDetails table stores information on products that have been ordered.

This introduces two new concepts: product and order. An order is a type of transaction.

A transaction can be considered a mediating circumstance which causes an item to become

a product. Thus, we add Commerce under Circumstance, Transaction under Commerce,

and Order under Transaction. A Product term is added under Role. The semantic name

for the table becomes [Order;Product]. The OrderID field is assigned the semantic name

[Order] Id. This is different than previous fields because the context of the field does not

include the context of its parent table. The ProductID field has a name [Order;Product]

Id. To assign a name to the UnitPrice field, we need a notion of Price. A price is

information with semantic context implying monetary value. Thus, we attach the term

Monetary under Proposition, and Price under Monetary. The semantic name for the field

is then [Order;Product] Price. The Quantity field is given the name [Order;Product]

Quantity by adding the term Numeric under Form, and Quantity under Numeric. Finally,

CHAPTER VI. INTEGRATION EXAMPLES 118

the term Discount% is appended with a HAS-A link under Price for its use in the name

[Order;Product] Discount% for the Discount field.

At this point, most of the terms needed to capture the semantics of the Order

table have already been added to the dictionary. The table is assigned as semantic name of

[Order], and the OrderId field is referred to as [Order] Id. The CustomerId, EmployeeId,

and OrderDate fields are given names [Order;Customer] Id, [Order;Employee] Id, and

[Order] Date, respectively. The RequiredDate and ShippedDate fields have names [Order]

Required Date and [Order] Shipped Date as the terms Required Date and Shipped

Date are placed under Date in the Proposition branch. The ShipVia field stores the

company name of the shipper company. We must add the concept of company to the

dictionary by adding Company under Role, Transportation Company under Company, and

Shipper under Transportation Company. Then, the field has a name of [Order;Shipper]

Name. The Freight field stores the cost of shipping the goods. To construct the name

[Order;Freight] Cost, we add Cost under Monetary and Freight under Product. The

rest of the fields store information on a ship-to company address, so we add the term ShipTo

under company. The rest of the address fields are easily assigned semantic names by using

the previously defined address terms.

The Products table is given a name [Product], and its ProductId and ProductName

fields have the names [Product] Id and [Product] Name. To assign [Product;Supplier]

Id to SupplierId, we insert the term Supplier under Company. The CategoryId and Unit-

Price fields have names [Product;Category] Id and [Product] Price. HAS-A links

for the new terms Quantity-per-Unit and Discontinued under Product are added to

construct [Product] Quantity-per-Unit for the QuantityPerUnit field and [Product]

Discontinued for the Discontinued field. The rest of the fields concern the concept of

inventory which is a second-level information concept. Thus, we add Inventory un-

der Proposition, and under Inventory insert HAS-A links for the terms On-Order and

Reorder Level.

The Shippers table and Suppliers table require only one new term, Web Address,

to be appended under Virtual Address to store the semantics of the HomePage field.

We have now created a full X-Spec for the Northwind database and defined the

CHAPTER VI. INTEGRATION EXAMPLES 119

necessary dictionary terms to capture its semantics (see Figures VI.8 and VI.9). The pro-

cedure is not complicated. Often the most difficult situation is determining if a concept is

a first, second, or third level concept. There is an enormous re-use of dictionary terms, so

the dictionary grows rather slowly. The dictionary constructed in this example is listed at

the end of Appendix G.

VI.3.2 An X-Spec for the Southstorm Database

The creation of the X-Spec for the Southstorm database was discussed previously

in Section III.3, so it is not repeated here. The final X-Spec is given in Figure VI.7.

<?xml version="1.0" ?>

<Schema

name = "Southstorm_xspec.xml"

xmlns="urn:schemas-microsoft-com:xml-data"

xmlns:dt="urn:schemas-microsoft-com:datatypes">

<ElementType name="[Order]" sys_name = "Orders_tb" sys_type="Table">

<element type = "[Order] Id" sys_name = "Order_num" sys_type = "Field"/>

<element type = "[Order] Total Amount" sys_name = "Order_total" sys_type = "Field"/>

<element type = "[Order;Customer] Name" sys_name = "Cust_name" sys_type = "Field"/>

<element type = "[Order;Customer;Address] Address Line 1" sys_name="Cust_address"

sys_type="Field"/>

<element type = "[Order;Customer;Address] City" sys_name = "Cust_city" sys_type = "Field"/>

<element type = "[Order;Customer;Address] Postal Code" sys_name="Cust_pc" sys_type="Field"/>

<element type = "[Order;Customer;Address] Country" sys_name="Cust_country" sys_type="Field"/>

<element type = "[Order;Product] Id" sys_name = "Item1_id" sys_type = "Field"/>

<element type = "[Order;Product] Quantity" sys_name = "Item1_quantity" sys_type = "Field"/>

<element type = "[Order;Product] Price" sys_name = "Item1_price" sys_type = "Field"/>

<element type = "[Order;Product] Id" sys_name = "Item2_id" sys_type = "Field"/>

<element type = "[Order;Product] Quantity" sys_name = "Item2_quantity" sys_type = "Field"/>

<element type = "[Order;Product] Price" sys_name = "Item2_price" sys_type = "Field"/>

</ElementType>

</Schema>

Figure VI.7: Southstorm X-Spec

Notice that constructing the X-Spec requires no new terms in the dictionary. The

basic terms Order, Customer, Product, and Id were all added for the construction of the

Northwind X-Spec and are re-used.

VI.3.3 Integrating the Southstorm and Northwind Databases

Once X-Specs for both databases are constructed the integration algorithm is

executed and produces the integrated view shown in Figures VI.10 and VI.11.

CHAPTER VI. INTEGRATION EXAMPLES 120

<?xml version="1.0" ?>

<Schema

name = "Northwind_xspec.xml"

xmlns="urn:schemas-microsoft-com:xml-data"

xmlns:dt="urn:schemas-microsoft-com:datatypes">

<ElementType name="[Category]" sys_name = "Categories" sys_type="Table">

<element type = "[Category] Id" sys_name = "CategoryID" sys_type = "Field"/>

<element type = "[Category] Name" sys_name = "CategoryName" sys_type = "Field"/>

<element type = "[Category] Description" sys_name = "Description" sys_type = "Field"/>

<element type = "[Category] Picture" sys_name = "Picture" sys_type = "Field"/>

</ElementType>

<ElementType name="[Customer]" sys_name = "Customers" sys_type="Table">

<element type = "[Customer] Id" sys_name = "CustomerID" sys_type = "Field"/>

<element type = "[Customer] Name" sys_name = "CompanyName" sys_type = "Field"/>

<element type = "[Customer;Contact] Name" sys_name = "ContactName" sys_type = "Field"/>

<element type = "[Customer;Contact;Employment] Title" sys_name="ContactTitle"

sys_type="Field"/>

<element type = "[Customer;Address] Address Line 1" sys_name = "Address" sys_type = "Field"/>

<element type = "[Customer;Address] City" sys_name = "City" sys_type = "Field"/>

<element type = "[Customer;Address] Region" sys_name = "Region" sys_type = "Field"/>

<element type = "[Customer;Address] Postal Code" sys_name = "PostalCode" sys_type = "Field"/>

<element type = "[Customer;Address] Country" sys_name = "Country" sys_type = "Field"/>

<element type = "[Customer] Phone #" sys_name = "Phone" sys_type = "Field"/>

<element type = "[Customer] Fax #" sys_name = "Fax" sys_type = "Field"/>

</ElementType>

<ElementType name="[Employee]" sys_name = "Employees" sys_type="Table">

<element type = "[Employee] Id" sys_name = "EmployeeID" sys_type = "Field"/>

<element type = "[Employee;Name] Last Name" sys_name = "LastName" sys_type = "Field"/>

<element type = "[Employee;Name] First Name" sys_name = "FirstName" sys_type = "Field"/>

<element type = "[Employee;Employment] Title" sys_name = "Title" sys_type = "Field"/>

<element type = "[Employee] Title" sys_name = "TitleofCourtesy" sys_type = "Field"/>

<element type = "[Employee] Birthdate" sys_name = "BirthDate" sys_type = "Field"/>

<element type = "[Employee;Employment] Date" sys_name = "HireDate" sys_type = "Field"/>

<element type = "[Employee;Address] Address Line 1" sys_name = "Address" sys_type = "Field"/>

<element type = "[Employee;Address] City" sys_name = "City" sys_type = "Field"/>

<element type = "[Employee;Address] Region" sys_name = "Region" sys_type = "Field"/>

<element type = "[Employee;Address] Postal Code" sys_name = "PostalCode" sys_type = "Field"/>

<element type = "[Employee;Address] Country" sys_name = "Country" sys_type = "Field"/>

<element type = "[Employee] Home Phone #" sys_name = "HomePhone" sys_type = "Field"/>

<element type = "[Employee] Extension" sys_name = "Extension" sys_type = "Field"/>

<element type = "[Employee] Picture" sys_name = "Photo" sys_type = "Field"/>

<element type = "[Employee] Note" sys_name = "Notes" sys_type = "Field"/>

<element type = "[Employee;Supervisor] Name" sys_name = "ReportsTo" sys_type = "Field"/>

</ElementType>

<ElementType name="[Order;Product]" sys_name = "OrderDetails" sys_type="Table">

<element type = "[Order] Id" sys_name = "OrderID" sys_type = "Field"/>

<element type = "[Order;Product] Id" sys_name = "ProductID" sys_type = "Field"/>

<element type = "[Order;Product] Price" sys_name = "UnitPrice" sys_type = "Field"/>

<element type = "[Order;Product] Quantity" sys_name = "Quantity" sys_type = "Field"/>

<element type = "[Order;Product] Discount%" sys_name = "Discount" sys_type = "Field"/>

</ElementType>

Figure VI.8: Northwind X-Spec Part 1

CHAPTER VI. INTEGRATION EXAMPLES 121

<ElementType name="[Order]" sys_name = "Orders" sys_type="Table">

<element type = "[Order] Id" sys_name = "OrderID" sys_type = "Field"/>

<element type = "[Order;Customer] Id" sys_name = "CustomerID" sys_type = "Field"/>

<element type = "[Order;Employee] Id" sys_name = "EmployeeID" sys_type = "Field"/>

<element type = "[Order] Date" sys_name = "OrderDate" sys_type = "Field"/>

<element type = "[Order] Required Date" sys_name = "RequiredDate" sys_type = "Field"/>

<element type = "[Order] Shipped Date" sys_name = "ShippedDate" sys_type = "Field"/>

<element type = "[Order;Shipper] Id" sys_name = "Shipvia" sys_type = "Field"/>

<element type = "[Order;Freight] Cost" sys_name = "Freight" sys_type = "Field"/>

<element type = "[Order;Shipto] Name" sys_name = "ShipName" sys_type = "Field"/>

<element type = "[Order;Shipto;Address] Address Line 1" sys_name="ShipAddress"

sys_type="Field"/>

<element type = "[Order;Shipto;Address] City" sys_name="ShipCity" sys_type="Field"/>

<element type = "[Order;Shipto;Address] Region" sys_name="ShipRegion" sys_type="Field"/>

<element type = "[Order;Shipto;Address] Postal Code" sys_name="ShipPostalCode"

sys_type="Field"/>

<element type = "[Order;Shipto;Address] Country" sys_name="ShipCountry" sys_type="Field"/>

</ElementType>

<ElementType name="[Product]" sys_name = "Products" sys_type="Table">

<element type = "[Product] Id" sys_name = "ProductID" sys_type = "Field"/>

<element type = "[Product] Name" sys_name = "ProductName" sys_type = "Field"/>

<element type = "[Product;Supplier] Id" sys_name = "SupplierID" sys_type = "Field"/>

<element type = "[Product;Category] Id" sys_name = "CategoryID" sys_type = "Field"/>

<element type = "[Product] Quantity-per-Unit" sys_name="QuantityPerUnit" sys_type="Field"/>

<element type = "[Product] Price" sys_name = "UnitPrice" sys_type = "Field"/>

<element type = "[Product] Inventory" sys_name = "UnitsInStock" sys_type = "Field"/>

<element type = "[Product] On-order" sys_name = "UnitsOnOrder" sys_type = "Field"/>

<element type = "[Product] Re-order level" sys_name = "Reorderlevel" sys_type = "Field"/>

<element type = "[Product] Discontinued" sys_name = "Discontinued" sys_type = "Field"/>

</ElementType>

<ElementType name="[Shipper]" sys_name = "Shippers" sys_type="Table">

<element type = "[Shipper] Id" sys_name = "ShipperID" sys_type = "Field"/>

<element type = "[Shipper] Name" sys_name = "CompanyName" sys_type = "Field"/>

<element type = "[Shipper] Phone #" sys_name = "Phone" sys_type = "Field"/>

</ElementType>

<ElementType name="[Supplier]" sys_name = "Suppliers" sys_type="Table">

<element type = "[Supplier] Id" sys_name = "SupplierID" sys_type = "Field"/>

<element type = "[Supplier] Name" sys_name = "CompanyName" sys_type = "Field"/>

<element type = "[Supplier;Contact] Name" sys_name = "ContactName" sys_type = "Field"/>

<element type = "[Supplier;Contact;Employment] Title" sys_name="ContactTitle"

sys_type="Field"/>

<element type = "[Supplier;Address] Address Line 1" sys_name="Address" sys_type="Field"/>

<element type = "[Supplier;Address] City" sys_name = "City" sys_type = "Field"/>

<element type = "[Supplier;Address] Region" sys_name = "Region" sys_type = "Field"/>

<element type = "[Supplier;Address] Postal Code" sys_name="PostalCode" sys_type="Field"/>

<element type = "[Supplier;Address] Country" sys_name = "Country" sys_type = "Field"/>

<element type = "[Supplier] Phone #" sys_name = "Phone" sys_type = "Field"/>

<element type = "[Supplier] Fax #" sys_name = "Fax" sys_type = "Field"/>

<element type = "[Supplier] Web Address" sys_name = "HomePage" sys_type = "Field"/>

</ElementType>

</Schema>

Figure VI.9: Northwind X-Spec Part 2

CHAPTER VI. INTEGRATION EXAMPLES 122

Global View Term Data Source Mappings (not visible to user)

V (view root) N/A
- [Customer] NW.Customers
- [Address]
- Address Line 1 NW.Customers.Address
- City NW.Customers.City
- Region NW.Customers.Region
- Postal Code NW.Customers.PostalCode

- [Contact]
- [Employment]
- Title NW.Customers.ContactTitle

- Name NW.Customers.ContactName
- Id NW.Customers.CustomerID
- Name NW.Customers.CompanyName
- Phone # NW.Customers.Phone
- Fax # NW.Customers.Fax

- [Category] NW.Categories
- Id NW.Categories.CategoryID
- Name NW.Categories.CategoryName
- Description NW.Categories.Description
- Picture NW.Categories.Picture

- [Employee] NW.Employees
- [Supervisor]
- Name NW.Employees.ReportsTo

- [Address]
- Address Line 1 NW.Employees.Address
- City NW.Employees.City
- Region NW.Employees.Region
- Postal Code NW.Employees.PostalCode
- Country NW.Employees.Country

- [Employment]
- Title NW.Employees.Title
- Date NW.Employees.HireDate

- Id NW.Employees.EmployeeID
- [Name]
- Last Name NW.Employees.LastName
- First Name NW.Employees.FirstName

- Title NW.Employees.TitleofCourtesy
- Birthdate NW.Employees.Birthdate
- Home Phone # NW.Employees.HomePhone
- Extension NW.Employees.Extension
- Picture NW.Employees.Picture
- Note NW.Employees.Note

- [Product] NW.Products
- [Category]
- Id NW.Products.CategoryID

- [Supplier]
- Id NW.Products.SupplierID

- Id NW.Products.ProductID
- Name NW.Products.ProductName
- Quantity-per-Unit NW.Products.QuantityPerUnit
- Price NW.Products.UnitPrice
- Inventory NW.Products.UnitsInStock
- On-order NW.Products.UnitsOnOrder
- Re-order level NW.Products.Reorderlevel
- Discontinued NW.Products.Discontinued

Figure VI.10: Northwind/Southstorm Integrated View Part 1

CHAPTER VI. INTEGRATION EXAMPLES 123

Global View Term Data Source Mappings (not visible to user)

V (view root) N/A
- [Order] NW.Orders
- [Shipto]
- [Address]
- Address Line 1 NW.Orders.ShipAddress
- City NW.Orders.ShipCity
- Region NW.Orders.ShipRegion
- Postal Code NW.Orders.ShipPostalCode
- Country NW.Orders.ShipCountry

- Name NW.Orders.ShipName
- [Freight]
- Cost NW.Orders.Freight

- [Shipper]
- Id NW.Orders.Shipvia

- [Employee]
- Id NW.Orders.EmployeeID

- [Customer]
- Id NW.Orders.CustomerID
- Name SS.Orders tb.Cust name
- [Address]
- Address Line 1 SS.Orders tb.Cust address
- City SS.Orders tb.Cust city
- Region SS.Orders tb.Cust region
- Postal Code SS.Orders tb.Cust pc
- Country SS.Orders tb.Cust country

- [Product] NW.Orders.OrderDetails
- Id NW.Orders.OrderDetails.ProductID, SS.Orders tb.Item1 id, SS.Orders tb.Item2 id
- Price NW.Orders.OrderDetails.UnitPrice, SS.Orders tb.Item1 price, SS.Orders tb.Item2 price
- Quantity NW.Orders.OrderDetails.Quantity, SS.Orders tb.Item1 quantity, SS.Orders tb.Item2 quantity
- Discount% NW.Orders.OrderDetails.Discount

- Id NW.Orders.OrderDetails.OrderID, NW.Orders.Orders.OrderID
- Date NW.Orders.OrderDate
- Required Date NW.Orders.RequiredDate
- Shipped Date NW.Orders.ShippedDate
- Total Amount SS.Orders tb.Order total

- [Supplier] NW.Suppliers
- [Address] NW.Suppliers
- Address Line 1 NW.Suppliers.Address
- City NW.Suppliers.City
- Region NW.Suppliers.Region
- Postal Code NW.Suppliers.PostalCode
- Country NW.Suppliers.Country

- [Contact]
- [Employment]
- Title NW.Suppliers.ContactTitle

- Name NW.Suppliers.ContactName
- Id NW.Suppliers.SupplierID
- Name NW.Suppliers.CompanyName
- Phone # NW.Suppliers.Phone
- Fax # NW.Suppliers.Fax
- Web address NW.Suppliers.HomePage

- [Shipper] NW.Shippers
- Id NW.Shippers.ShipperID
- Name NW.Shippers.CompanyName
- Phone # NW.Shippers.Phone

Figure VI.11: Northwind/Southstorm Integrated View Part 2

Chapter VII

Conclusions and Future Work

VII.1 Contributions and Conclusions

In this thesis, we have detailed how a standard global dictionary, a formalized

method for capturing data semantics (X-Specs), an integration algorithm, and a query

processor are combined into an integration architecture that integrates relational databases.

Data sources are transparently queried by semantic names, and the multidatabase layer

acts as an intermediary providing the necessary integration of concepts and translation

between semantic and system names. Integrating entire data sources is a major step forward

from industry standards which are inflexible and only integrate a small subset of the data

actually involved in communications. Applications of the approach include integration of

web databases and integration of organization database systems allowing easier deployment

of advanced technologies such as data warehouses and decision support systems.

The standard dictionary foundation of the architecture is its major contribution.

The dictionary functions as a shared ontology providing terms and definitions for the de-

scription of database semantics. Unlike knowledge bases which suffer from imprecision and

complexity, the dictionary is a simplified standard for the expression of data semantics to

describe schema elements. The construction, modification, and use of the dictionary is con-

siderably easier than other approaches. It is designed from its inception to be deployable

in industrial environments. Industry standards and approaches have clearly demonstrated

124

CHAPTER VII. CONCLUSIONS AND FUTURE WORK 125

that despite the often conflicting interests between companies, consumers, and technology

users, standardization is achievable in almost any domain. Further, when powerful stan-

dards are developed and implemented, the cost to use, deploy, and enhance the technology

decreases dramatically.

This thesis proposes that a standard dictionary or ontology must be developed to

enable automatic schema integration and improve database interoperability. The reasons

for standardization are clear, and the benefits are enormous. Research addressing the inte-

gration problem has created solid algorithms for analyzing schema conflicts and resolving

them manually or with the aid of software tools. The missing element to this point has

been the lack of semantic standardization. Designers are required to manipulate the com-

plex models and tools because the models do not have formalized methods for capturing

data semantics. Thus, designers become responsible for “filling in” the missing gaps in

information which the models lack.

While we are unwaivering in our belief of the necessity of standardization [58], the

dictionary organization proposed in the thesis is neither complete nor optimal. A small

research team can not possible enumerate a perfectly balanced ontology which caters to

all domains, industries, and environments. The evolution of the dictionary and its initial

creation can only truly be optimized by the co-operation of users, companies, and organi-

zations working together. The best terms and their placement is a matter of debate among

philosophers, computer scientists, and other interested parties.

However, organizing the dictionary hierarchically is an important insight, as it

allows information to be categorized more effectively. Further, when used in conjunction

with the new query model, hierarchical organization opens up new possibilities for semantic

querying that will be explored further in the future work section. In addition, the very fact

that the integration algorithm and query protocols can be effective despite a “sub-optimal”

dictionary is a reflection of their power. An integrator does not require a dictionary which

correctly organizes the entire world knowledge into a massive hierarchy. Rather, if domain

integrators can agree on just their domain knowledge and determine appropriate dictionary

terms, the algorithm will function correctly in any domain with the dictionary defined.

Defining and using a standard dictionary is an important contribution, but it is

CHAPTER VII. CONCLUSIONS AND FUTURE WORK 126

not a total solution. The integration architecture defines specification documents, X-Specs,

which use the basic semantic information present in the term dictionary, to build semantic

information about database schemas. This semantic information includes the usual schema

metadata including joins and keys. However, the notion of a semantic name for a schema

element is where the standard dictionary is used in a practical application. The semantic

name becomes the universal identifier coveted by integrators. It is like the attribute name in

the Universal Relation, or an XML tag in XML documents. Given the semantic name for an

element, you immediately know its semantics and know that these semantics are uniquely

identified by name. Standardization has allowed the naming conflict between systems to be

avoided. Further, it has decoupled the need for integrators to understand the semantics of

every system that they are integrating. Integration is achievable by defining the semantics

of each schema element independently using the standard dictionary. If the semantic names

match across databases, they represent identical concepts and are integrated.

Semantic names relegate the integration algorithm to a trivial name matching

algorithm. Complex transformations or schema equivalence models are not required. If two

semantic names are identical, the concepts they represent are identical. The integration

algorithm simply performs the term matching procedure and returns a set of semantic

names present in the integrated databases.

At this point, there is an “integrated view” of the combined systems, but it is

not the typical structural view consisting of tables and fields commonly used in other ap-

proaches. Although it may be possible to convert the integrated context view of semantic

names into a “regular” structural view, there is no benefit. Structure is irrelevant to the

user. The second major contribution of the thesis is that the integrated view is not a struc-

tural view of the data. The integrated context view produced by the architecture is actually

a hierarchy of concepts and contexts. Essentially, it is a hierarchy of “ideas”. The ideas are

related by IS-A relationships and HAS-A relationships similar to how the individual terms

in the semantic names are related. In fact, this hierarchy is automatically produced by the

fact that in the process of describing the semantics of schema elements by combining dic-

tionary terms to form semantic names, the designer is categorizing the “idea” or “essence”

of the element and determining its appropriate place in the integrated context view.

CHAPTER VII. CONCLUSIONS AND FUTURE WORK 127

It is easier to query by conceptual ideas than by structure because no semantic

conversion is required. That is, when queries are formulated, the user has a conceptual

model of the data which they require. However, in relational databases, this conceptual

data model has been converted to the relational model and translated into fields and ta-

bles. Structural querying requires the user to understand how to reconcile their conceptual

view of the data with the structural view of its current organization. Thus, the third ma-

jor contribution of the thesis is providing a model which allows the user to transparently

query any relational database by conceptual idea (semantic name) instead of by structure.

This reduces the semantic burden on the user during query formulation, and significantly

simplifies the task of querying multiple database systems.

By allowing the user to query by context [56, 57], the system becomes responsible

for translating from semantic queries to structural queries. The fourth major contribution

is a query system which automates this translation process. First, the query system must

determine the correct ideas (semantic names) requested by the user and then using the

supplied information in the X-Specs, generate local views for each data source which contain

relevant information. Generating these local views requires determining the correct fields

and tables to access, and then applying relevant local joins to connect the information. The

thesis demonstrated intelligent query algorithms which are capable of constructing these

local views for each data source by automatically generating SQL queries and executing

them using ODBC.

Generation of local views for each database resolves many structural conflicts that

exist between data sources. The second phase performed by the query processor automati-

cally integrates the generated local views. The local views still may contain differences such

as different normalization states. Further, the query processor may be able to perform joins

across databases based on the presence of common keys. The architecture defines a simple

but effective mechanism for specifying global keys and joins.

The fifth major contribution of the thesis is the implementation of the architec-

ture. The architecture is implemented in a software package called Unity [59]. Unity is a

production level tool which demonstrates the power and applicability of the architecture

to many environments. The power of standardization and the architecture algorithms are

CHAPTER VII. CONCLUSIONS AND FUTURE WORK 128

immediately apparent after using Unity.

In conclusion, this thesis has contributed an integration architecture [60, 55] which

is unique. The combination of standardization and intelligent query and integration algo-

rithms produces an architecture capable of automatic schema integration for relational

databases. The architecture proves that automatic schema integration is possible if you

accept standardization.

VII.2 Directions for Future Work

Future work includes refining the standard dictionary, improving the implementa-

tion of Unity, and developing new query mechanisms to complement the unique nature of

the architecture. Performing transparent updates and edits to multidatabase data in this

environment would be an especially challenging area of future work.

Refining the standard dictionary is an extremely interesting area of future work.

Although the architecture can function with any standard dictionary, the development

of a complete, general dictionary or ontology would be very exciting. There have been

ontology development efforts such as the Cyc knowledge-base, but they tend to produce

ontologies of massive size and complexity. The dictionary as defined in this architecture is

simple and many terms are re-usable. Further, the dictionary is a strict hierarchy, unlike

the graph-like nature of the Cyc knowledge-base, and is developed using the concepts of

firstness, secondness, and thirdness as defined in Section III.2.1. These concepts are open

to philosophical debate, which makes the placement of each dictionary term a matter of

debate and compromise. It would be interesting to see how the dictionary evolves when

used across many integration environments and application domains.

The query mechanisms defined in the thesis are sufficient for the majority of query

environments. One major limiting factor, however, is that the join selection algorithm is

only capable of determining joins when there is only one join connecting two tables (Section

III.6.3). Extending the join selection algorithm to handle the possibility of multiple joins

between two tables is required for a general solution. Further, there may be more elegant

methods of determining the correct join tree to use when a join graph for a database is

CHAPTER VII. CONCLUSIONS AND FUTURE WORK 129

cyclic. Although the current method of showing the user the interrelationships between

semantic names (Section III.6.4) is functional and informative, there may be certain cases

where it is insufficient or leads to conflicts between databases. For example, a join linking

two ideas (semantic names) may be present in one database and not in another. Does it

make sense to show this relationship to the user if it only applies to one database?

Another interesting query extension would exploit the hierarchical nature of the

standard dictionary. For example, Fax # is a subconcept of Phone # in the dictionary. The

user may query for “all phone numbers regardless of use” which would return all direct

mappings to Phone #, plus mapping to its subconcepts such as Fax #, Home Phone #, etc.

Such hierarchical querying could be extremely powerful.

A major and challenging query issue is handling global updates. The architecture is

currently a query-only system. When the user is allowed to update the underlying databases

from the global level, new issues concerning trust, concurrency, and data value conflicts arise.

Simple trust issues include determining if a database should accept a user’s modifications or

attempt to validate them to ensure they make sense in respect to the database context. Even

more interesting issues arise when databases can determine if they trust other databases. For

example, a local database may update an address field value. Another local database which

is connected to it in the federation receives notification of this update and contains a different

address value. Should it accept the new address value? Maybe certain databases should

be “authorities” on a certain subset of the information in the integrated view and ensure

other databases have the correct information. This issue gets even more interesting when

you factor in that the databases may be owned by different organizations and companies

which may be competitors.

Concurrency control algorithms for the multidatabase environment have been stud-

ied extensively, but they would probably need to be optimized for a new co-operating and

trusting environment. Further, since the architecture can be distributed in a web browser,

implementing a global distributed transaction management protocol would be required.

When the clients implement transaction management, whole new complexities arise.

Finally, Unity is evolving and improving with our architecture. We continue to

add greater functionality to the system in all four components. Continuing work on the

CHAPTER VII. CONCLUSIONS AND FUTURE WORK 130

global dictionary editor component includes an option to save the dictionary as an XML

file instead of a binary file and better linking to the other document types which depend

on its data.

Future work on the X-Spec editor involves improving the automation features.

Currently, the editor is only capable of parsing a schema exported from Microsoft Access.

This is not an overly limiting feature because Access itself is able to capture schemas

from various data sources including Oracle, Sybase, and others using ODBC. However, a

direct ODBC connection to the various databases to retrieve schema information would be

desirable. Eventually, the system may be trained to remember previous mappings from

system names to a semantic name, so that system names can be automatically mapped to

a semantic name when encountered. For example, if the system name tbl id is mapped

extensively to the semantic name id, we would like the system to remember that mapping

and automatically perform it (by assigning the correct semantic name) the next time the

system name tbl id is encountered. Further, although the query system implements result

normalization, the system needs to implement data conflict resolution procedures and the

algorithm for applying joins across databases to completely represent the total functionality

of the architecture. Further, distributing Unity as a web browser component which interacts

with component software at each database would be challenging future work.

In total, the architecture presented is a solid foundation for future work. As the

query system functionality is expanded and the standard dictionary is refined, the architec-

ture may become a total solution to the schema integration and database interoperability

problems.

Bibliography

[1] S. Adali and R. Emery. A uniform framework for integrating knowledge in hetero-

geneous knowledge systems. In Proceedings of the Eleventh International Conference

on Data Engineering, pages 513–520, 1995.

[2] A.V. Aho, C. Beeri, and J. Ullman. The Theory of Joins in Relational Databases.

ACM Transactions on Database Systems, 4(3):297–314, September 1979.

[3] G. Arocena and A. Mendelzon. WebOQL: Restructuring documents, databases, and

webs. In Proceedings of the International Conference on Data Engineering (ICDE),

pages 24–33, 1998.

[4] G. Attaluri, D. Bradshaw, N. Coburn, P. Larson, P. Martin, A. Silberschatz, J. Slonim,

and Q. Zhu. The CORDS multidatabase project. IBM Systems Journal, 34(1):39–62,

1995.

[5] M. Barja, T. Bratvold, J. Myllymaki, and G. Sonnenberger. Informia: A Mediator for

Integrated Access to Heterogeneous Information Sources. In Proceedings of the ACM

International Conference on Information and Knowledge Management (CIKM-98),

pages 234–241, New York, November 3–7 1998. ACM Press.

[6] K. Barker. Transaction Management on Multidatabase Systems. PhD thesis, Univer-

sity of Alberta, 1990.

[7] K. Barker. Quantification of Autonomy on Multidatabase Systems. The Journal of

System Integration, pages 1–26, 1993.

131

BIBLIOGRAPHY 132

[8] C. Batini, M. Lenzerini, and S. Navathe. A Comparative Analysis of Methodologies for

Database Schema Integration. ACM Computing Surveys, 18(4):323–364, December

1986.

[9] C. Beeri, A. Levy, and M. Rousset. Rewriting Queries Using Views in Description

Logics. In Principles of Database Systems (PODS’97), pages 99–108, 1997.

[10] J. Bell and L. Rowe. Human Factors Evaluation of a Textual, Graphical, and Natural

Language Query Interfaces. Technical Report ERL-90-12, University of California,

Berkeley, February, 1990.

[11] M. Bouzeghoub and E. Metais. Semantic Modeling of Object Oriented Databases. In

Proceedings of the 17th International Conference on Very Large Data Bases, pages

3–6, September 1991.

[12] S. Bressan, C. Goh, K. Fynn, M. Jakobisiak, K. Hussein, H. Kon, T. Lee, S. Mad-

nick, T. Pena, J. Qu, A. Shum, and M. Siegel. The COntext INterchange Mediator

Prototype. SIGMOD Record, 26(2):525–527, May 1997.

[13] M. Bright, A. Hurson, and S. Pakzad. A Taxonomy and Current Issues in Multi-

database Systems. IEEE Computer, 25(3):50–60, March 1992.

[14] M. Bright, A. Hurson, and S. Pakzad. Automated Resolution of Semantic Hetero-

geneity in Multidatabases. ACM Transactions on Database Systems, 19(2):212–253,

June 1994.

[15] V. Brosda and G. Vossen. Update and Retrieval in a Relational Database Through a

Universal Schema Interface. ACM Transactions on Database Systems, 13(4):449–485,

December 1988.

[16] O. Bukhres, J. Chen, A. Elmagarmid, X. Liu, and J. Mullen. InterBase: A Multi-

database prototype system. ACM SIGMOD Record, 22(2):534–539, June 1993.

[17] S. Castano and V. Antonellis. Semantic Dictionary Design for Database Interop-

erability. In Proceedings of the 13th International Conference on Data Engineering

(ICDE’97), pages 43–54, April 1997.

BIBLIOGRAPHY 133

[18] S. Castano, V. Antonellis, M. Fugini, and B. Pernici. Conceptual Schema Analysis:

Techniques and Applications. ACM Transactions on Database Systems, 23(3):286–

332, September 1998.

[19] T. Catarci and G. Santucci. Query by Diagram: A Graphical Environment for Query-

ing Databases. SIGMOD Record, 23(2):515–515, June 1994.

[20] C. Chang and H. Garcia-Molina. Mind Your Vocabulary: Query Mapping Across

Heterogeneous Information Sources. SIGMOD Record, 28(2):335–346, June 1999.

[21] J. Chen, A. Aiken, N. Nathan, C. Paxson, M. Stonebraker, and J. Wu. Extending a

Graphical Query Language to Support updates, Foreign Systems, and Transactions.

Technical Report S2K-93-38, University of California, Berkeley, 1994.

[22] W. Cheung and H. Cheng. The Model-Assisted Global query systems for multiple

databases in distributed enterprises. ACM Transactions on Information Systems,

14(4):421–470, 1996.

[23] The Metadata coalition. Metadata Interchange Specification. Technical Report

version 1.1. http://www.mdcinfo.com/MDIS/MDIS11.html, The Metadata coalition,

August 1997.

[24] W. Cohen. Integration of Heterogeneous Databases Without Common Domains Using

Queries Based on Textual Similarity. SIGMOD Record, 27(2):201–212, 1998.

[25] C. Collet, M. Huhns, and W-M. Shen. Resource Integration Using a Large Knowledge

Base in Carnot. IEEE Computer, 24(12):55–62, December 1991.

[26] B. Convent. Unsolvable problems related to the view integration approach. In Proceed-

ings of the International Conference on Database Theory, pages 141–156, September

1986.

[27] D. Cruse. Lexical Semantics. Cambridge University Press, 1986.

[28] N. Fiddian: D. Karunaratna, W. Gray. Establishing a Knowledge Base to Assist

BIBLIOGRAPHY 134

Integration of Heterogeneous Databases. In Advances in Databases: 16th British

National Conference on Databases, pages 103–118, 1998.

[29] C. Date. The SQL standard. Addison Wesley, Reading, US, third edition, 1994.

[30] U. Dayal and H. Hwang. View definition and generalization for database integration in

MULTIBASE: A system for heterogeneous distributed databases. IEEE Transactions

on Software Engineering, SE-10(6):628–644, 1984.

[31] M. Fernandez, D. Florescu, J. Kang, A. Levy, and D. Suciu. Catching the boat with

Strudel: Experiences with a web-site management system. In Proceedings of the ACM

SIGMOD Conference on Management of Data, pages 414–425, 1998.

[32] T. Finin, R. Fritzon, D. McKay, and R. McEntire. KQML – A Language and protocol

for Knowledge and Information Exchange. In Proceedings of the 13th International

Workshop on Distributed Artificial Intelligence, pages 126–136, Seattle, WA, July

1994.

[33] D. Florescu, A. Levy, I. Manolescu, and D. Suciu. Query Optimization in the Presence

of Limited Access Patterns. SIGMOD Record, 28(2):311–322, June 1999.

[34] D. Florescu, A. Levy, and A. Mendelzon. Database techniques for the World-Wide

Web: A Survey. SIGMOD Record, 27(3):59–74, 1998.

[35] S. Gadia. Parametric Databases: Seamless integration of spatial, temporal, belief and

ordinary data. SIGMOD Record, 22(1):15–20, March 1993.

[36] M. Garcha-Solaco, F. Saltor, and M. Castellanos. Semantic Heterogeneity in Multi-

database Systems. Prentice Hall Inc., 1996.

[37] M. Genesereth, A. Keller, and O. Duschka. Infomaster: An Information Integration

System. SIGMOD Record, 26(2):539–542, May 1997.

[38] D. Georgakopoulos, M. Rusinkiewicz, and A.P. Sheth. Using Tickets to Enforce the

Serializability of Multidatabase Transactions. IEEE Transactions on Knowledge and

Data Engineering, 6(1):166–180, February 1994.

BIBLIOGRAPHY 135

[39] C. Goh, S. Bresson, S. Madnich, and M. Siegel. Context Interchange: New Features

and Formalisms for the Intelligent Integration of Information. ACM Transactions on

Information Systems, 17(3):270–293, July 1999.

[40] T. Gruber. Toward principles for the design of ontologies used for knowledge sharing.

Technical Report TR KSL 93-04, Knowledge Systems Laboratory, Stanford, 1993.

[41] T. Gruber. A translation approach to portable ontology specifications. Knowledge

Acquisition, 5(2):199–220, 1995.

[42] M. Hammer and D. McLeod. Database Description with SDM: A Semantic Database

Model. ACM Transactions on Database Systems, 6(3):351–386, September 1981.

[43] S. Holzner. XML Complete. McGraw-Hill, New York, NY, USA, 1998.

[44] R. Hull and R. King. Semantic Database Modeling: Survey, Applications, and Re-

search Issues. ACM Computing Surveys, 19(3):201–260, September 1988.

[45] Uniform Code Council Inc. SIL - Standard Interchange Language. Technical Report

http://www.uc-council.org/e commerce/ec sil general overview.html, January 1999.

[46] Z. Ives, D. Florescu, M. Friedman, A. Levy, and D. Weld. An Adaptive Query Exe-

cution System for Data Integration. SIGMOD Record, 28(2):299–310, June 1999.

[47] R. Jakobovits. Integrating Autonomous Heterogenous Information Sources. Technical

Report TR-97-12-05, University of Washington, Department of Computer Science,

1997.

[48] U. Johnen and M. Jeusfeld. An Executable Meta Model for Re-Engineering of

Database Schemas. Technical Report 94-19, Technical University of Aachen (RWTH

Aachen), 1994.

[49] W. Kent. The Breakdown of the Information Model in MDBSs. SIGMOD Record,

20(4):10–15, December 1991.

[50] W. Kim and J. Seo. Classifying Schematic and Data Heterogeneity in Multidatabase

Systems. IEEE Computer, 24(12):12–18, December 1991.

BIBLIOGRAPHY 136

[51] D. Konopnicki and O. Shmueli. Information gathering in the World-Wide Web: The

W3QL query language and the W3QS system. ACM Transactions on Database Sys-

tems, 23(4):369–410, December 1998.

[52] H. Korth, G. Juper, J. Feigenbaum, A. Gelder, and J. Ullman. System/U: A Database

System Based on the Universal Relation Assumption. ACM Transactions on Database

systems, 9(3):331–347, September 1984.

[53] R. Krishnamurthy, W. Litwin, and W. Kent. Language features for interoperability

of databases with schematic discrepancies. SIGMOD Record, 20(2):40–49, June 1991.

[54] E. Kuhn, T. Tschernko, and K. Schwarz. A language based multidatabase system.

SIGMOD Record, 23(2):509, June 1994.

[55] R. Lawrence and K. Barker. Automatic Integration of Relational Database Schemas.

Technical Report 2000-662-14, Department of Computer Science, University of Cal-

gary, July 2000.

[56] R. Lawrence and K. Barker. Multidatabase Querying by Context. InDATASEM2000 -

20th annual conference on the Current Trends in Databases and Information Systems,

pages 127–136, October 2000.

[57] R. Lawrence and K. Barker. Multidatabase Querying by Context. Technical Report

2000-663-15, Department of Computer Science, University of Calgary, July 2000.

[58] R. Lawrence and K. Barker. The Relational Integration Model for Integrating Re-

lational Schemas. In Knowledge Discovery For Business Information Systems, pages

153–172. Kluwer Academic Publishers, 2000.

[59] R. Lawrence and K. Barker. Unity - A Database Integration Tool. Technical Report

2000-664-16, Department of Computer Science, University of Calgary, July 2000.

[60] R. Lawrence and K. Barker. Integrating Relational Database Schemas using a Stan-

dardized Dictionary. In SAC’2001- ACM Symposium on Applied Computing, March

2001.

BIBLIOGRAPHY 137

[61] R. Lawrence, K. Barker, and A. Adil. Simulating MDBS Transaction Management

Protocols. In Proceedings of the ISCA 11th International Conference, pages 93–97,

November 1998.

[62] J. Lee and D. Baik. SemQL: A Semantic Query Language for Multidatabase Sys-

tems. In Proceedings of the 8th International Conference on Information Knowledge

Management (CIKM’99), pages 259–266, Kansas City, MO, November 1999.

[63] A. Levy, A. Mendelzon, D. Srivastava, and Y. Sagiv. Answering Queries Using Views.

In Principles of Database Systems (PODS’95), pages 95–104, 1995.

[64] A. Levy, A. Rajaraman, and J. Ordille. Querying heterogeneous information sources

using source descriptions. In Proceedings of the International Conference on Very

Large Data Bases (VLDB), pages 251–262, 1996.

[65] C. Li, R. Yerneni, V. Vassalos, H. Garcia-Molina, Y. Papakonstantinou, J. Ullman,

and M. Valiveti. Capability Based Mediation in TSIMMIS. In Proceedings of the

ACM SIGMOD Conference on Management of Data, pages 564–566, June 1998.

[66] E.-P. Lim, J. Srivastava, S. Prabhakar, and J. Richardson. Entity Identification in

Database Integration. In International Conference on Data Engineering, pages 294–

301, Los Alamitos, Ca., USA, April 1993. IEEE Computer Society Press.

[67] E.-P. Lim, J. Srivastava, and S. Shekhar. Resolving Attribute Incompatibility in

Database Integration: An Evidential Reasoning Approach. In Proceedings of the

10th International Conference on Data Engineering, pages 154–165, Houston, TX,

February 1994. IEEE Computer Society Press.

[68] W. Litwin and A. Abdellatif. An overview of the multidatabasemanipulation language

MDSL. In Proceedings of the IEEE, pages 69–73, May 1987.

[69] W. Litwin, L. Mark, and M. Roussopoulos. Interoperability of Multiple Autonomous

Databases. ACM Computing Surveys, 22(3):267–293, September 1990.

[70] L. Liu, W. Han, D. Buttler, C. Pu, and W. Tang. An XML-based Wrapper Generator

for Web Information Extraction. SIGMOD Record, 28(2):540–543, June 1–3 1999.

BIBLIOGRAPHY 138

[71] D. Maier, M. Vardi, and J. Ullman. On the Foundations of the Universal Relation

Model. ACM Transactions on Database systems, 9(2):283–308, June 1984.

[72] P. McBrien and A. Poulovassilis. A Formalisation of Semantic Schema Integration.

Information Systems, 23(5):307–334, April 1998.

[73] P. McBrien and A. Poulovassilis. Automatic Migration and Wrapping of Database

Applications - A Schema Transformation Approach. In Conceptual Modeling - ER

’99, 18th International Conference on Conceptual Modeling, Paris, France, November,

15-18, 1999, Proceedings, volume 1728 of Lecture Notes in Computer Science, pages

96–113. Springer, 1999.

[74] A. Mendelzon, G. Mihaila, and T. Milo. Querying the world wide web. International

Journal on Digital Libraries, 1(1):54–67, April 1997.

[75] J. Meseguer and X. Qian. A Logical Semantics for Object-Oriented Databases. ACM

SIGMOD Record, 22(2):89–98, June 1993.

[76] Microsoft. Microsoft BizTalk Server - Whitepaper. Technical Report

http://www.microsoft.com/biztalk/default.htm, Microsoft, May 1999.

[77] Microsoft. BizTalk Framework 2.0 - Independent Document Specification. Technical

Report http://www.microsoft.com/biztalk/default.htm, Microsoft, December 2000.

[78] G. Miller, R. Beckwith, C. Fellbaum, D. Gross, and K. Miller. Five Papers on Word-

Net. Technical Report CSL Report 43, Cognitive Systems Laboratory, Princeton

University, 1990.

[79] R. Miller, Y. Ioannidis, and R. Ramakrishnan. Schema Equivalence in Heterogeneous

Systems: Bridging Theory and Practice. Information Systems, 19(1):3–31, January

1994.

[80] A. Motro and Q. Yuan. Querying database knowledge. SIGMOD Record, 19(2):173–

183, June 1990.

BIBLIOGRAPHY 139

[81] W. Ogden and S. Brooks. Query Languages for the Casual User: Exploring the ground

between Formal and Natural Languages. In Proceedings of the Annual Meeting of the

Computer Human Interaction of the ACM, pages 161–65, 1983.

[82] Y. Papakonstantinou and V. Vassalos. Query Rewriting for Semistructured Data. In

Proceedings of the ACM SIGMOD Conference on Management of Data, pages 455–

466, 1999.

[83] C. Parent and S. Spaccapietra. Issues and approaches of database integration. Com-

munications of the ACM, 41(5es):166–178, May 1998.

[84] R. Pledereder, V. Krishnamurthy, M. Gagnon, and M. Vadodaria. DB Integrator:

Open Middleware for Data Access. Digital Technical Journal of Digital Equipment

Corporation, 7(1):7–22, Winter 1995.

[85] M. Roth and P. Schwarz. Don’t Scrap It, Wrap It! A Wrapper Architecture for

Legacy Data Sources. In VLDB’97, Proceedings of 23rd International Conference on

Very Large Data Bases, pages 266–275, 1997.

[86] M. Rusinkiewicz, A. Sheth, and G. Karabatis. Specifying Interdatabase Dependencies

in a Multidatabase Environment. IEEE Computer, 24(12):46–53, December 1991.

[87] Y. Sagiv. A Characterization of Globally Consistent Databases and Their Correct

Access Paths. ACM Transactions on Database Systems, 8(2):266–286, June 1983.

[88] F. Saltor, M. Castellanos, and M. Garcia-Solaco. On Canonical Models for Federated

DBs. SIGMOD Record, 20(4):44–48, December 1991.

[89] I. Schmitt and G. Saake. Merging Inheritance Hierarchies for Database Integration.

In M. Halper, editor, Proceedings of the International Conference on Cooperative

Information Systems, CoopIS’98, pages 322–331. IEEE Computer Society Press, 1998.

[90] E. Sciore, M. Siegel, and A. Rosenthal. Using Semantic Values to Facilitate Interoper-

ability Among Heterogeneous Information Systems. ACM Transactions on Database

Systems, 19(2):254–290, June 1994.

BIBLIOGRAPHY 140

[91] A. Sheth and G. Karabatis. Multidatabase Interdependencies in Industry. In Proceed-

ings of the 1993 ACM SIGMOD Conference on Management of Data, pages 483–486,

June 1993.

[92] A. Sheth and J. Larson. Federated Database Systems for Managing Distributed,

Heterogenous and Autonomous Databases. ACM Computing Surveys, 22(3):183–236,

September 1990.

[93] D. Shipman. The Functional Data Model and the Data Language DAPLEX. ACM

Transactions on Database Systems, 6(1):140–173, March 1981.

[94] M. Siegel and S. Madnick. A Metadata Approach to Resolving Semantic Conflicts.

In Proceedings of the 17th International Conference on Very Large Data Bases, pages

133–145, September 1991.

[95] John F. Sowa. Top-level ontological categories. International Journal of Human-

Computer Studies, 43(5):669–685, 1995.

[96] M. Stonebraker, J. Chen, N. Nathan, C. Parson, A. Su, and J. Wu. Tioga: A Database-

Oriented Visualization Tool. In Proceedings of the Visualization ’93 Conference, pages

86–93, San Jose, CA, October 1993. IEEE Computer Society Press.

[97] C. Thieme and A. Siebes. An approach to schema integration based on transforma-

tions and behaviour. In Proceedings of CAiSE’94, pages 297–310, June 1994.

[98] J. Ullman. Information Integration Using Logical Views. In Foto N. Afrati and

Phokion Kolaitis, editors, Database Theory—ICDT’97, 6th International Conference,

volume 1186 of Lecture Notes in Computer Science, pages 19–40, Delphi, Greece,

8–10 January 1997. Springer.

[99] G. Vossen and J. Yacabucci. An extension of the database language SQL to capture

more relational concepts. SIGMOD Record, 17(4):70–78, December 1988.

[100] W3C. Extensible Markup Langauge (XML) 1.0. Technical Report

http://www.w3.org/XML/, February 1998.

BIBLIOGRAPHY 141

[101] D. Weishar and L. Kerschberg. Data Knowledge packets as a Means for Supporting

Semantic Heterogeneity. SIGMOD Record, 20(4):69–73, December 1991.

[102] D. Woelk, P. Attie, P. Cannata, G. Meredith, A. Sheth, M. Singh, and C. Tomlinson.

Task scheduling using intertask dependencies in Carnot. SIGMOD Record, 22(2):491–

494, June 1993.

[103] R. Yerneni, C. Li, H. Garcia-Molina, and J. Ullman. Computing Capabilities of

Mediators. SIGMOD Record, 28(2):443–454, June 1999.

Appendix A

Unity Standard Dictionary Classes

class CGD : public CObject

{ // Global dictionary

CTypedPtrList<CObList, CGD_node*> nodes; // List of GD nodes

CGD_node* root; // Root node of tree

CDocument* GDDoc; // Pointer to document object for this GD

POSITION aPos; // Position variable used for iterator

int max_depth; // Maximum depth to display tree

int node_types; // Types of nodes/links to display

};

class CGD_node : public CObject

{ // Global dictionary node

CString key; // Key for node: sname-def_num e.g. Node-1

CString sname; // Semantic name of term

int def_num; // Definition number of term

CString desc; // Description of semantic term

CList<CString,CString&> syn; // Synonyms for semantic term

CGD_link parent; // Link to node parent - NULL if none

CTypedPtrList<CObList,CGD_link*> children; // Pointer to children

CRect loc; // Location of node on screen

int level; // Level of node (only valid after BFS called)

bool visited; // True if node has been visited in BFS

CPoint pt; // Top of rectangle used for calculations

bool visible; // True if node should be currently visible

};

142

APPENDIX A. UNITY STANDARD DICTIONARY CLASSES 143

class CGD_link : public CObject

{ // Global dictionary link

long loc; // Not in use

int link_type; // Type of link 1 - IS-A, 2 - Part Of

double value; // Link value/weight

bool condense; // True if often collapsed into parent

CGD_node* from_node; // Origin of link

CGD_node* to_node; // Destination of link

CPoint from_pt; // From point of link when drawing on screen

CPoint to_pt; // To point of link when drawing on screen

};

Appendix B

Unity Metadata Classes

class CMDField : public CObject

{ // Metadata field

CString field_type; // Type of field (integer, string, etc.)

long size; // Field size

int num_decimal; // # of decimals in field

int precision; // Field precision

bool required; // True if field is required in table

bool empty_str; // True if empty string is allowed for a value

CString comment; // Comment

};

class CMDTable : public CObject

{ // Metadata table

CTime creation_date; // Table creation date

CTime last_updated; // Last update date

long record_count; // # of records in table

long record_size; // Size of a record

CString comment; // Comment

CTypedPtrList<CObList, CMDField*> fields;

CTypedPtrList<CObList, CKey*> keys;

CTypedPtrList<CObList, CJoin*> joins;

POSITION aPos,aPos2,aPos3; // For iterators

CString name; // System name for table

};

144

APPENDIX B. UNITY METADATA CLASSES 145

class CMDSource : public CObject

{ // Metadata source

POSITION aPos; // For iterator

CString name; // Name for source

CString location; // Source location/path

CString comment; // Comment

CString group_name; // Database group name

CString org_name; // Database organization name

CString region_name; // Database region name

CString national_name; // Database national name

CString intl_name; // Database international name

CString ODBC_name; // Database ODBC connection name

CString connect_str; // Database ODBC connection string

CTypedPtrList<CObList, CMDTable*> tables;

};

Appendix C

Unity X-Spec Classes

class CSpecField : public CObject

{ // X-Spec Field

CString sys_name; // System name for field

CString field_type; // Field type

long size; // Field size

int num_decimal; // # of decimal places

int precision; // Precision

bool required;

bool empty_str;

CString comment;

bool is_key; // True if key value

bool is_categorizer; // True if value is a categorizer

bool is_foreign_key; // True if field is a foreign key

bool is_reference; // True if field used to reference other DBs

bool is_datetime; // True if date time field

bool is_numeric; // True if numeric field

double low_val;

double high_val;

bool requires_norm; // True if field is a duplicate and can be normalized

CString parent_name; // Parent group name

bool placed; // Temporary field used to determine if field has been used

CQry_FRef *qfref; // Pointer to a query field reference for this field

CSpecTable* parent_tbl; // Parent table for this field

CString sem_name; // Semantic name for field

};

class CPath : public CObject

{ // Path class (for shortest join path calculations)

CTypedPtrList<CObList,CSpecTable*> nodes;

CTypedPtrList<CObList,CJoin*> joins;

};

146

APPENDIX C. UNITY X-SPEC CLASSES 147

class CSpecTable : public CObject

{ // X-Spec Table

CString sys_name; // System name for table

int scope; // Table scope

CTime creation_date;

CTime last_updated;

long record_count;

long record_size;

int access_mech; // Read-only, write-only, read-write

int rec_type;

int rec_grouping;

bool allow_duplicates;

CString comment;

CTypedPtrList<CObList, CSpecField*> fields;

CTypedPtrList<CObList, CKey*> keys;

CTypedPtrList<CObList, CJoin*> joins;

POSITION aPos,aPos2,aPos3;

CString sem_name; // Semantic name for table

};

class CSpec : public CObject

{ // X-Spec class

POSITION aPos;

CString name; // Specification name

CString db_name; // Database name

CString location; // Database location

CString comment;

CString group_name; // Database group name

CString org_name; // Database organization name

CString region_name; // Database region name

CString national_name; // Database national name

CString intl_name; // Database international name

CString ODBC_name; // Database ODBC connection name

CString connect_str; // Database ODBC connection string

CTypedPtrList<CObList, CSpecTable*> tables;

CPath*** path_matrix; // Stores shortest calculated join paths

int last_nodes; // Last size of matrix

};

class CKey : public CObject

{ // CKey class

int scope; // Scope of key: 1-Table, 2-Database, 3-Division/Group

// 4-Organization, 5-Regional, 6-National, 7-International

int type; // Key type: 1-Primary key, 2-Secondary Key, 3-Foreign Key

CString name; // Key name

CTypedPtrList<CObList,CObject*> flds; // Fields of the key (order is significant)

// Contains CMDField* (for MDSource documents) or

// CSpecField* for CSpec documents

POSITION aPos;

};

APPENDIX C. UNITY X-SPEC CLASSES 148

class CJoin : public CObject

{ // CJoin Class

CString from_table; // Join originating table

CString to_table; // Join to table

CKey *from_key; // Join from key

CKey *to_key; // Join to key

int type; // Type of join (cardinality): 1 - 1:1, 2 - 1:N, 3 - N:1,

// 4 - N:M, 5 - 1:C, 6 - C:1, 7 - C:D (from:to)

int from_card; // From cardinality (for 5-7) if explicit cardinality

int to_card; // eg. 1:3, 3:1

CString name; // Join name

};

Appendix D

The Integration Algorithm

void CSchDoc::OnSchAddall()

// Add all elements in the currently selected specification source into the view

{

CSpecTable *tbl;

CSpecField *fld;

CSpec *spec = (this->Get_SPV())->get_spec();

CSpecRef *spr;

if (spec == NULL)

return;

// Root item - name of specification

if (schema.is_null())

schema.add_root();

// Add schema context information

schema.add_context(7,spec->get_intname());

schema.add_context(6,spec->get_natname());

schema.add_context(5,spec->get_regname());

schema.add_context(4,spec->get_orgname());

schema.add_context(3,spec->get_grpname());

schema.add_context(2,spec->get_db_name());

// Now add each one of the tables in the specification to the schema

spec->init_iterator();

while (spec->next_elt(tbl))

{

schema.add_table(tbl);

// Now add each field of a table in the specification to the schema

tbl->init_iterator();

while (tbl->next_elt(fld))

schema.add_field(fld);

}

// Add this specification to the list of specs in the schema

spr = new CSpecRef;

spr->spec_loc = (this->Get_SPV())->get_specdoc()->get_fname();

spr->specdoc = new CSpecDoc;

spr->specdoc->load_spec(spr->spec_loc);

schema.AddSpec(spr);

}

149

APPENDIX D. THE INTEGRATION ALGORITHM 150

bool CSchema::add_table(CSpecTable *tbl)

// Adds a table element from a specification to the schema

{

CList<CString,CString&> terms;

parse_sname(tbl->get_sem_name(),terms);

match_sname(tbl,1,terms,this->get_root(),terms.GetHeadPosition());

return true;

}

bool CSchema::add_field(CSpecField *fld)

// Adds a field element from a specification to the schema

{

CList<CString,CString&> terms;

parse_sname(fld->get_sem_name(),terms);

match_sname(fld,2,terms,this->get_root(),terms.GetHeadPosition());

return true;

}

int CSchema::match_sname(CObject *obj, int type, CList<CString,CString&> &terms,

CSch_node *cur_node, POSITION aPos)

/*

Matches a full semantic name separated into terms with a cur_node’s

children recursively.

Adds references to DB list as proceeds and adds all terms regardless

of amount of matches. Type is 1 if table, 2 if field

Retuns:

- 1 - Perfect match of all terms with IV

- 2 - SN matches up to a certain point (remaining terms added)

- 3 - No match at any level

*/

{

CString term, sn, new_sn, s;

CSch_link *link;

CSch_node *nd, *res_node;

POSITION next_pos;

CSpecTable *tbl = (CSpecTable*) obj;

CSpecField *fld = (CSpecField*) obj;

if (aPos == NULL)

{

add_DB_map(cur_node, obj, type, spec); // Add database reference for element

return 1; // Matched all terms

}

if (cur_node == NULL)

return 3;

// Otherwise, match all children of cur_node with the current term

term = terms.GetAt(aPos);

cur_node->init_iterator();

while (cur_node->next_elt(link))

{

nd = link->get_to_node();

// Note: May want to use depth_sname eventually as it is more efficient

// Trick: Get sname of node we are matching with and remove last character

// if it has children (is a context). Otherwise, leave name unchanged.

// The newly formatted sname should be found in the name we are matching

// if there will be a match

if (nd->type == 1)

sn = nd->sname.Left(nd->sname.GetLength()-1); // Context, remove]

else

sn = nd->sname;

APPENDIX D. THE INTEGRATION ALGORITHM 151

if (type == 1)

new_sn = tbl->get_sem_name();

else

new_sn = fld->get_sem_name();

if (new_sn.Find(sn) != -1)

{ // Found sn in new_sn - match at this level, proceed to next level

// if a context and record DB info

next_pos = aPos;

s = terms.GetNext(next_pos);

return match_sname(obj,type,terms,nd,next_pos);

}

}

// There was no further match - add all remaining terms (including this one)

this->add_node(cur_node,obj,type,terms,aPos,res_node);

term = terms.GetNext(aPos);

while (aPos)

{

term = terms.GetAt(aPos);

cur_node = res_node;

this->add_node(cur_node,obj,type,terms,aPos,res_node);

term = terms.GetNext(aPos);

}

return 2;

}

bool CSchema::add_node(CSch_node *parent, CObject *obj, int type,

CList<CString,CString&> &terms,

POSITION aPos, CSch_node* &res_node)

// Adds a node under the parent, constructing a semantic name out

// of the POSITION and terms variables

{

CSch_link *link = new CSch_link;

CSch_node *nd = new CSch_node;

int link_type = 1,p,node_type;

CString sname,s;

bool full_term;

// Determine semantic name for the node at this depth

s = terms.GetAt(aPos);

full_term = false;

if (type == 1)

{

node_type = 1; // Storing info on a table -> name is a context

sname = ((CSpecTable*) obj)->get_sem_name();

p = sname.Find(s);

sname = sname.Left(p+s.GetLength())+"]";

if (aPos == terms.GetTailPosition())

full_term = true; // Last term - use whole semantic name

}

else

{

sname = ((CSpecField*) obj)->get_sem_name();

p = sname.Find(s);

node_type = 1;

if (p+s.GetLength()==sname.GetLength()) // Use whole name

{

node_type = 2; // Storing a context

full_term = true;

}

else // Deriving context

sname = sname.Left(p+s.GetLength())+"]";

}

APPENDIX D. THE INTEGRATION ALGORITHM 152

// Initialize new node

nd->sname = sname;

nd->key = sname;

nd->type = node_type;

nd->depth = parent->depth+1;

nd->depth_sn = s;

nd->parent.link_type = link_type;

nd->parent.to_node = nd;

nd->parent.from_node = parent;

res_node = nd;

// Initialize display properties for node

nd->data_type = 0;

nd->display_result = 1;

nd->display_width = 10;

nd->format_str = "";

nd->num_decimals = 0;

// Insert node into global list of nodes

nodes.AddTail(nd);

if (full_term)

add_DB_map(nd,obj,type,spec); // Add mapping to DB element

// Construct link type to add to parent

if (parent != NULL)

{

// Assign values to child link

link->from_node = parent;

link->to_node = nd;

link->link_type = link_type;

parent->children.AddTail(link);

if (parent->type == 2 && node_type != 2)

{ // Parent node is a concept, but this node is a context

parent->type = 1; // Promote parent node to a context

}

}

return true;

}

Appendix E

Unity Schema Classes

class CSch_link : public CObject

{ // Schema link class

CSch_node* from_node;

CSch_node* to_node;

int link_type; // 1 = IS-A, 2 = HAS-A

};

class CSch_DBRec : public CObject

{ // Schema database reference - Semantic name to X-Spec mapping

CString db_name;

CString db_loc;

CString sem_name;

CString sys_name;

CString type;

};

class CSch_node : public CObject

{ // Schema node

CString key; // Key for node: same as sname

CString sname; // Full sem. name of term (with contexts)

int depth; // Depth of term from root (root level=1)

CString depth_sn; // Single term at this depth eg.[A,B,C] D

// if depth=2 this would be B

CSch_link parent; // Link to node parent - NULL if none

CTypedPtrList<CObList,CSch_link*> children; // Pointer to children

POSITION aPos,aPos2; // Position indicator for iterator function

int type; // 1 if context, 2 if concept

CTypedPtrList<CObList,CSch_DBRec*> db_maps; // Semantic to system mappings

int data_type; // 0-string,1-int,2-real,3-percent,4-date

int display_width; // Width of field when displayed

CString format_str; // C++ formatting string for date/time

int num_decimals; // Number of decimals to display

int display_result; // 0 - if field is not displayed in result

};

153

APPENDIX E. UNITY SCHEMA CLASSES 154

class CSpecRef : public CObject

{ // X-Spec reference

CString spec_loc; // Location of specification file

CSpecDoc *specdoc; // Pointer to spec in memory

};

class CContext : public CObject

{ // Context class

int type; // Context level: 1 - Table, 2 - Database,

// 3 - Division/Group, 4 - Organization,

// 5 - Regional, 6 - National, 7 - Intl.

CString name; // Name at this context level

bool selected; // True if context is selected for query

int loc; // Temp. var. storing position in list

};

class CSchema : public CObject

{ // Schema (integrated view) class

CTypedPtrList<CObList, CSch_node*> nodes; // List of schema nodes

CTypedPtrList<CObList, CSpecRef*> specs; // List of X-Specs in schema

CTypedPtrList<CObList, CContext*> contexts; // List of schema contexts

CSch_node* root; // Root node of tree

CDocument* SchDoc; // Ptr to document object for this schema

POSITION aPos,aPos2; // Position variable used for iterator

};

Appendix F

Unity Query Classes

class CDT_node : public CObject

{ // CDT_node class (dependency tree node)

CString sname; // Semantic name of node

CSpecField *fld; // Pointer to specification field

CString sys_name; // System name of field

CTypedPtrList<CObList,CDT_node*> children; // Children nodes

CDT_node *parent; // Pointer to parent node

POSITION aPos;

bool use_node; // Set when filtering out duplicates during merge

};

class CDepTree : public CObject

{ // CDepTree class

CTypedPtrList<CObList,CDT_node*> nodes; // List of pointers to nodes

POSITION aPos;

CDT_node *root;

CArray<CString,CString&> lsname; // Semantic name of levels

};

class CDepPath : public CObject

{ // Class to store tree dependency path

CTypedPtrList<CObList,CDT_node*> nodes; // List of pointers to nodes

POSITION aPos;

};

class CResSet : public CObject

{ // CResSet stores all the valid paths (attribute combinations) for a query

CTypedPtrList<CObList,CDepPath*> paths; // List of pointers to paths

POSITION aPos;

};

class CTreeRef: public CObject

{ // CTreeRef - linking class for a dependency tree

CDT_node *node;

CDepTree *tree;

};

155

APPENDIX F. UNITY QUERY CLASSES 156

class CDepNRef : public CObject

{ // Dependence node linking class

CString sname;

CString sys_name;

};

class CQry_link : public CObject

{ // Query Link class

CQry_node* from_node;

CQry_node* to_node;

int link_type; // 1 = IS-A, 2 = HAS-A

};

class CQry_node : public CObject

{ // Query node class

CString key; // Key for node: same as sname for now

CString sname; // Full semantic name of term (with all contexts)

int depth; // Depth of term from root (root level=1)

CString depth_sn; // Single semantic name term at this depth

// eg. [A,B,C] D if depth =2 this would be B

CQry_link parent; // Link to node parent - NULL if none

CTypedPtrList<CObList,CQry_link*> children; // Pointer to children (indexed by key)

POSITION aPos,aPos2; // Position indicators for iterator functions

int type; // 1 if context, 2 if concept

int data_type; // 0-string,1-int,2-real,3-percent,4-date

int display_width; // Width of field when displayed

CString format_str; // C++ formatting string for date/time

int num_decimals; // Number of decimals to display

int display_result; // 0 - if field is not displayed in result

};

class CQConcept : public CObject

{ // The CQConcept class for retrieving concepts (semantic names) from data sources

CString sname; // Semantic name for concept and a key

int field_pos; // Column position of field in result (from 0)

long size; // Size of field in bytes (chars)

char type; // Type of field: X-Fixed char, V-VarChar, I-Integer

// L-Long, F-Float, D-double, B-Boolean, C-Currency

CQry_node* qnode; // Pointer to corresponding query node (if available)

bool mapped; // True if concept has been mapped

bool status; // True if in query, false if marked for deletion

};

class CQry_FRef : public CObject

{ // The CQry_FRef class for referencing fields in a subquery

CSpecField* fld_ptr; // Pointer to specification field

CQConcept* concept_ptr; // Concept that this field is mapped to

int fld_pos; // Position in result list

};

APPENDIX F. UNITY QUERY CLASSES 157

class CQry_TRef : public CObject

{ // The CQry_TRef class for referencing tables in a subquery

CSpecTable* tbl_ptr; // Pointer to specification table

bool req_norm; // True if table requires normalization in subquery

CDepTree *dep_tree;

CResSet *rset;

};

class CSubQConcept : public CObject

{ // The CSubQConcept class for referencing which concepts are in a subquery

CQConcept* concept_ptr; // Pointer to concept in parent query

CTypedPtrList<CObList, CQry_FRef*> fields; // List of field references

POSITION aPos;

};

class CSubQry : public CObject

{ // The CSubQry class for accessing an individual data source

CString key;

CString db_name;

CString db_loc;

CString SQL_st;

CString ODBC_name;

CDatabase db; // Database variable

bool valid_result; // True if query returned valid result

CRecSet *rset; // Recordset

CSpec* spec;

bool has_duplicates; // True if contains duplicates to be normalized

CTypedPtrList<CObList, CQry_FRef*> fields; // List of field references

CTypedPtrList<CObList, CQry_TRef*> tables; // List of table references

CTypedPtrList<CObList, CJoin*> joins; // List of joins used

CTypedPtrList<CObList, CSubQConcept*> concepts; // List of concepts queried

POSITION aPos,aPos2,aPos3, aPos4; // Position variables used for iterators

};

class CQuery : public CObject

{ // The Query class itself

CTypedPtrList<CObList, CQry_node*> nodes; // List of Query nodes

CTypedPtrList<CObList, CSubQry*> subqry; // List of subqueries

CTypedPtrList<CObList, CQConcept*> concept; // List of query concepts

CTypedPtrList<CObList, CContext*> contexts; // List of schema contexts

CSchDoc *schdoc; // Schema on which query is posed

CString sch_loc; // File location of schema

CQry_node* root; // Root node of tree

CDocument* qrydoc; // Pointer to document object for this query

POSITION aPos,aPos2,aPos3; // Position variable used for iterator

CString qry_criteria; // Query criteria (WHERE clause)

CList<CString,CString&> orderby; // Order by list - list of semantic names

bool all_ctx[7]; // True if want all context instances at level

CList<CString,CString&> ctx[7]; // Context instances by type

CResultSet *result_set; // Final result set

};

APPENDIX F. UNITY QUERY CLASSES 158

class CRecSet : public CObject

{ // CRecSet class

CTypedPtrList<CPtrList,void*> recs; // List of pointers to records (buffers)

int num_cols; // Number of columns in recordset

int num_recs; // Number of records in recordset

long rec_size; // Record buffer size

POSITION aPos;

int *CTypeArray; // Array of column types

long *ColLenArray; // Array of column lengths

long *OffsetArray; // Array of column offsets into record buffer

};

// Classes for the entire record set (stores integrated results for all local views)

class CElement : public CObject

{ // Base field instance for one record/column combo from ONE database

void *data_ptr; // Pointer to data

CString data_st; // Data in string format

CSubQry *source_sq; // Source subquery for data

int source_col; // Source column

POSITION source_row; // Source row

int data_type; // Data type

};

class CFVal : public CObject

{ // CFVal class - field value for a given row (integrated view)

CList<CElement, CElement&> values;// All values from all DBs

void *cur_data_ptr; // Current data value pointer

CString cur_data_st; // Current data (string form)

};

class CRow : public CObject

{ // CRow class - stores one data row

CArray<CFVal, CFVal&> fvals; // Array of field values

};

class CResultSet : public CObject

{ // CResultSet class - stores all returned results

CTypedPtrList<CObList, CRow*> rows; // Data rows

CQuery *query_ptr;

POSITION aPos;

int num_cols;

};

Appendix G

The Standard Dictionary

This section displays the main standard dictionary constructed as the product

of many test integrations. The terms are organized hierarchically as the dictionary is a

tree. Terms related to the parent term by an IS-A relationship are connected using a “-”,

whereas terms related using a HAS-A relationship are connected using a “=”. If a definition

is present in the dictionary for a term, it is enclosed in parentheses. Note that a dictionary

term consists of a term name plus a “-” then a definition number. Also, since some of

the terms have been re-arranged in the current dictionary as compared to how they were

inserted for Northwind, the dictionary for the Northwind example is listed separately.

T-0 (Ultimate, root)

- Physical-0 (Physical matter; tangible concepts)

- Entity-0 (Physical objects)

- Physical Object-0

- Aggregate-0

- Configuration-0

- Pile-0

- Heap-0

- Stack-0

- Thing-0

- Inanimate-0

- Mechanical-0

- Structure-0

- Building-0

- Mineral-0

- Book-0 (a collection of sheets of paper bound together)

= Page-0 (Book page)

= Pages-0 (# of pages in book)

- Animate-0

- Animal-0

- Rational-0

159

APPENDIX G. THE STANDARD DICTIONARY 160

- Human-0

- Man-0

- Ramon-0

- Woman-0

- Carri-0

- Irrational-0

- Beast-0

- Plant-0

- Stuff-0

- Material-0

- Solid-0

- Gold-0

- Liquid-0

- Water-0

- Gas-0

- Air-0

- Immaterial-0

- Spirit-0

- Energy-0

- Light-0

- Heat-0

- Fire-0

- Social Object-0

- Group-0

- Team-0

- Family-0

- Institution-0

- Organization-0

- Education-0

- School-0

- University-0

- Health-0

- Hospital-0

- Company-0

- Proprietorship-0

- Partnership-0

- Incorporated-0

- Subsiduary-0

- Parent-0

- Role-0 (Facts of relatedness)

- Physical Object-1

- Material-1

- Commodity-0

- Location-0

- Property-0

- Structure-1

- Building-1

- Terminal-0

- Product-0

- Garment-0

= Quantity per Unit-0 (# of discreet items in a product package)

= Discontinued-0

- Freight-0

- Social Object-1

- Person-0

APPENDIX G. THE STANDARD DICTIONARY 161

- Employee-1

- Attorney-0

- Pilot-0

- Sales person-0

- Author-0

- Supervisor-0 (Employee supervisor)

- Action-0

- Pedestrian-0

- Source-0

- Reference-0

- Social-1

- Mother-0

- Wife-0

- Discretionary-0

- User-0

- Contact-0

- Consumer-0

- Customer-0

- Claimant-0

- Organization-1

- Company-1

- Transportation-0

- Shipper-0

- Consignee-0

- Transmittal-0

- Finance-0

- Bank-0

- Real Estate-0

- Landlord-0

- Commerce-0

- Soldto-0

- Shipto-0

- Supplier-0 (Company who supplies goods)

- Media-0 (Media companies)

- Publisher-0 (Publishing, media company)

- Circumstances-0 (Mediating circumstances that bring entity and role together)

- Physical Object-2

- Transaction-0

- Order-0

- Social Object-2

- Person-1

- Occupation-0

- Aviation-0

- Legal System-0

- Employment-0

- Action-1

- Pedestrianship-0

- Social-0

- Motherhood-0

- Marriage-0

- Discretionary-1

- Relationship-0

- Business-0

- Friendship-0

- Organization-2

APPENDIX G. THE STANDARD DICTIONARY 162

- Reason-0

- Cause-0

- Information-0 (Pure structure that does not depend on the objects it describes or the

recording medium)

- Form-0 (Eternal objects)

- Measure-0

- Size-0

- Length-0

- Area-0

- Volume-0

- Color-0

- Weight-0

- Magnitude-0

- Scales-0

- Numeric-0

- Total-0 (Total (amount, number, etc.))

- Quantity-0

- Locators-0

- Physical Address-0

- Address-0

- Secondary address-0

- Home address-0

- Mailing address-0

- Primary address-0

= Address line 1-0

= Address line 2-0

= City-0

= Region-0 (state or province)

= Country-0

= Postal Code-0

- Virtual Address-0

- E-mail address-0

- Web address-0

- Phone #-0

- Home Phone#-0

- Business Phone#-0

- Fax #-0

- Cell #-0

= Extension-0 (Phone # extension)

- Identifiers-0

- Id-0

- Probill Number-0

- Reference Number-0

- Login id-0

- Login password-0

- SSN-0

- ISBN-0 (ISBN book number)

- Descriptors-0

- Comment-0

- Name-0

- Person-2

= Title-1 (Person’s title (Dr., Mr., Mrs.))

= Last Name-0 (Person’s last name)

= First Name-0 (Person’s first name)

- Organization-3

APPENDIX G. THE STANDARD DICTIONARY 163

- Picture-0 (Picture (visual description))

- Subject-0

- Title-0 (an inscription placed over a thing by which that thing is known)

- Categorizers-0

- Category-0

- Temporal-0

- Time-0

- Date-0

- Proposition-0 (Propositions about facts of relatedness)

- Temporal-1

- Date-1

- Start date-0

- End date-0

- Entered date-0

- Valid date-0

- Invalid date-0

- Filled date-0

- Shipped date-0

- Inspection date-0

- Status date-0

- Update date-0

- Ordered date-0

- Allocated date-0

- Picked date-0

- Birthdate-0

- Required Date-0

- Published Date-0 (Date material was published)

- Time-1

- Best time to call-0

- Legal-0

- Claim-0

- Numeric-1

- Amount-0

- Gross amount-0

- Net amount-0

- Paid amount-0

- Percent-0

- Gross %-0

- Net %-0

- Discount %-0 (Percentage discount)

- Value-0

- Salvage value-0

- Price-0

- Inventory-0

- Available to ship-0

- Available to sell-0

- On Order-0 (Quantity of product on order)

- Reorder Level-0 (Minimum inventory before automatic re-ordering)

- Cost-0

- Territory-0

- Country-1

- Monetary-0

- Currency-0

- CDN dollar-0

- US dollar-0

APPENDIX G. THE STANDARD DICTIONARY 164

- Theory-0 (Multiplicities and contrasts; Mediating relationships)

- Mathematics-0

- Accounting-0

- General Ledger-0

- Account-0

- Transactional-0

- Transaction-1

- Payment-0

- Financial-0

- Credit-0

- Credit Terms-0

- Credit Aging-0

- Tax-0

- GST-0

- Government-0

The dictionary constructed using the Northwind example is as follows:

T-0

- Physical-0

- Entity-0

- Social Object-0

- Company-0

- Role-0

- Discretionary-0

- Customer-0

- Contact-0

- Work-0

- Employee-0

- Supervisor-0

- Product-0

- Freight-0

= Quantity-per-Unit-0

= Discontinued-0

- Company-1

- Transportation Company-0

- Shipper-0

- ShipTo-0

- Supplier-0

- Circumstance-0

- Employment-0

- Commerce-0

- Transaction-0

- Order-0

- Information-0

- Form-0

- Categorizers-0

- Category-0

- Identifiers-0

- Id-0 (identifier)

- Descriptors-0

- Name-0

- Person Name-0

= First Name-0

= Last Name-0

APPENDIX G. THE STANDARD DICTIONARY 165

= Title-1

- Description-0

- Note-0

- Picture-0

- Title-0

- Locators-0

- Physical Address-0

- Address-0

= Address Line 1-0

= City-0

= Region-0 (state or province)

= Postal Code-0

= Country-0

- Virtual Address-0

- Phone #-0

- Fax #-0

- Home Phone #-0

= Extension-0

- Web Address-0

- Temporal-0

- Date-0

- Numeric-0

- Quantity-0

- Total-0

- Proposition-0

- Temporal-1

- Date-1

- Birthdate-0

- Required Date-0

- Shipped Date-0

- Monetary-0

- Price-0

= Discount %-0

- Cost-0

- Amount-0

- Inventory-0

= On-Order-0

= Re-Order Level-0

- Theory-0

