
TEFS: A Flash File System for Use on Memory
Constrained Devices

Wade Penson
Department of Computer Science
University of British Columbia

wpenson@alumni.ubc.ca

Scott Fazackerley
Department of Computer Science
University of British Columbia

scott.fazackerley@alumni.ubc.ca

Ramon Lawrence
Department of Computer Science
University of British Columbia

ramon.lawrence@ubc.ca

Abstract—A file system is used to manage data on storage
media. The FAT (File Allocation Table) file system was originally
designed for floppy drives that were less than 500KB in size,
and these drives were not capable of fast random reads and
writes. FAT has been adapted to work on other types of storage
devices since, and it is still widely used today. It is the standard
file system used by microprocessors and embedded devices with
constrained resources. Micro-controllers, like the Arduino, only
officially support the FAT file system when interacting with
a SD card. FAT performs well when data is read or written
sequentially, but when data is read or written randomly, there
is an impact on performance for large files on page based
flash devices that cannot utilize caching strategies. Applications
that perform random reading and writing are impacted by this
architectural issue. For example, flash data structures, like a B-
tree, will have poor performance since random reading is utilized
to look up values. TEFS (Tiny Embedded File System) uses
a simplified tree indexing structure to take advantage of the
fast random reads and writes of flash storage and guarantees
that the number of page reads and writes will stay constant
as the file size increases when randomly reading or writing.
Experimental results show that TEFS has significantly better
performance than FAT on the Arduino for random I/Os, and the
more efficient TEFS page interface is even slightly faster than
FAT for sequential reading and writing.

I. INTRODUCTION

Embedded devices typically utilize flash based storage for
persistent data [1]. File systems are used on storage to organize
the data such that the files have associated metadata and are
indexed by a name. Devices, like micro-controllers, that have
constrained program storage and constrained RAM need this
file system to utilize the least amount of resources as possible.

NAND flash devices such as SD, MMC, USB flash drive,
and CompactFlash have a page-emulation layer (a page is
the smallest physical unit of addressable memory). The next
layer above that is a Flash Translation Layer (FTL) that
provides an interface which allows logical pages to be read
from and written to, hides bad erase units, and performs wear-
leveling [2]. These flash storage devices are also known as
Memory Technology Devices (MTD), and in this paper, only
this type of storage device will be considered [3]. File systems
such as Ext2 [4] and FAT [5] are designed to work on these
devices. NAND flash devices that do not have a FTL and
have their erase clusters exposed utilize file systems such as
JFFS [6], YAFFS [7], NANDFS [2], and Coffee [8]. However,
these log-structured file systems are too resource intensive,

and the code and structure is too complex for use on memory
constrained embedded devices [9]. Coffee is an exception to
this, but it assumes that files are fixed in size. Coffee allows
for files to expand beyond the fixed size, but the whole file
must be copied to a different location [8].

This work presents TEFS, a Tiny Embedded File System,
that offers better performance, a smaller code footprint, and
less RAM utilization compared to the industry standard file
systems that exist for micro-controllers with constrained re-
sources. The standard file system used for these devices is
FAT [10] [11] or a derivative of FAT. TEFS provides faster
random reads and writes compared to the FAT file system for
large files on memory constrained devices.

TEFS offers two APIs. The first is a page interface, and
the second is a C file interface. The page interface has better
performance since it does not need to map the specified byte
location in the file to the corresponding logical page and byte
within that logical page on the device. The C file interface
is convenient for applications that are already adapted to use
this interface as the C file interface is included in a standard
library within the C language.

The paper organization is as follows. In Section II, different
types of flash memory and the FAT file system are introduced.
Section III covers the design of TEFS, its functionality, and
the properties that distinguish it from FAT. Section IV presents
experimental results, and Section V is a discussion of the trade-
offs of TEFS and FAT. The paper closes with future work and
conclusions.

II. BACKGROUND

Without a file system on the flash device, data is written
to addressable logical or physical pages on the device. For
specific applications, this may be all that is needed. It is the
fastest way to read and write data as it does not have the
overhead of the data structures to manage files. This may be
sufficient for fixed size records. Otherwise, in most cases, a
file system is needed.

There are various structures for different parts of a file
system. There needs to be a way to store metadata about a
file, and in UNIX terminology this is typically done with a
structure called an inode or index node [12]. Another part is
the directory, and it is usually a list of file names and inode
address pairs. The simplest inodes have direct pointers where

2016 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE)

978-1-4673-8721-7/16/$31.00 ©2016 IEEE

each pointer points to a data cluster (a cluster is a sequence
of a fixed number of pages). However, this limits the max
file size significantly so a structure like indirect pointers or
linked list is used instead to allow for larger files. FAT takes
the linked list approach whereas TEFS uses indirect pointers.

FAT12, the initial FAT file system, was designed for floppy
drives that were less than 500KB in size [5]. It was later
extended by FAT16 and FAT32 to support larger storage
devices. The FAT file system is made up of a boot record,
the File Allocation Table (FAT), the root directory, and data
clusters. The boot record contains information that pertains to
the file system, the storage device, and the partitions. The root
directory is a fixed size for FAT12 and FAT16, but for FAT32 it
allows for chained clusters. A directory entry for a file in FAT
stores the metadata for the file and has a pointer to the first
address for the file’s cluster chain in the File Allocation Table.
The File Allocation Table is a single array of addresses shared
by all files, and the size of an address is 12, 16, or 32 bits
depending on the version of FAT file system. The FAT is fixed
in size and depends on the size of the device. Each address in
the FAT points to another address in the FAT to form a linked
list (or cluster chain). The location of where the address is
in the FAT determines the location of the corresponding data
cluster on disk. The last address in the cluster chain for a file
is set to a large value to indicate that it is the last data cluster
in the file. If an address is 0, the data cluster is free and can
be reserved by a file.

Figure 1 shows a file represented by the FAT file system.
Ellipses indicates that there is a series of pointers, clusters, or
reserved space on disk and arrows are pointers to clusters on
disk or a pointer to a location in the FAT. The directory entry
for the 500MB file points to the first address in the chain. The
first address points to the second address in the chain and so
on until the last address of the cluster chain. The position of
an address in the chain correlates to the position of the data
cluster. For example, the first address in the cluster chain for
the 500MB just happens to be the first address in the FAT so
it correlates to the first data cluster. Since the FAT is shared
by all of the files, the addresses for a file’s cluster chain in
the FAT may not be adjacent to one another depending on the
write pattern of data for the files. This may require more page
reads in the FAT to reach the target data cluster in a file.

NAND flash devices are page addressable and not byte
addressable [13]. This requires that a complete page be read or
written even if only a single byte is to be read from or written
to that page. The implication of this is that if data in an existing

Fig. 1. Representation of a 500MB File by the FAT32 File System

Fig. 2. Representation of a 500MB File by TEFS

page is to be modified, the complete page must be read into
memory followed by the complete page being written back to
the device. There are NOR flash devices that are capable of
byte reads and writes [13], which may be utilized to reduce
page buffering in memory. This allows for faster reading and
writing and smaller RAM utilization.

Computers typically have a significant amount of Random
Access Memory (RAM). Depending on the amount of RAM,
file cluster chains, directory entries, or the whole FAT and
directory could be cached [5]. However, a subset of embed-
ded devices and micro-controllers have a limited amount of
RAM [13] and are not capable of caching the complete index
for a file in memory. TEFS was designed to perform well on
these such devices.

III. STRUCTURE AND OPERATION OF TEFS

TEFS provides an interface for opening, closing, and re-
moving a file; reading and writing records to and from pages;
and formatting the storage device. The layout of TEFS consists
of four essential parts. The first part of the file system is the
information section. It is located at logical page 0 and contains
information about the storage device and other information
provided by the user when formatting. The second section
is the cluster state section. It is a bit vector where each bit
indicates the status of a cluster on the storage device. A bit of
value 1 indicates that a cluster is free and a bit of 0 indicates
that a cluster is in use. The location of a bit correlates to the
location of a cluster on the device. The size of this bit vector is
determined by the number of data clusters that the device has.
The third section is the directory for the files. TEFS currently
only supports a single root directory with a static size that is
specified during formatting. Each file has a directory entry that
contains information about the file including the file name, the
size of the file, and the pointer to the root index cluster for
the file. The file name is consistent with the 8.3 convention;
the name is 8 characters and the extension is 3 characters.
The last part of the file system is the tree index structure
for each file. It consists of a single root index cluster, child
index clusters, and data clusters (Figure 2). The root contains a
sequence of addresses that either point directly to data clusters
(for smaller files) or child index clusters that point to data
clusters. Addresses can either be 2 or 4 bytes. If the storage
device has less than 216 pages, the size of an address is 2
bytes, otherwise the size of an address is 4 bytes.

A. Open, Close, and Remove Operations

When opening a file, the directory is scanned for the file. If
the file is found, the existing metadata will be read from the
directory entry. If the file is not found, it will be created. In this
process, a cluster for the root index is reserved. A directory
entry is also created.

B. Read and Write Operations

On creation, a file only requires a root index cluster. As
data is appended to the file, new data clusters are reserved
and their addresses are added to the root index cluster. When
the root index cluster is filled up, it becomes the first child
index cluster and a new root is created. As new child index
clusters are needed, a new cluster is reserved and its address
is added to the root index cluster. The clusters do not need to
be pre-erased when being reserved.

When reading or writing to a file, the data cluster address is
found either in the root index cluster or a child index cluster.
In either case, the correct entry is calculated directly based
on the file offset location. TEFS will detect if the page being
read or written is the same as the previous read/write request.
Page data is inserted into a page buffer in memory and is not
flushed until a different page is read, the file is closed, or a
flush forced.

The file size is tracked in the file’s directory entry. The max
file size is limited by

c3

a2
(1)

bytes where c is the cluster size in bytes and a is the address
size in bytes.
Using equation 1, a device that has a page size of 512 bytes,
4 byte addresses, and a cluster size of 32KiB has a max file
size of 2TiB.

C. File Allocation Table Versus TEFS Index Structure

For random reads and writes, the FAT file system requires
traversing a linked list of data cluster addresses to find the
cluster for a specified location in a file. In the case where the
addresses of a cluster chain are in sequential order, the number
of page reads is ⌈

n

(pa)c

⌉
(2)

where n is the location, in bytes, to read or write to in a
file, and p is the page size in bytes. The worst case is when
there are multiple files and fragmentation occurs in a way that
causes each cluster address for a file to be on a different page
in the FAT. In this case, the number of page reads is⌈n

c

⌉
(3)

when the FAT is not cached in memory.
Suppose there is a 10MB file stored on a device with the

FAT file system, the device does not cache the FAT, the size
of a cluster is 32768 bytes, the size of a page is 512 bytes,

the address size is 4 bytes, and the file location pointer is at
the beginning of the file. If the last byte is to be read from the
file, the best case is 3 page reads and the worst case is 306
page reads.

TEFS will always guarantee at most 2 index page reads for
a read or a write to any location in a file because a page in
the root index may be read and then a page in the child index
may read (if there are any child indexes) before finding the
data cluster. In Figure 1, the cluster chain requires at least 120
page reads to traverse to the end of the file, but in Figure 2
only 2 page reads are needed. The number of page reads for
FAT will increase as a file grows in size.

TEFS has been adapted to work on NOR Serial Dataflash
[14] that can read bytes directly. This allows for faster travers-
ing of the indexes for both FAT and TEFS. The number of byte
reads required for FAT will be⌈n

c
a
⌉

(4)

to find the address for the data cluster. As for TEFS, it will
be at most 2a byte reads.

IV. EXPERIMENTAL RESULTS

Experiments were done on an Arduino Uno [15] with a
16GB UHS I Sandisk Micro SD card. The Arduino Uno is
an 8-bit micro-controller with 2KB of RAM and 32KB of
code storage. The comparison was done between the TEFS
page interface, the TEFS C file interface, and two popular
FAT libraries - the Arduino SdFat library [16] and FatFs [17].
The page size for the card was 512 bytes, and the cluster sizes
were set to 64 pages (32KiB). The results were an average of
5 runs.

A. Number of Page Reads and Writes

The first set of tests measured the number of page reads and
writes to the storage device. The TEFS C file interface calls
the underlying TEFS page interface; therefore, the number of
reads and writes are the same for these two interfaces.

Table I shows the number of page reads and writes when
1000 pages of data were written out to a file at different record
sizes. The results were different for 1 to 511 byte records and
512 byte records because when the record size was 512 bytes,
the pages did not have to be buffered first since the record size
was the same as the size of a page. TEFS required more page
reads and writes, as shown in Table I, for sequential writing
since it maintains the cluster state bit vector.

Table II shows the number of page reads required when
sequentially reading 1000 pages of data. There were 16 page
reads required to get the addresses for the data clusters for
Arduino SdFat since there were 16 data clusters. This is similar
for TEFS and FatFs, but they cache the first data cluster
address on file open so TEFS would have 17 (due to the root
index cluster) and FatFs would have 16. Only 1 byte records
were used as Arduino SdFat only supports single byte reads
at a time.

Table III demonstrates having a staggered cluster chain such
that each address in the cluster chain is on a different page in

TABLE I
SEQUENTIALLY WRITE 1000 PAGES: 1 TO 511 BYTE RECORDS ON THE

LEFT AND 512 BYTE RECORDS ON THE RIGHT

File
System

Page
Reads

Page
Writes

TEFS 31 1030
Arduino
SdFat

17 1017

FatFs 17 1019

File
System

Page
Reads

Page
Writes

TEFS 31 1030
Arduino
SdFat

2 1003

FatFs 2 1005

TABLE II
SEQUENTIALLY READ 1000 PAGES

File System Page Reads
TEFS 1015
Arduino
SdFat

1016

FatFs 1015

TABLE III
RANDOMLY READ 1000 BYTES

FROM 10MB FILE WITH
STAGGERED CLUSTER CHAIN

File System Page Reads
TEFS 1999
Arduino
SdFat

96069

FatFs 96069

TABLE IV
FILE OPERATIONS

Page
Reads

Page
Writes

File
System

Open Create Close Open Create Close

TEFS 3 9 5 0 7 4
Arduino
SdFat

0 0 0 0 1 1

FatFs 0 0 0 0 1 1

the FAT for a file 10MB in size. When traversing the cluster
chain, a page is read for each data cluster address.

Figure 3 demonstrates the architectural issue of FAT when
files grow in size. Once a file gets larger than 1MB, many
page reads are needed to traverse to the correct data cluster
in the file. TEFS levels off at 1 page read for the file sizes
shown.

When opening, creating, and closing a file, TEFS reads and
writes more pages than FAT. This is due to the root index
cluster that has to be created and traversed. The results can be
seen in Table IV.

Fig. 3. Read 1000 Bytes at Random Locations

TABLE V
SEQUENTIALLY READ 1000 PAGES OF DATA WITH A RECORD SIZE OF 1

BYTE

File System Time (ms)
TEFS 13118
TEFS C file interface 17918
Arduino SdFat 19110
FatFs 18672

TABLE VI
LIBRARY SIZES IN BYTES

File System Text Size Dynamic
Memory

Memory
per File

TEFS 9884 559 28
TEFS C file interface 14259 559 35
Arduino SdFat 14752 608 27
FatFs 14879 584 36

B. Time Benchmarks

The TEFS implementation is optimized to use bit shifts and
bit masks instead of modulo and division operations. It also
reduces the number of function calls as much as possible.
This makes TEFS more CPU efficient which is important on
embedded devices. Figure 4 and Table V show that sequential
read and write times for TEFS are 10 to 20% faster than
FAT implementations even though the page reads and writes
were slightly more for TEFS. Figure 4 shows that FatFs takes
more time to write records that are larger in size compared
to Arduino SdFat. It also shows TEFS takes less time, for
all record sizes, when writing as compared to Arduino SdFat.
Figure 5 shows the times for reading bytes at random locations.

C. Library Sizes

The library sizes and memory usage of the file systems
include the size of the file system and the code to communicate
with the SD card. The text size for TEFS is marginally less
than the FAT implementations (Table VI), and it uses less
RAM.

Fig. 4. Sequentially Write 1000 Pages With Varying Record Sizes

Fig. 5. Read 1000 Bytes at Random Locations

V. ANALYSIS OF TRADE-OFFS

The architectural advantage of TEFS over FAT is represent-
ing the index structure as a tree rather than a linked list of
entries. Using a tree guarantees a small constant number of
index page reads to find data in the file. This consistency is
very important for embedded devices. From an implementation
perspective, TEFS is optimized to minimize CPU usage, so
even though it has a slight increase in page I/Os for sequential
reads/writes, its time performance is better.

There are a few trade-offs for using TEFS compared to
FAT. TEFS has a larger index overhead for each file. For
small files, the root index cluster (32 KiB) will be relatively
empty. In comparison, this file would be represented by a
single address entry in FAT. If there are a large number of
small files, more space is used by TEFS than FAT. With TEFS,
there is an overhead to manage the index clusters leading to
more reads and write when creating, opening, and removing
files. However, seeking to the end of a large file with TEFS
only takes at most 2 page reads as compared to FAT where it
must seek the linked list to get the end of the file. In the case
when opening existing files in append mode, it takes more page
reads to do this for FAT. Otherwise, if an application creates,
opens, and closes files frequently, this is to be considered when
choosing to use TEFS.

Finally, due to FAT being ubiquitous, it is supported in the
Microsoft Windows, Mac OS X, and Linux operating systems.
TEFS currently does not support these platforms.

VI. CONCLUSION

TEFS demonstrates that file systems with a linked list index
structure, such as FAT, for micro-controllers with constrained
resources are not efficient when randomly reading or writing to
large files. TEFS implementation is optimized for these types
of devices to reduce the number of CPU cycles as this affects
the time to read and write. It is a small, efficient file system that
is faster than popular FAT library implementations designed
for embedded devices and significantly better when randomly
reading or writing in larger files.

Further improvements can be made to TEFS to include ad-
ditional features. Future work would be to create an improved

directory and support long file names in a manner that would
produce the smallest code footprint in an efficient way for
embedded devices. Also supporting reading and writing to
the storage device on common operating systems would be
beneficial for the user so that they can read the data from the
storage device directly. We are planning to use TEFS as the
underlying file system for the LittleD relational database [18]
and IonDB key-value store [19] for embedded systems.

ACKNOWLEDGMENT

The authors thank NSERC for supporting this research.

REFERENCES

[1] Micron Technology Inc., “NAND Flash 101: An Introduction to NAND
Flash and How to Design It In to Your Next Product,” Micron Technol-
ogy Inc., Tech. Rep., 2006.

[2] A. Zuck, O. Barzilay, and S. Toledo, “NANDFS: A Flexible Flash File
System for RAM-constrained Systems,” in Proceedings of the Seventh
ACM International Conference on Embedded Software, ser. EMSOFT
’09. New York, NY, USA: ACM, 2009, pp. 285–294.

[3] MultiMedia LLC. Using the Memory Technology Device (MTD).
[Online]. Available: http://www.stlinux.com/howto/Flash/MTD

[4] R. Card, T. Ts’o, and S. Tweedie. (2015, nov) Design and
Implementation of the Second Extended Filesystem. [Online]. Available:
http://e2fsprogs.sourceforge.net/ext2intro.html

[5] Microsoft Corporation, “Microsoft EFI FAT32 File System Specifica-
tion,” Whitepaper, dec 2000, retrieved from https://msdn.microsoft.com/
en-us/windows/hardware/gg463080.aspx October 2015.

[6] D. Woodhouse, “The Journalling Flash File System,” in Proceeding of
Ottawa Linux Symposium, vol. 200, no. 1, 2001.

[7] S.-H. Lim and K.-H. Park, “An efficient NAND flash file system for flash
memory storage,” IEEE Transactions on Computers, vol. 55, no. 7, pp.
906–912, July 2006.

[8] N. Tsiftes, A. Dunkels, Z. He, and T. Voigt, “Enabling large-scale storage
in sensor networks with the coffee file system,” in Proceedings of the
2009 International Conference on Information Processing in Sensor
Networks. IEEE Computer Society, 2009, pp. 349–360.

[9] H. Dai, M. Neufeld, and R. Han, “ELF: An Efficient Log-structured
Flash File System for Micro Sensor Nodes,” in Proceedings of the
2nd International Conference on Embedded Networked Sensor Systems,
ser. SenSys ’04. ACM, 2004, pp. 176–187. [Online]. Available:
http://doi.acm.org.ezproxy.library.ubc.ca/10.1145/1031495.1031516

[10] Technical Committee: SD Card Association, “SD Specifications Part 1:
Physical Layer Simplified Specification,” SD Group, Tech. Rep. 4.10,
2013.

[11] K. Munegowda, G. Raju, and V. M. Raju, “Directory Compaction
Techniques for Space Optimizations in ExFAT and FAT File Systems
for Embedded Storage Devices,” 2014.

[12] R. H. Arpaci-Dusseau and A. C. Arpaci-Dusseau, Operating Systems:
Three Easy Pieces, 0th ed. Arpaci-Dusseau Books, May 2015.

[13] S. Fazackerley and R. Lawrence, “A flash resident file system for
embedded sensor networks,” in IEEE 24th Canadian Conference on
Electrical and Computer Engineering, May 2011, pp. 1400–1405.

[14] Adesto Technologies. (2015, dec) DataFlash. [Online]. Available:
{http://www.adestotech.com/products/data-flash/}

[15] Arduino. Arduino UNO & Genuino UNO. [Online]. Available:
{https://www.arduino.cc/en/Main/ArduinoBoardUno}

[16] W. Greiman and SparkFun Electronics. SD Library for Arduino.
[Online]. Available: https://github.com/arduino/Arduino/tree/master/
libraries/SD

[17] ChaN, “FatFs - Generic FAT File System Module,” 2011.
[18] G. Douglas and R. Lawrence, “LittleD: a SQL database for sensor nodes

and embedded applications,” in Symposium on Applied Computing,
2014, pp. 827–832. [Online]. Available: http://doi.acm.org/10.1145/
2554850.2554891

[19] S. Fazackerley, E. Huang, G. Douglas, R. Kudlac, and R. Lawrence,
“Key-value store implementations for Arduino microcontrollers,”
in IEEE 28th Canadian Conference on Electrical and Computer
Engineering, 2015, pp. 158–164. [Online]. Available: http://dx.doi.org/
10.1109/CCECE.2015.7129178

