
Faster Querying for Database Integration and
Virtualization with Distributed Semi-Joins

Ramon Lawrence
University of British Columbia

Kelowna, BC, Canada
ramon.lawrence@ubc.ca

Abstract—Data integration and virtualization is commonly
used to combine data for data analytics and reporting. A major
challenge is handling large data sizes (“Big Data”) as moving
data across a network is extremely expensive and limits query
processing. Business intelligence and data visualization software
require rapid response times for users, and data virtualization
is often limited for use cases involving joins across systems. The
contribution of this work is a semi-join based approach to data
virtualization joins that minimizes data movement and utilizes
the extensive resources available in the database systems rather
than performing query processing in the virtualization engine.
The result is significantly less data movement which translates
into faster query times and higher performance. Experimental
results demonstrate that performance can be increased by an
order of magnitude. A unique feature of the approach is that it
does not require any special software installed above the database
servers such as mediators and works directly using SQL queries.

Keywords: semi-join, integration, distributed, virtualization,
SQL query, analytics, Big Data

I. INTRODUCTION

Organizations have data distributed across many different
data sources and frequently require data integration to combine
data for reporting and planning. With the increasing popularity
of do-it-yourself and just-in-time data analytics, it is often a
challenge to get data in a suitable state for analysis. This
is further compounded by large data volumes and diversity
(“Big Data”). Data integration and virtualization allows several
heterogeneous and diverse data sources to appear as one data
source. Many data analysis tools, for example Tableau, support
on-demand data virtualization by allowing users to write
reports and queries that combine data from numerous sources
yet display it in an integrated fashion. These tools are limited
when the data volumes increase, especially when performing
joins across sources, where the data must be extracted from
the source and processed in the reporting engine.

This work adapts the semi-join operator for use in on-
demand data virtualization scenarios. Semi-join [1] performs
the join of two relations while preserving only the attributes
of the first relation. It is useful when applied as a semi-
join reducer to reduce the size of intermediate join results
and data sent over the network. Semi-join was primarily
applied in distributed databases [2] where the servers are
coordinating together for query processing. For on-demand
data virtualization, the servers are heterogeneous (e.g. MySQL
and Microsoft SQL Server) with no collaboration. Access is

via SQL commands that are coordinated by the virtualization
server. The contribution of this work is an implementation and
experimental evaluation of an SQL-based, semi-join for data
virtualization. Experimental results demonstrate that utilizing
the semi-join algorithm can improve query performance by an
order of magnitude while at the same time reducing the load
on the virtualization system by executing more of the query
plan on the underlying data sources.

The organization of this paper is as follows. Section 2
contains background on semi-join and the requirements for
on-demand data virtualization scenarios. Section 3 describes
the semi-join algorithm and its variants. Experimental results
are in Section 4, and the paper closes with future work and
conclusions.

II. BACKGROUND

Semi-join [1], [2] has been used for computing joins in
distributed databases. A semi-join R n S returns the tuples
of R that match with S on the join condition. It is useful
in distributed join processing as it may reduce the amount of
data sent over the network. To compute Rn S, the join keys
of S are sent to the site with R for processing. This avoids
communicating the entire relation R to perform the join. There
has been research on query plans that can be improved with
semi-joins and semi-join reductions [1], [2], and semi-joins
were implemented in distributed database systems.

Semi-joins were expanded to 2-way semi-joins [3] to im-
prove the reduction. Rather than sending the list of join keys,
a compressed version can be used such as Bloom filters [4].
This reduces the amount of information transferred between
the two sites with the addition of some local processing cost.
Instead of a Bloom filter, PERF join [5] uses an ordered bitmap
based on the order of the tuples in the relation to transmit join
key information. This prevents collisions and is more efficient
than using hashing but requires the tuples to be scanned in the
same order.

Distributed querying consists of three phases [6]:

• local processing phase - performs selections, projections,
and local joins on a source

• reduction phase - executes a series of semi-join reducers
to reduce the size of the relations

• final processing phase - where all relations are sent to a
processing site to combine to produce the query result



The use of semi-joins and semi-join reducers has reemerged
with large-scaled distributed and cloud databases. There has
been work on modifying the query optimizer to support
semi-joins [7], and using semi-join reduction techniques for
distributed and mediator systems [8] and large-scale parallel
systems [9], [10]. In [10], track join is proposed that extends
semi-join by generating an optimal transfer schedule for each
join key. Further related work is the joining of data between a
data warehouse and a distributed file system such as Hadoop
[11]. In all cases, the goal of the optimization is to minimize
data movement and process data where it resides.

This work applies semi-joins to on-demand, data virtual-
ization scenarios required by ad hoc reporting and analysis
tools. As described in [12], operational Business Intelligence
(BI) allows the construction of dynamic reporting with low
total cost of ownership by querying over a set of distributed
and heterogeneous sources. Data transfer is the dominant cost
in querying, and optimizers develop query plans to minimize
data transfer. In many practical applications, the number of
data sources can be quite large (greater than 5) for enterprise
information integration queries. [12] provides details on mod-
ifying the query optimizer to use semi-join reduction using
bind join operators [13]. A bind join performs a semi-join by
executing as many parameterized queries on the source as there
are distinct join key values. Bind joins do not scale if there
are a large number of join key values as each value requires
a separate query to be executed on the database.

A challenge with implementing a semi-join in a data virtual-
ization architecture is that typically sources are heterogeneous
and accessed via SQL using standardized interfaces such as
ODBC/JDBC. Thus, any implementation of semi-join reduc-
tion must be executable without modifying the database system
and achievable using SQL. This is a substantial difference from
prior work on semi-joins implemented within a distributed
database [2] or a large-scale parallel system using MapReduce
[9]. There has been no prior work on implementing semi-joins
by modifying SQL queries with the closest related work being
bind joins.

III. SQL-BASED SEMI-JOIN ALGORITHM

The SQL-based semi-join algorithm performs the typical
steps of the semi-join algorithm. The description assumes two
distinct, distributed SQL data sources, db1 and db2, capable
of performing SQL queries. Assume db1 contains the smaller
data set being joined. There is also a virtualization server
responsible for coordinating query processing and final result
production for the user. The semi-join steps are as follows:

• The virtualization server issues SQL query to db1 to
extract data for the join.

• The virtualization server receives data extracted from db1
and sends data to db2.

• db2 processes the join and returns the result to the
virtualization server.

Without performing a semi-join, the virtualization server
would request data sets from both sources and perform the
join itself. This is often not feasible if the data sets processed

are large due to both cost of network transmission and local
join processing cost. This variant of semi-join does not have
db1 perform any query processing except for filters and local
joins. The goal is to have the source with the larger data set
perform all join processing and any further aggregation.

There are three variants of this SQL semi-join:
1) Result requires no attributes from db1 (small-side) -

Semi-join is implemented by modifying the db2 SQL
query to use an SQL IN clause which contains the join
keys extracted from db1.

2) Result requires no attributes from db1 but has an outer
join - Semi-join is implemented by modifying db2 SQL
query to use a temporary table.

3) Result requires attributes from db1 - Semi-join is imple-
mented by modifying db2 SQL query to use a temporary
table or by performing final join processing on the
virtualization server.

The following examples use the TPC-H schema. Consider
this SQL query that illustrates case 1:

SELECT c_name,c_nationkey FROM db1.Nation
INNER JOIN db2.Customer
ON c_nationkey=n_nationkey

WHERE n_name < ’GERMANY’

The source with the smaller relation, Nation, has no
attributes in the final result. This query is executed by first
extracting the data set from db1 using SQL:

SELECT n_nationkey FROM db1.Nation
WHERE n_name < ’GERMANY’

Then modifying the SQL query sent to db2 to be:

SELECT c_name, c_nationkey
FROM db2.Customer WHERE c_nationkey
IN (0, 1, 2, 3, 4, 5, 6, 18)

The join is processed by db2. This approach is especially
beneficial when the data set from db1 is small or when there
is aggregation, in which case db2 can perform the join and
aggregation, resulting in significantly less data transfer.

Since the join keys from db1 are sent to db2 via an SQL
command, there are limits to the size of data in db1 that
can be processed this way. These limits are bounded by the
db2 command size. For example, the command size default
for MySQL is 4 MB, but that can be increased to 1 GB.1

Other databases have similar limits. PostgreSQL is 1 GB, and
Microsoft SQL Server is 256 MB.2 Depending on the join key
size, this would allow in the order of tens of millions of rows
from db1 to be sent to db2.

For cases involving outer joins, attributes required in the
output from the small-side source, or larger data sets from the
small-side source, other processing techniques can be used.

1https://dev.mysql.com/doc/refman/5.7/en/server-system-
variables.html#sysvar max allowed packet

2https://docs.microsoft.com/en-us/sql/sql-server/maximum-capacity-
specifications-for-sql-server



If the query requires an attribute from the small-side source,
the virtualization server can perform final join processing.
Example query:

SELECT c_name, c_nationkey, n_name
FROM db1.Nation INNER JOIN db2.Customer
ON c_nationkey=n_nationkey

WHERE n_name < ’GERMANY’

In this case, n_name would also be retrieved from db1 and
stored in the virtualization server. The SQL sent to db2 is
unchanged. To produce the final result set, the virtualization
server joins each result row from db2 on n_nationkey to
add n_name to each result row. This technique works okay
for smaller db1 data sets but is not ideal if aggregation is
performed after the join as then the aggregation may need to be
applied at the virtualization server as well. Another approach is
to use temporary tables. For data sets that are under the SQL
command size limit, the temporary table can be introduced
directly in the SQL statement. SQL query sent to db2:

SELECT c_name, c_nationkey, n_name
FROM customer, (SELECT
0 as n_nationkey, ’ALGERIA’ as n_name
UNION ALL SELECT 1, ’ARGENTINA’
UNION ALL SELECT 2, ’BRAZIL’
UNION ALL SELECT 3, ’CANADA’
UNION ALL SELECT 4, ’EGYPT’
UNION ALL SELECT 5, ’ETHIOPIA’
UNION ALL SELECT 6, ’FRANCE’
UNION ALL SELECT 18, ’CHINA’) N

Every database supports UNION ALL syntax, and many
have support for multiple rows using the VALUES() clause,
which allows for more space efficient encoding of the data
in the SQL query. For larger data sets, a temporary table is
created and insert statements are used to populate the data
in db2 before the query is executed. There are limitations to
this approach in many virtualization scenarios as the user may
only have read access to the database, and creating temporary
tables and inserting rows requires a fair amount of time. When
possible, performance is improved by using a single SQL
statement.

A. Analysis

The performance analysis of the SQL-based semi-join is
similar to other semi-join algorithms. Let the relation produced
by the SQL query on db1 be R and on db2 be S. Let the
size of a relation R in bytes be denoted by ||R||, and the
number of tuples in R be denoted by |R|. The selectivity of
the join is σ, which ranges from 0 (no tuples returned) to 1
(all tuples returned). The data transmission overhead of the
semi-join is 2 ∗ ||R|| as R must be first transferred from db1
to the virtualization server then encoded in the SQL query
sent to db2. The data transmitted is 2 ∗ ||R|| + σ||S||, which
compares to ||R||+ ||S|| for the regular join performed by the
virtualization server. Even ignoring the significant local pro-
cessing cost (CPU/memory) of executing at the virtualization

server, the semi-join will be beneficial if the join is selective
(i.e. σ is closer to 0).

For the second case, where attributes of R are required in
the output, the data transmission is 2∗ ||R||+σ ∗ (||R|| ∗ |S|+
||S||∗|R|). There is still a potential benefit, but now the benefit
may be reduced by transmitting attributes of R repetitively
for each output row. Consider the previous example where
n_name is a required field in the output. The overhead of
transmitting n_nationkey, n_name to db2 for the join
is small compared to the substantial cost of db2 returning
n_name for each output row. In these cases, the optimizer
must calculate the expected row sizes and may determine that
it is better to perform the join on the virtualization server
depending on the relative amount of semi-join reduction (σ)
versus bytes added to each row transmitted.

The most significant benefit occurs when the semi-join is
followed by other joins or aggregations in the query plan that
can now be executed on db2. In this case, the output size
is a function of the number of distinct grouping values and
the size of each group row. As many analytical queries apply
aggregation, using semi-joins may result in a data reduction
of ten times or more.

B. Implementation

The semi-join algorithm is implemented in a Java-based
virtualization system [14], [15]. The virtualization system
contains a complete relational query engine and is capable of
extracting data from any data source using JDBC. The virtu-
alization system was modified to perform a post-optimization
step on its query plan to detect potentially beneficial semi-
join reductions and replaces joins planned for execution in the
virtualization system with the semi-join. The system allows the
user to explicitly request semi-join execution by extending the
SQL outer join syntax with the key word SEMI JOIN:

FROM db1.Customer SEMI JOIN db2.Nation
ON c_nationkey=n_nationkey

The optimizer uses the analytical cost functions and esti-
mates selectivity and result sizes to determine when semi-join
is beneficial. Multiple semi-joins may be used in a query plan.

IV. EXPERIMENTAL RESULTS

Experiments were conducted with a TPC-H 10GB database3

on two open source databases MySQL/MariaDB 5.5 and
PostgreSQL 9.2. The database server machine was a dual-
processor Intel Xeon E5620@2.4 GHz with 96 GB memory
running RedHat Enterprise 7.4. The virtualization and report-
ing server was an Intel i7@2.8GHz with 16 GB RAM running
Windows 7. The database server and virtualization server are
connected via a high-speed local area network. All tests are
the average of 5 runs.

The first experiment evaluates the most important use case
that joins a smaller data set with a larger one. This happens fre-
quently in reporting environments when a business has a large

3http://www.tpc.org/tpch/



data warehouse and BI users want to query it with additional
information coming from smaller sources such as Microsoft
Excel/Access and smaller databases in MySQL/PostgreSQL.
Without semi-joins, the virtualization server may need to
extract a significant amount of data from the warehouse and
perform costly aggregation. The test query used is:

SELECT C.* FROM db1.Nation
INNER JOIN db2.Customer

ON c_nationkey=n_nationkey
WHERE n_name < ?

The parameter value is varied such that the number of
nations returned ranges from 0 to 25 representing a selectivity
of 0 to 1 in steps of 0.04. The results are in Figure 1, and
almost perfectly match the analytical formula as query cost
is dominated by data transmission. There is a similar pattern
for queries involving any number of attributes of Customer.
Note that the data sets for Postgres join and MySQL
join represent the query plan that has two queries that extract
data from the underlying database and the join is performed
on the virtualization server.

Fig. 1. Semi-join Performance for MySQL/PostgreSQL

The benefits are large when aggregation is required. Con-
sider the query below and results in Figure 2. Computing the
aggregation at the source db2 saves most data transfer as well
as being more efficient for the virtualization server.

SELECT c_mktsegment, SUM(c_acctbal),
COUNT(*)

FROM db2.Customer INNER JOIN db1.Nation
ON c_nationkey = N.n_nationkey

WHERE n_name < ?
GROUP by c_mktsegment

This query tested sending large data sets:

SELECT O.* FROM db1.Customer
INNER JOIN db2.Orders
ON C.c_custkey=O.o_custkey

WHERE c_acctbal < ?

In this query, the number of join keys ranges between 0
and 1.5 million. The filter on c acctbal was varied to allow
for different selectivies. The results are in Figure 3. Both

Fig. 2. Semi-join Performance with Aggregation Query

databases are able to handle a large SQL statement containing
the smaller data set, and processing the join on db2 is a
benefit for almost all cases. This query also demonstrates the
relative performance difference of MySQL and PostgreSQL.
MySQL data transfer through its driver is more efficient than
with PostgreSQL which has longer overall times. PostgreSQL
consistently executes the SQL plan, and the semi-join perfor-
mance is linear with the number of join keys. For MySQL,
the optimizer initially selects a less efficient plan that explains
the poor performance around selectivity 0.1 to 0.15.

Fig. 3. Semi-join Performance with Large Data

The aggregation query below is for large data aggregation
with results in Figure 4.

SELECT o_orderstatus, COUNT(*),
SUM(o_totalprice)

FROM db1.Customer INNER JOIN db2.Orders
ON C.c_custkey=O.o_custkey
WHERE c_acctbal < ?
GROUP BY o_orderstatus

When an aggregation is performed after the join, the vir-
tualization server incurs both the cost in data transmission
from the data sources as well as the cost of executing the join
and aggregation. Aggregating at the data source reduces data
transmission and is often more efficient as the database server
typically has higher performance. In Figure 4, MySQL again
has a poor optimization of the query for selectivities between



Fig. 4. Performance with Large Aggregated Data

0.1 and 0.15. The semi-join query performance improvement
is due to sending less data to the virtualization server as
aggregation is performed at the database.

Using temporary tables within the SQL query was evaluated
using:

SELECT n_name, SUM(c_acctbal), COUNT(*)
FROM db2.Customer INNER JOIN db1.Nation
ON C.c_nationkey = N.n_nationkey
WHERE n_name < ?
GROUP by n_name

Fig. 5. Performance with Temporary Table

When using a temporary table, the results are more depen-
dent on the local database query optimizer. For Postgres, there
is always a significant benefit for performing the semi-join.
For MySQL, it is less efficient performing GROUP BY so the
time is not much faster than having the virtualization server
perform the join and aggregation.

Overall, there is a benefit for performing semi-join for
a wide-range of queries rather than doing the join at the
virtualization server. Semi-join is more scaleable and reduces
the query processing load on the virtualization server allowing
for more queries and larger data queries to be processed.

V. CONCLUSIONS

This work introduced an SQL-based semi-join implemen-
tation for use in data virtualization and business intelligence
reporting. The algorithm modifies SQL statements sent to the
data sources to reduce the amount of data transferred without
requiring modifications to the database system. This reduces
the load on the data virtualization system and allows for han-
dling much larger queries and data sizes as query processing
occurs at the data sources rather than the virtualization engine.
Experimental results demonstrate that the semi-join approach
can reduce data transfer and improve query processing times
by an order of magnitude. The approach is especially well-
suited for on-demand business intelligence reporting applica-
tions processing Big Data, which are currently limited for large
data sizes. Future work will improve the optimizer and expand
the implementation and testing for more databases and queries.

REFERENCES

[1] P. A. Bernstein and D. W. Chiu, “Using semi-joins to solve relational
queries,” J. ACM, vol. 28, no. 1, pp. 25–40, 1981. [Online]. Available:
http://doi.acm.org/10.1145/322234.322238

[2] P. Valduriez and G. Gardarin, “Join and semijoin algorithms for
a multiprocessor database machine,” ACM Trans. Database Syst.,
vol. 9, no. 1, pp. 133–161, Mar. 1984. [Online]. Available:
http://doi.acm.org/10.1145/348.318590

[3] N. Roussopoulos and H. Kang, “A Pipeline N-way Join Algorithm
Based on the 2-way Semijoin Program,” IEEE Trans. Knowl.
Data Eng., vol. 3, no. 4, pp. 486–495, 1991. [Online]. Available:
https://doi.org/10.1109/69.109109

[4] J. K. Mullin, “Optimal semijoins for distributed database systems,”
IEEE Trans. Softw. Eng., vol. 16, no. 5, pp. 558–560, May 1990.
[Online]. Available: http://dx.doi.org/10.1109/32.52778

[5] Z. Li and K. A. Ross, “PERF Join: An Alternative to Two-way
Semijoin and Bloomjoin,” in CIKM ’95. ACM, 1995, pp. 137–144.
[Online]. Available: http://doi.acm.org/10.1145/221270.221360

[6] M. Chen and P. S. Yu, “Combining join and semi-join operations
for distributed query processing,” IEEE Trans. Knowl. Data
Eng., vol. 5, no. 3, pp. 534–542, 1993. [Online]. Available:
https://doi.org/10.1109/69.224205

[7] K. Stocker, D. Kossmann, R. Braumandl, and A. Kemper,
“Integrating semi-join-reducers into state of the art query
processors,” in ICDE 2001, 2001, pp. 575–584. [Online]. Available:
https://doi.org/10.1109/ICDE.2001.914872

[8] V. Josifovski, T. Katchaounov, and T. Risch, “Evaluation of join
strategies for distributed mediation,” in ADBIS 2001, 2001, pp. 308–
322. [Online]. Available: https://doi.org/10.1007/3-540-44803-9 24

[9] J. Daenen, F. Neven, T. Tan, and S. Vansummeren, “Parallel evaluation
of multi-semi-joins,” PVLDB, vol. 9, no. 10, pp. 732–743, 2016.
[Online]. Available: http://www.vldb.org/pvldb/vol9/p732-daenen.pdf

[10] O. Polychroniou, R. Sen, and K. A. Ross, “Track join: distributed joins
with minimal network traffic,” in SIGMOD 2014, 2014, pp. 1483–1494.
[Online]. Available: http://doi.acm.org/10.1145/2588555.2610521

[11] Y. Tian, F. Özcan, T. Zou, R. Goncalves, and H. Pirahesh,
“Building a hybrid warehouse: Efficient joins between data stored
in HDFS and enterprise warehouse,” ACM Trans. Database
Syst., vol. 41, no. 4, pp. 21:1–21:38, 2016. [Online]. Available:
http://doi.acm.org/10.1145/2972950

[12] N. Dieu, A. Dragusanu, F. Fabret, F. Llirbat, and E. Simon, “1,000 tables
under the form,” Proc. VLDB Endow., vol. 2, no. 2, pp. 1450–1461, Aug.
2009. [Online]. Available: https://doi.org/10.14778/1687553.1687572

[13] I. Manolescu, L. Bouganim, F. Fabret, and E. Simon, “Efficient querying
of distributed resources in mediator systems,” in CoopIS 2002, 2002, pp.
468–485. [Online]. Available: https://doi.org/10.1007/3-540-36124-3 27

[14] T. Mason and R. Lawrence, “Dynamic Database Integration in a JDBC
Driver,” in ICEIS, 2005, pp. 326–333.

[15] R. Lawrence, “Integration and Virtualization of Relational SQL and
NoSQL Systems Including MySQL and MongoDB,” in Computational
Science and Computational Intelligence, 2014, pp. 285–290.


