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ABSTRACT
Schema integration requires the resolution of naming, struc-
tural, and semantic conflicts. Currently, automatic schema
integration is not possible. We propose that integration can
be increasingly automated by capturing data semantics us-
ing a standardized dictionary.
Our integration architecture constructs an integrated view

by automatically combining local views defined by indepen-
dently expressing database semantics in XML documents
using only a pre-defined dictionary as a binding between
integration sites. The dictionary eliminates naming con-
flicts and reduces semantic conflicts. Structural conflicts
are resolved at query-time by a query processor which trans-
lates from the semantic integrated view to structural queries.
Thus, the system provides both logical and physical access
transparency by mapping user queries on high-level con-
cepts to schema elements in the underlying data sources.
The architecture automatically integrates and transparently
queries relational data sources, and its application of stan-
dardization to the integration problem is unique.

Categories and Subject Descriptors
D.2.12 [Software Engineering]: Interoperability; H.2.3
[Database Management]: Languages—Data description
languages, Query languages, Integration languages; H.2.4
[Database Management]: Systems—Relational databases,
Multidatabases
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1. INTRODUCTION
Although numerous architectures provide database inter-

operability, automatic schema integration has not been pre-
viously possible. We propose that automatic schema inte-
gration is feasible by using a standard term dictionary to
describe schema element semantics. Using the dictionary
resolves naming problems and allows algorithms to auto-
matically resolve structural conflicts in data representation.
The major contribution of the work is a systemized method
for capturing data semantics using a standardized dictionary
and a model which uses this information to perform schema
integration in relational databases.
This paper describes the integration architecture and com-

pares it with existing work starting in Section 2. Section 3
overviews the components of our architecture including the
standard dictionary, a metadata specification language, an
integration algorithm, and a query processor. Although the
architecture is in its infancy compared to more advanced me-
diator systems, it approaches the integration problem from a
different perspective which may be more easily automated.
A discussion of the architecture including its benefits and
shortcomings is in Section 4. The paper closes with future
work and conclusions.

2. DATA SEMANTICS AND THE
INTEGRATION PROBLEM

Integrating data sources involves combining their concepts
and knowledge into an integrated view that isolates users
from the system organization. Constructing an integrated
view of data sources is difficult because they will store differ-
ent types of data, in varying formats, with different mean-
ings, and will reference it using different names. Subse-
quently, constructing an integrated view requires resolving
the different mechanisms for storing data (structural con-
flicts), for referencing data (naming conflicts), and for at-
tributing meaning to the data (semantic conflicts).
Mediator and wrapper systems such as Information Man-

ifold [4], Infomaster [2], and TSIMMIS [7] answer queries
across a wide-range of data sources. TSIMMIS [7] and Info-
master [2] construct integrated views using designer-based
approaches which are mapped using a query language or log-
ical rules into views or queries on the individual data sources.
Once an integrated global view and corresponding mappings
to source views are logically encoded, wrapper systems are
systematically able to query and provide interoperability be-
tween diverse data sources.



Internet and industrial standards organizations have taken
a more pragmatic approach to integration by standardiz-
ing the definition, organization, and exchange mechanisms
for data communications. Work on capturing metadata in
industry has resulted in the formation of standardization
bodies for exchanging data such as Electronic Data Inter-
change (EDI), Extensible Markup Language (XML [12]),
and BizTalk [9] which allows data exchange using standard-
ized XML schemas.
There is a fundamental difference between the database

research approach and the industrial approach. Research al-
gorithms analyze structural and semantic information to re-
solve schema conflicts. However, mostly manual algorithms
have been developed because resolving all conflicts is ex-
tremely difficult. Thus, it has been proposed [1] that auto-
matic schema integration is not possible. Industrial systems
accept standardization to resolve conflicts and increase au-
tomation.
Our approach combines the two techniques. We believe

that some level of standardization is required to achieve
more automatic integration. Specifically, by accepting a
standard term dictionary for describing schema element se-
mantics and thus avoiding naming conflicts, structural con-
flicts may be automatically resolved. We approach the inte-
gration problem from a different perspective than mediator
systems. Our goal is to separate the specification of database
semantics from the integration procedure, and then apply
automatic integration procedures to combine semantic spec-
ifications and resolve conflicts.

3. ARCHITECTURE COMPONENTS
There are four components of the architecture: a standard

term dictionary, a metadata specification for capturing data
semantics, an integration algorithm for combining metadata
specifications into an integrated view, and a query processor
for resolving structural conflicts at query-time. The dictio-
nary provides a set of terms for describing schema elements
and avoiding naming conflicts. The integration algorithm
matches concepts to produce an integrated view, and the
query processor translates a semantic query on the inte-
grated view to structural query expressions.
To illustrate the architecture, we will use the following

example involving two books databases. The first company,
called Books-for-Less, has a database as given in Figure
1. The second company, called Cheap Books, stores its
book database as given in Figure 2. Throughout the text,
database field and table names appear in italics and their
associated semantic names are in true-type.

Tables Fields
Book ISBN, Title, Author, Publisher, Price

Figure 1: Books-for-Less Database Schema

Tables Fields
Book ISBN, Author id, Publisher id, Title, Price,

Description
Author Id, Name
Publisher Id, Name

Figure 2: Cheap Books Database Schema

3.1 A Standardized Global Dictionary
To provide a framework for exchanging knowledge, there

must be a common language in which to describe the knowl-
edge. Since a computer has no built-in mechanism for associ-
ating semantics to words and symbols, an on-line dictionary
is required to allow the computer to determine semantically
equivalent expressions.
The standard dictionary is organized as a hierarchy of

concept terms. Concept terms are related using ’IS-A’ rela-
tionships for modeling generalization and specialization and
’HAS-A’ relationships to construct component relationships.
We have built a dictionary of terms starting from the top-

level ontological categories proposed by Sowa [11]. For this
paper, the simplified dictionary used is in Figure 3. Note
that the exact terms and their placement is irrelevant. The
dictionary is treated as a standard whether within an or-
ganization or for the whole Internet community. Individual
organizations may modify the dictionary, but successful inte-
gration within a domain is only guaranteed with total stan-
dard acceptance. Thus, we assume that a designer correctly
associates proper dictionary terms to represent schema ele-
ment semantics, and mis-naming problems are handled using
an external error-checking mechanism.
By analogy, the dictionary is like an English dictionary,

as it defines the semantics of accepted words used to convey
knowledge. However, overall semantics are communicated
by organizing words into a structure such as sentences. Our
structure for semantic communication is a semantic name
whose simplified structure is easily parsed.

3.1.1 Constructing Semantic Names
A semantic name (sname) captures system-independent

semantics of a schema element including contextual infor-
mation by combining one or more dictionary terms as given
in Definition 1.

Definition 1. sname = ”[” CT [ [;CT ] | [, CT ]] ”]” [CN ]
where CT, CN are dictionary terms

That is, a semantic name consists of an ordered set of
context terms (CT) separated by either a comma or a semi-
colon, and an optional concept name term (CN). Each con-
text and concept term is a single term from the standardized
dictionary. The comma between terms A and B (A,B) rep-
resents that term B is a subtype of term A. A semi-colon
between terms A and B (A;B) means that term A HAS-
A term B, or term B represents a concept that is part of
term A. The context terms provide a context framework for
the concept that describes them. Every semantic name has
at least one context term. The concept name is a single,
atomic term describing the lowest level semantics. Fields
have concept names to represent their base meaning void of
any context information. The semantic names for schema
elements for Cheap Books and Books-for-Less are given in
Figures 4 and 5 respectively.

Type Semantic Name System Name
Table [Book] Book
Field [Book] ISBN ISBN
Field [Book] Title Title
Field [Book] Price Price
Field [Book;Author] Name Author
Field [Book;Publisher] Name Publisher

Figure 4: Cheap Books Semantic Names



Figure 3: Reduced Standard Dictionary (contains only required terms)

Type Semantic Name System Name
Table [Book] Book
Field [Book] ISBN ISBN
Field [Book] Title Title
Field [Book] Price Price
Field [Book] Description Description
Field [Book;Author] Id Author id
Field [Book;Publisher] Id Publisher id
Table [Book;Author] Author
Field [Book;Author] Id Id
Field [Book;Author] Name Name
Table [Book;Publisher] Publisher
Field [Book;Publisher] Id Id
Field [Book;Publisher] Name Name

Figure 5: Books-for-Less Semantic Names

3.2 X-Specs for Metadata Specification
A standard dictionary is not a standard schema as con-

cepts may be represented in different ways in various data
sources, and we are not assuming a standard representa-
tion for a given concept. Thus, a XML-based specification
document called a X-Spec encodes database schema using
dictionary terms and additional metadata.
A X-Spec stores a relational database schema including

keys, relationships, joins, and field semantics. Further, each
table and field in the X-Spec has an associated semantic
name as previously discussed. Information on joins includ-
ing their cardinality, fields, and connecting tables is stored

to allow the query processor to identify which joins to apply
during query formulation. Similarly, field relational depen-
dencies are stored for use in query-time normalization.
Describing a data source using a X-Spec is very similar

to a standardized schema developed in BizTalk. We have
made an attempt to follow emerging industry standards in
the description of schemas using XML and model a X-Spec
schema description after BizTalk schemas. The important
distinction between a X-Spec schema and a BizTalk schema
is that an entire BizTalk schema is standardized. A X-Spec
describes a database dependent schema rather than conform
to one. Simplified X-Specs for the two example databases
are in Figures 6 and 7 which list the fields and tables and
their semantic name mappings but omit the specification of
keys and joins. In a X-Spec, the attribute stype stores ”F”
or ”T” to indicate if the schema element is a field or table,
and the attribute sname stores its system name.
A X-Spec is constructed using a specification editor dur-

ing a capture process, where the semantics of schema ele-
ments are mapped to semantic names. This capture process
is performed independently of capture processes at other
data sources because the only ”binding” between individ-
ual capture processes is the use of the dictionary to provide
standardized terms for referencing data. We have built a
specification editor that parses relational schema, formats
the information into a X-Spec, and allows the user to in-
clude additional information that may not be electronically



<?xml version="1.0" ?>
<Schema

name = "Books-for-Less.xml"

xmlns="urn:schemas-microsoft-com:xml-data"
xmlns:dt="urn:schemas-microsoft-com:datatypes">

<ElementType name="[Book]" sname="Book" stype="T">
<element type="[Book] ISBN" sname="ISBN" stype="F"/>

<element type="[Book] Title" sname="Title" stype="F"/>
<element type="[Book] Price" sname="Price" stype="F"/>
<element type="[Book;Author] Name" sname="Author" stype="F"/>
<element type="[Book;Publisher] Name" sname="Publisher"

stype="F"/>

</ElementType>
</Schema>

Figure 6: Books-for-Less X-Spec

<?xml version="1.0" ?>
<Schema

name = "Cheap_Books.xml"
xmlns="urn:schemas-microsoft-com:xml-data"
xmlns:dt="urn:schemas-microsoft-com:datatypes">

<ElementType name="[Book]" sname="Book" stype="T">

<element type="[Book] ISBN" sname="ISBN" stype="F"/>
<element type="[Book] Title" sname="Title" stype="F"/>
<element type="[Book] Price" sname="Price" stype="F"/>
<element type="[Book] Description" sname="Description"

stype="F"/>

<element type="[Book;Author] Id" sname="Author_id" stype="F"/>
<element type="[Book;Publisher] Id" sname="Publisher_id"

stype="F"/>
</ElementType>

<ElementType name="[Book;Author]" sname="Author" stype="T">
<element type="[Book;Author] Id sname="Id" stype="F"/>
<element type="[Book;Author] Name" sname="Name" stype="F"/>

</ElementType>

<ElementType name="[Book;Publisher]" sname="Publisher" stype="T">
<element type="[Book;Publisher] Id" sname="Id" stype="F"/>
<element type="[Book;Publisher] Name" sname="Name" stype="F"/>

</ElementType>

</Schema>

Figure 7: Cheap Books X-Spec

stored such as relationships and constraints.
The use of XML for describing an X-Spec is not required,

but it is used because XML is an emerging standard to ex-
change semantics between systems. Information stored in a
X-Spec may be transmitted as formatted text files or struc-
tured binary files. XML is used for convenience and inter-
operability with emerging standards. In summary, a X-Spec
is a database schema and metadata encoded in XML that
is exchanged between systems and stores semantic names to
describe schema elements.

3.3 Integration Algorithm
The integration algorithm is a straightforward term match-

ing algorithm. The same term in different X-Specs is as-
sumed to represent the identical concept regardless of its
representation. The algorithm receives as input one or more
X-Specs and uses the semantic names present to match re-
lated concepts.
The integration process is automatic once the capture pro-

cesses are completed. By their nature, capture processes are
manual as they require designers to capture semantic infor-
mation in X-Specs. However, once a capture process for a
data source is completed, it never has to be re-performed

Global View Term Data Source Mappings (not visible)
V (view root) N/A

- [Book] CB.Book, BfL.Book
- ISBN CB.Book.ISBN, BfL.Book.ISBN
- Title CB.Book.Title, BfL.Book.Title
- Price CB.Book.Price, BfL.Book.Price
- Description CB.Book.Description
- [Author] CB.Author

- Id CB.Book.Author id, CB.Author.Id
- Name CB.Author.Name, BfL.Book.Author

- [Publisher] CB.Publisher
- Id CB.Book.Publisher id, CB.Publisher.Id
- Name CB.Publisher.Name, BfL.Book.Publisher

Figure 8: Integrated View

regardless of the other data sources being integrated. This
is a significant advantage as it allows database semantics
to be captured at design-time. Thus, the advantage of the
architecture is an integrated view is automatically created
once designers independently define the local views of the
individual data sources.
The integration algorithm identifies similar concepts by

name regardless of their physical and logical representation
and produces a hierarchy of contexts and concepts which
implies no particular physical representation. The physical
representation of concepts is irrelevant to the user. Users
access data sources through semantic names which map to
schema elements. Thus, by not imposing structural con-
straints on concept representation, knowledge is combined
regardless of data representation characteristics, and the
user is isolated from the complexities of data distribution,
organization, structure, and local naming conventions.
The integration order is irrelevant, and the same X-Specs

may be integrated several times with no change. As more
X-Specs are integrated, the number of concepts grows, but
assuming the semantic names are properly assigned, the ef-
fectiveness of the integration is unchanged. The view pro-
duced by integrating the Cheap Books (CB) and Books-for-
Less (BfL) databases is given in Figure 8.

3.4 Query Processor
The integrated view of concepts is not a structural view

consisting of relations and attributes. Rather, the context
view is a hierarchy of concepts and contexts which map to
physical tables and fields in the underlying data sources.
Thus, querying the integrated view is different than existing
systems, and implementing the query processor results in an
entirely new set of challenges.

3.4.1 Query Formulation and Execution
Users generate queries by manipulating semantic names.

The user is not responsible for determining schema element
mappings, joins between tables in a given data source, or
joins across data sources. The system handles the necessary
joins based on the relationships between schema elements.
In many cases, there is a straightforward mapping from

semantic names to physical fields. Typically, a semantic
name will have only one mapping to a physical field in each
data source. Given a list of semantic names in the query
used either for projection or for selection criteria, the query
processor maps the semantic names to system names using
information stored in the X-Spec. To handle joins between
tables, X-Specs store information on join conditions. Thus,
all the required mapping information is present to construct
a select-project-join query which is translated to SQL.



General joins across databases are not currently supported
as query results from each data source are unioned together,
unless the results can be combined using globally recognized
keys such as a book ISBN or a product SKU number. If a
given data source does not have all the fields required in
the result, the field is left blank. Obviously, this method of
query generation is simplistic. A more detailed treatment of
query issues including join selection and optimization and
SQL generation is available [5].

3.4.2 Query Examples
This section gives example queries on the integrated view

and the SQL statements generated by the query processor.

Example 1. The user requires the ISBN ([Book] ISBN),
title ([Book] Title), and description ([Book] Description)
of all available books and selects the given semantic names
from the context view.

Cheap Books Books-for-Less
Select ISBN, Title Select ISBN, Title, Description
From Book From Book

Notice that no description field is available in the Cheap
Books database. This field is left blank when a row result
is displayed. The query system receives the output of both
queries and displays them to the user. In this case, the
query system would also attempt to match records based on
the ISBN key because it is an internationally recognized key
(not dependent on database context).

Example 2. The user requires all author names and so
selects the semantic name [Book;Author] Name.

Cheap Books Books-for-Less
Select Author Select Name
From Book From Author

In this example, a structural conflict is inherently resolved
by mapping through the context view. The author name is
retrieved from the Author table for Books-for-Less and from
the Book table for Cheap Books.

Example 3. The user requires the title ([Book] Title)
and author names ([Book;Author] Name) for all books.

Cheap Books Books-for-Less
Select Title, Author Select Title, Name
From Book From Book, Author Where

Author.id = Book.Author id
In this case, the query processor must insert a join to pro-

cess the query in the Cheap Books database. This join is
automatically inserted because the system stores that Au-
thor id is a foreign key to the Author table and a join can
be applied to connect them.

As shown in these simple examples, physical and logical
query transparency is provided to the user who queries the
system by semantic name. The system handles the nec-
essary mapping from semantics to a structural query and
inserts join conditions as required. The challenge in this en-
vironment is discovering and constructing the query in an
ad hoc basis based on the supplied mappings.

4. ARCHITECTURE DISCUSSION
The combination of standards such as XML and standard

dictionaries with research algorithms in application to the
schema integration problem is unique. Although schema in-
tegration and conflict resolution is well understood, there

are no automatic algorithms for schema integration. The
practical application of standardization to this problem en-
ables architectures capable of more automated mediation.
The key benefit of the architecture is that the integration

of data sources is automatic once the capture processes are
completed. As discussed, a capture process is still a very
manual process involving the designer thoroughly under-
stand and record database semantics into a X-Spec. How-
ever, this process is performed only once and independently
of all other capture processes. The only tie a capture process
has to the global federation is the use of semantic names for
identifying identical concepts across systems. This is sim-
ilar to using a standardized set of XML tags except the
dictionary terms may be used across integration domains.
Then, the combination of X-Spec information is automati-
cally performed and produces a integrated view of concepts
which provides physical and logical transparency by allow-
ing information access through a GUI based on semantics
rather than structure. Structural conflicts are handled at
query-time by the query processor without the user’s in-
volvement. This is a substantial improvement over systems
[8] which require the user to query all databases by struc-
ture. Our work is unique because it automatically produces
an integrated view from data source specifications developed
independently of each other and the integrated view itself.
By accepting standardization, naming conflicts are elimi-

nated and semantic conflicts are reduced by explicitly de-
scribing schema elements with standard terms. The ar-
chitecture uses standardization to achieve automatic inte-
gration. Unlike Biztalk [9] or other E-commerce exchange
initiatives, the architecture does not force a structural rep-
resentation on the data which allows for greater flexibility
and for existing systems to be unmodified during integra-
tion. Thus, the system preserves full autonomy of all data
sources and no translational or wrapper software is required.
The major challenge inherent in the architecture is the

definition of the standardized dictionary. Although defining
terms to represent concepts is challenging, it is not with-
out precedent. Industrial systems such as EDI, XML, and
BizTalk all rely on the acceptance of standardized formats.
Our architecture is even less restrictive as only names are
standardized not structure and organization. Further, com-
mon ideas such as customers, orders, names, keys, identi-
fiers, and addresses are well understood and easily mapped
into a standard dictionary. In addition, even if a total stan-
dard is not achievable across the whole Internet, it is still
possible to define localized standards. The architecture al-
lows an organization to define its own dictionary. As long
as the standard dictionary is conformed to within a domain,
integration is possible within any organization. However,
the ultimate goal is the definition of a standard dictionary
applicable across all domains not just certain industries and
environments as targeted by EDI, BizTalk, and E-commerce
portals. Acceptance of standardization is a benefit, but it
is not a common practice in the database community as it
is difficult to acknowledge that some problems may require
standardization to be solved.
Since the integrated view is constructed as needed with

no designer input, challenges arise in insuring correct inte-
grations. First, the architecture has no built-in mechanism
for validating the assignment of semantic names. If a se-
mantic name does not correctly capture the semantics of
the schema element, it may be poorly integrated into the



integrated view. However, the concept is always present in
the integrated view. Poor naming results from either poor
conformance to the standard or inadequate construction of
the X-Spec. Either problem can be resolved by re-examining
and updating information in the X-Spec which will be au-
tomatically re-integrated into the integrated view.
Querying the context view produces an entirely new set

of challenges. The system becomes responsible for mapping
from semantic to structural expressions. Determination of
the fields and joins is possible using the schema informa-
tion in the X-Spec. However, complex integration challenges
such as determining join conditions across databases and
handling query-time normalization is an area of continuing
work. Our ongoing focus is the definition of expanded query-
time algorithms to resolve outstanding issues.
A related issue not covered by the architecture is data

integration. Even though schema elements may be identical
semantically, the actually physical representation in terms of
types, sizes, currencies, and scaling factors may be different.
There has been work performed on these data integration
problems [3, 10]. Note that these problems are resolved by
mapping functions which convert between contexts.
The integration architecture is implemented in a software

package called Unity [6]. Unity allows for the construction
and modification of the standard dictionary, automatic ex-
traction of metadata into X-Specs, execution of the integra-
tion algorithm, and data source querying using the query
processor and ODBC. Using Unity, integrating the North-
wind database provided with Microsoft Access with another
order-entry database was accomplished in less than a day.
We continue to expand the functionality of Unity including
refinement of the query processor.

5. FUTURE WORK AND CONCLUSIONS
In this paper, we have detailed a more pragmatic approach

to schema integration. By accepting standardization in the
form of a standard term dictionary, naming conflicts are
eliminated and semantic conflicts are reduced. Database se-
mantics are independently captured into XML documents
called X-Specs which store semantic names for schema ele-
ments to identify identical concepts across systems. Then,
an automatically constructed integrated view of concepts
is transparently queried by the user. The query processor
translates semantic queries to structural expressions and in-
tegrates results. Although the integration and query facil-
ities are not as powerful as mediator architectures because
they lack explicit designer control, by approaching the prob-
lem using standardization allows the integration to be per-
formed more automatically.
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