
Multidatabase Querying by Context1

Ramon LAWRENCE Ken BARKER

Advanced Database Systems Laboratory Advanced Database Systems Laboratory
 University of Manitoba University of Calgary

umlawren@cs.umanitoba.ca barker@cpcs.ucalgary.ca

Abstract. The overwhelming acceptance of the SQL standard [5] has curtailed continuing
research work in relational database query languages. Since all commercial relational
databases use SQL, there is little motivation for developing new query languages. Despite its
widespread acceptance, SQL is not a perfect language. Complex database schema challenge
even experienced database users during query formulation. As increasing numbers of less
sophisticated users access numerous databases, their ability to construct queries diminishes.

In this work, we overview a new query language developed in conjunction with our
integration architecture for automatically integrating relational schema into a context view. A
context view (CV) is a high-level view of database semantics that allows logically and
physically transparent access to the underlying data source(s). By allowing the user to query
by context and semantic connotation, a whole new level of query complexity arises.
However, we demonstrate that the context view has similar properties as the Universal
Relational Model and thus can benefit from associated algorithms and ideas. We demonstrate
that high-level semantic queries on the CV can be systematically mapped to SQL queries that
are rigorous enough for use in industrial systems and are compatible with existing systems.

Keywords. multidatabase, query, SQL, context, semantic, dictionary, schema,
integration, Universal Relation

1 Introduction
Despite dramatic changes in database size, complexity, and interoperability, Structured

Query Language (SQL) [5] has remained fundamentally unchanged. SQL is an extremely
powerful language when used by sophisticated users. However, a larger number of
inexperienced users now interact with multiple databases. These users have limited
understanding of SQL let alone database structure and semantics. Although the complexity of
SQL generation has been partially hidden by graphical design tools and programming
languages, the fundamental challenges of SQL remain. A SQL user is responsible for
understanding the structure of a database schema, the names associated with schematic
elements, and the semantics of the data stored. Query formulation involves mapping query
semantics into the semantics of the database and then realizing those semantics by combining
the appropriate database structures. On a wider scale, organizations require the
interoperability of database systems. Variants of SQL for multidatabase querying suffer from
the same limitations as SQL and force users to understand the structure and semantics of all
databases which introduces exponential complexity as the number of databases increases.

1 This research is partially sponsored by a Natural Science and Engineering Research
Grant (RGP-0105566)

 To address these issues, we designed and implemented a new integration architecture that
automatically integrates diverse relational schema into a unified view of concepts called a
context view (CV). Relevant information on the integration system is presented in Section 2.
The context view isolates the user from structural issues, and the system provides mappings
from semantic concepts to structural organizations. Unlike other SQL languages and query
tools, our query system never requires the user to understand database structure. Queries are
formulated using a graphical interface by manipulating elements of the context view. The
context view is a special type of Universal Relation describing the data source (Section 3) and
has features that resolve some of its problems. We present algorithms for automatically
mapping queries posed on the context view to SQL statements in Section 4 and extensions to
the architecture in Section 5. The paper closes with future work and conclusions.

2 Background and Previous Work
Querying by context is developed in conjunction with our integration architecture [11]

which automatically integrates relational database schema to produce an integrated view of
concepts called a context view (CV). We will use the terms context view and integrated view
interchangeably. Our current focus is on schema integration and database semantics. The
related data integration issues are not currently considered and will not be examined here.

The integration architecture consists of two phases: a capture process and an integration
process. In the capture process, the database administrator (DBA) uses an automated tool to
extract database schema information (including types, sizes, names, and relationships) and
saves the information into a XML document called a X-Spec which encodes schema structure
and semantic information for a data source. Semantic information is encoded as semantic
names for each table and field. Semantic names capture system-independent semantics by
combining terms from a standardized term dictionary. The dictionary is a hierarchical,
organization of concepts which are re-used in different contexts. Thus, the dictionary is a
base-set of terms which are combined to represent both contextual and concept information.

A semantic name is a XML tag constructed from dictionary terms which provides the
complete context and concept information across systems. A semantic name has the form:

>=<>=<= termCNtermCTCNCTCTCTnamesemantic , where][]""]][,|][[; [""_

That is, a semantic name consists of an ordered set of context terms (CT) separated by
either a comma or a semi-colon, and an optional concept name term (CN). Each context and
concept term is a single term from the standardized dictionary. The comma between terms A
and B (A,B) represents that term B is a subtype of term A. A semi-colon between terms A
and B (A;B) means that term A HAS-A term B, or term B is part of term A. The context
terms provide a context for the concept that describes them. Every semantic name has at least
one context term. The concept name is a term describing the lowest level semantics.

The integration process combines the X-Specs from the data sources into an integrated
view of concepts by matching semantic names. The resulting view is a merger of all concepts
across all data sources. A modified version of the Northwind database provided with
Microsoft Access© is used as an example database for this paper. We have omitted some
descriptive fields that are not important to the discussion such as address fields. In the text,
table and field names appear in italics and semantic names appear in true-type. The
Northwind schema is given in Table 1 and the associated mapping from system names to
semantic names is in Table 2. Finally, Figure 1 contains the integrated view produced.

Table 1: Northwind Database Schema

Tables Fields
Categories CategoryID, CategoryName
Customers CustomerID, CompanyName
Employees EmployeeID, LastName, FirstName
OrderDetails OrderID, ProductID, UnitPrice, Quantity
Order OrderID, CustomerID, EmployeeID, OrderDate, Shipvia
Products ProductID, ProductName, SupplierID, CategoryID
Shippers ShipperID, CompanyName
Suppliers SupplierID, CompanyName

Table 2 : Northwind Semantic Name Mappings
Type Semantic Name System Name Type Semantic Name System Name
Table [Category] Categories Table [Order] Orders
Field [Category] Id CategoryID Field [Order] Id OrderID
Field [Category] Name CategoryName Field [Order;Customer] Id CustomerID
Table [Customer] Customers Field [Order;Employee] Id EmployeeID
Field [Customer] Id CustomerID Field [Order] Date OrderDate
Field [Customer] Name CompanyName Field [Order;Shipper] Id Shipvia
Table [Employee] Employees Table [Product] Products
Field [Employee] Id EmployeeID Field [Product] Id ProductID
Field [Employee] Last Name LastName Field [Product] Name ProductName
Field [Employee] First Name FirstName Field [Product;Supplier] Id SupplierID
Table [Order;Product] OrderDetails Field [Product;Category] Id CategoryID
Field [Order] Id OrderID Table [Shipper] Shippers
Field [Order;Product] Id ProductID Field [Shipper] Id ShipperID
Field [Order;Product] Price UnitPrice Field [Shipper] Name ShipperName
Field [Order;Product] Quantity Quantity Table [Supplier] Suppliers

Field [Supplier] Id SupplierID
Field [Supplier] Name SupplierName

Figure 1: Northwind Integrated View

V (view root) V (cont.) V (cont.) V (cont.)

- [Category] -[Order] - [Product] - [Shipper]

- Id - Id - Id - Id

- Name - Date - Name - Name

- [Customer] - [Customer] -[Supplier] - [Supplier]

- Id - Id - Id - Id

- Name -[Employee] - [Category] - Name

- [Employee] - Id - Id

- Id - [Shipper]

- Last Name - Id

- First Name - [Product]

- Id

- Price

- Quantity

There are several features that characterize the context view (CV):
1. The context view consists of a hierarchy of concepts organized to model the inherent

semantics and relationships of the data, not its physical representation and structure.
2. A term in the CV may map to zero or more schema elements in underlying data sources.
3. Mapping from a given CV term to its associated schema elements in the data sources

(field and table names) is possible using information stored in X-Specs.
Given this environment, the goal of this work is to provide an ad-hoc query facility.

2.1 Previous Work
The SQL standard [5] allows users to query different database platforms using one

language. However, specifying complex SQL queries with numerous join conditions and
subqueries is too complex for most users [2]. Further, developing SQL queries requires
knowledge of both the structure and semantics of the database. Unfortunately, database
semantics are not always immediately apparent from the database schema, and mapping the
required query semantics into a SQL query is often complex. Although graphical tools for
query construction and high-level programming languages mask some of the complexity,
structural querying is intrinsic to most data access.

SQL is unsuitable for querying multidatabases or federated databases. These systems are
a collection of two or more databases operating to share data. Extensions of SQL such as
MSQL [13] and its successor IDL [10] provide features for multidatabase querying. These
languages allow the user to define higher order queries and views by allowing database
variables to range over metadata in addition to regular data. Other MDBS query languages
include DIRECT [15] and SchemaSQL [7]. The fundamental weakness of these languages is
the reliance on the user's knowledge of database structure and semantics to construct queries.
Understanding the structure and semantics of one data source is complicated in itself and the
in-depth knowledge required to formulate queries on multiple databases is extremely rare.

A fundamental database model is the Universal Relation Model that provides logical and
physical query transparency by modeling an entire database as a single relation. We will
demonstrate the similarity of the context view with the Universal Relation Model [14], and
thus argue that our system also provides logical and physical query transparency. There has
been substantial work presented on querying in a Universal Relation environment [3], and
more generally in the theory of joins [1] and querying [9,16].

It is also important to distinguish our architecture from wrapper and mediator systems.
Mediator systems either assume an integrated view is constructed a priori by designers or do
not construct an integrated view at all. The integrated view is then mapped to the local views
of the mediators by logical rules or query expressions specified by the designer. These
systems achieve database interoperability by providing an integrated view and its associated
mappings to local systems and then automatically divide a query on the integrated view into
queries on the individual data sources. Numerous systems [4,6,8,12] have been developed.

Mediator systems do not perform schema integration, which is performed manually by
designers. Our work is unique because it automatically produces an integrated view from data
source specifications developed independently of both other data sources and the global view
itself. The integrated view hides structural organization from the user and displays
information in a semantically intuitive hierarchy of concepts. Since the integrated view is not
queried by structure, the query system presented in this paper is developed to compliment the
unique nature of the architecture.

3 Context View as a Universal Relation
The context view (CV) models database schema knowledge as a hierarchy of concepts.

In this section we describe the nature of the CV and its relationship to the Universal Relation.
A dictionary term is an unambiguous word phrase in the standardized term dictionary.

Each term represents a unique semantic connotation of a given word phrase, so words with
multiple definitions are represented as multiple terms in the dictionary. A context term is a
dictionary term that describes the context of a schema element. A concept term is a term that
provides the lowest level semantic description of a database field. Overall, a semantic name
is a concept if it maps to a database field and a context if it maps to a table.

A semantic name Si consists of an ordered set of dictionary terms {T1,T2,...TN} where N≥1
which uniquely describe the semantic connotation of a schema element. The last term TN is a
concept name if Si has a concept name, otherwise it is the most specific context of Si.

Definition. The context closure of semantic name Si denoted Si* is the set of semantic
names produced by taking ordered subsets of the terms of Si = {T1,T2,...TN} starting with T1.�

Example 1. Given a semantic name Si=[A;B;C] D, Si*={[A],[A;B],[A;B;C],[A;B;C] D}.
Now we are able to formally define a context view (CV) as follows:
� If a semantic name Si is in CV, then for any Sj in Si*, Sj is also in CV.
� For each semantic name Si in CV, there exists a set of zero or more mappings Mi that

associate a schema element Ej with Si.
� A semantic name Si can only occur once in the CV.

The integration architecture combines schema elements into the CV by matching
semantic names term-wise until it is completely matched or no further matches are found.
Thus, the CV is a tree of nodes N={N1, N2,...Nn}, where each node Ni has a semantic name Si.

3.1 Context View as a Universal Relation
There is an underlying similarity between a context view and a Universal Relation. A

Universal Relation (UR) contains all the attributes of the database where each attribute has a
unique name and semantic connotation.

Lemma. A context view (CV) is a valid Universal Relation if each semantic name is
considered an attribute.

Proof. For a given data source, each field is assigned a semantic name. The semantic
name defines a unique semantic connotation for the field. To violate the Universal Relation
assumption, a given semantic name must either occur more than once in the CV (non-unique
attribute names) or two or more semantic names have identical connotations (non-unique
semantic connotations). A semantic name can only occur once in a CV by definition. Hence,
each semantic (attribute) name is unique. The construction of a semantic name by combining
terms defines its semantics such that two different semantic names cannot have the same
semantic connotation. Thus, a context view is a valid Universal Relation. �

A context view addresses several of the problems of the UR model. First, the context
view is automatically created by the system after the database semantics are systematically
described by the DBA using semantic names. The context view also resolves the issue of
complex Universal Relations. Since the CV is organized hierarchically, it is explicitly divided
into semantically grouped topics as opposed to one, flat relation containing all attributes. This
reduces the semantic burden on the user.

 The context view is more than a Universal Relation. It is a hierarchically organized,
integrated view of database knowledge in one or more systems. Like a view, it is an
amalgamation of data stored in other structures that is built as needed. Thus, we demonstrate
how queries on the CV are realized by mapping to SQL queries to extract the relevant data.

4 Query Parsing and Join Tree Construction
By isolating the user from database structure, the system becomes responsible for

correctly formatting the query based on the user's intended semantics. Thus, the system must
generate deterministic, repeatable, and semantically intuitive queries in all cases. Given a
context view, users generate a query by graphically selecting the selection criteria and result
fields by semantic name. Then, the query system translates the query into a structural query
(SQL) for the underlying database. In this section, we present these translation algorithms.

There are two major requirements in mapping from semantic to structural querying. First,
the system selects the fields to use for projection and selection. Since multiple mappings to
the same semantic name are possible, the system selects the most appropriate field mapping.
Second, the join conditions are determined to combine the appropriate data source tables.
Given the set of fields and tables to access and a set of joins to apply, it is straightforward to
construct a relational calculus expression or SQL select-project-join query.

4.1 Determination of Data Source Fields and Tables
The system determines the tables and fields to access by the semantic names chosen. In

most cases, a semantic name has only one mapping to a physical field. However, especially
with key fields, a semantic name may map to several fields. Since the choice of field (and its
parent table) may affect query semantics by introducing new joins, the system has well-
defined rules which are easily conveyed to the user. Fields for selection or projection
operations are treated uniformly by the system. For a key field occurring in two or more
tables, the inherent interrelationships between the tables determine the complexity in selecting
a mapping. The four cases are presented below with examples from the Northwind database.
� 1-1 - A one-to-one relationship between tables often implies they share a key. For example,

assume a database has two tables indexed by social security number (SSN). If a user wants
the SSN field, there are two possible mappings but with different semantic names (because
their contexts are different). Thus, the mapping chosen is uniquely determined by the user's
choice of semantic name.

� 1-N - One-to-N relationship between tables implies a foreign key from the N-side table to
the one-side table. Consider, the Orders and Shippers tables with the semantic names
[Order;Shipper] Id for the foreign key in Orders to Shippers and [Shipper] Id
as the primary key of the Shippers table. Again, the query system has a unique mapping to
the concept of a shipper id based on if the user selects the foreign key in the Orders table
([Order;Shipper] Id) or the primary key in the Shippers table ([Shipper] Id).

� 1-N dependent - When the N-side of the relationship is dependent on the one-side, a
special case arises. Consider Orders and OrderDetails. Since, an OrderDetail record
cannot exist without an Order record, the OrderDetails table has as part of its key the key
for the Orders table. Both fields are assigned the semantic name [Order] Id. Thus,
there are two field mappings to the semantic name. The general heuristic is to choose the
primary key instance (Orders) unless the user selects attributes from the OrderDetails table.

� M-N and M-N dependent - Any M-N relationship results in multiple mappings to a single
semantic name because the relationship is structured by constructing a joining table whose
key contains the keys of the two tables. Consider a database of books and authors. Since a
book may have multiple authors and an author may write multiple books, a joining table
BookAuthor ([Book;Author]) implements the M-N relationship. The BookAuthor table
has mappings to the Book table ([Book] Id) and Author table ([Author] Id) keys.

In non-normalized databases, multiple fields in a table may map to a semantic name. For
example, if an order has three items all stored in the order table, then the semantic name
[Order;Product] Id will have three mappings. The semantically correct query should
automatically normalize the data by splitting one order record into three normalized records.

To handle multiple mappings, the query system first selects a field that is currently
present in the tables already in the query. Otherwise, it chooses the field whose parent table
context matches the field context, or the first field mapping if no other heuristic applies. The
algorithm (see Figure 2) determines a set of fields (F) and tables (T) from a X-Spec (Xj) which
best map to the set of query nodes Q = {Q1,Q2, ...Qn} given by the user.

Figure 2 : Field Selection Algorithm
For each term Qi in Q (1)
 SNi = semantic name of Qi (2)
 Search_XSpec(Xj, SNi, num, R) // Search X-Spec for SN. Return results in R. (3)
 If num =1 Then // Only one occurrence of semantic name (4)
 Add field Rk to F and parent table of Rk to T (5)
 Else (6)
 If multiple occurrences but only in one table Then (7)
 For each result Rk in R (8)
 Add field Rk to F (9)
 Next (10)
 Add parent table of R1 to T (11)
 End if (12)
 End if (13)
Next (14)
// Second pass to resolve multiple occurrences
For each term Qi in Q (15)
 SNi = semantic name of Qi (16)
 If Qi has not been mapped Then (17)
 search_XSpec(Xj, SNi, num, R) // Search X-Spec for SN. Return results in R. (18)
 If Find any mapping Rk of R with parent table Tj already in T Then (19)
 Add field Rk to F and parent table of Rk to T (20)
 ElseIf Find parent table Tj of Rk with context portion = context portion of Qi Then (21)
 Add field Rk to F and parent table of Rk to T (22)
 Else (23)
 Add field R1 to F and parent table of R1 to T (24)
 Endif (25)
 Endif (26)
Next (27)

4.2 Determining Join Conditions
Given a set of fields and tables to access, the system determines a set of joins between the

tables to isolate the user from join selection and preserve the semantics of the user's query.
Define a join graph as an undirected graph where each node is a table in the database and

there is a link from node Ni to node Nj if there is a join between the corresponding two tables.
For this discussion, we ignore multiple joins between two tables on different keys. A join
path is a sequence of joins interconnecting two nodes in the graph; and a join tree is a set of
joins interconnecting two or more nodes. Assume without loss of generality that the join
graph is connected. Otherwise, we apply the algorithm to each connected subset and connect
them using a cross-product. The join graph for the Northwind database is in Figure 3.

Figure 3 : Join Graph for Northwind Database

Lemma 1. There is only one join path between any two nodes in an acyclic join graph.
Proof. Proof by contradiction. Assume that two join paths exist between node Ni and

node Nj. Then, we could take the first path from Ni to Nj and return on the second path from
Ni to Nj. This implies that the graph has a cycle. �

Lemma 2. There is only one join tree between any subset of nodes in an acyclic join graph.
Proof. Proof by induction. The statement is true for two nodes as per Lemma 1. Given a

subset of m nodes with only one join tree, add another node N to the set. Assume that by
adding N there exists more than one join tree in the new subset of m+1 nodes. Since, there
was only one join tree for the previous m nodes, this implies that N must be connected to more
than one node in the subset. If N is connected to two nodes Ni and Nj in the m nodes, then
there must be a path from N to Ni, Ni to Nj, and Nj to N by Lemma 1. This produces a cycle.
Thus, the statement holds for m+1 nodes. The result follows by induction. �

The consequences of Lemma 2 are important because no decisions on which joins to
apply are required. We must only identify which joins are required to connect the tables by
constructing the join tree. The order in which the joins are applied is the join optimization
problem that has been actively studied and will not be discussed here. From this result, we
construct an algorithm that builds a matrix M where entry M[Ni,Nj] is the shortest join path
between any pair of nodes Ni and Nj. By combining join paths, the query system identifies all
the joins required to combine database tables by constructing the only possible join tree.

Theorem 1. Given a matrix M storing shortest join paths for an acyclic join graph and a
set of tables T to join, a join tree can be constructed by choosing any table Ti from T and
unioning the join paths in M[Ni,N1], M[Ni,N2], ... M[Ni,Nn] where N1,N2,..Nn are the nodes
corresponding to the set of tables T.

Proof. Since the graph is connected, the matrix entries M[Ni,N1], M[Ni,N2], ... M[Ni,Nn]
represent join paths from Ni to all other nodes in the subset. Assume a join tree is not
constructed. Thus, there is no path between some two nodes Nj and Nk. However, there is a
path from Ni to Nj and from Ni to Nk. Then, there is a path from Nj to Nk. Thus all nodes are
connected with the join tree and it is the only possible join tree as per Lemma 2. �

Normalized databases often have acyclic join graphs. The system handles cycles by
determining the best join paths using path length and join semantics/properties. The breadth-
first search algorithm (see Figure 4) constructs the matrix M of best join paths by selecting the
shortest join paths with no lossy joins. It works for all join graphs. Lossy joins are used only
if there is no other path between nodes. A lossy join sequence contains a N-1 cardinality join
followed by a 1-N cardinality join (produces a M-N join); and a M-N join is always lossy.

Orders

OrderDetails

Employees

Customers

CategoriesSuppliers

Shippers

1 N

N

1

1N

1N1 N

1

N

1
N

Products

Figure 4: Algorithm to Calculate Join Paths
void calc_join_paths(ByRef M as matrix, G as graph)
// M is an N x N matrix where N is the number of nodes in the graph, NQ is a FIFO queue structure
// Note: For any matrix entries not assigned no join path exists between the pair of nodes (need cross-product to join)

Node F, N, LTN
Link L
Integer jtype // Type of join by cardinality: 1-1, 1-N, N-1, M-N
For each node F in G (1)

M[F,F] = Null // Empty join path to itself (2)
count = 0 (3)
accept_lossy = false (4)

Repeat_label:
 add F to NQ (5)
 While NQ is not empty (6)

 Remove first node N from NQ (7)
 For each outgoing link L of N (8)
 LTN = destination node of link L from N (9)
 jtype = cardinality of join for L (from N to LTN) (10)
 If LTN is not visited and (accept_lossy or
 not ((M[F,N] has N-1 join and jtype=1-N)) or jtype=M-N) Then

(11)

 Add LTN to NQ (12)
 Mark LTN as visited (13)
 M[F,LTN] = M[F,N] + LTN (14)
 count++ (15)

 ElseIf accept_lossy or not ((M[F,N] has N-1 join and jtype = 1-N)) or jtype = M-N) Then (16)
 // Replace current join path (M[F,LTN]) if new join path is same length with better properties
 End if (17)
 Next (18)
 End while (19)

 clear_flags() // Clear all visited flags for all nodes in G (20)
 If count < # of nodes in G and accept_lossy = false Then (21)

 accept_lossy = true (22)
 Goto Repeat_label // Repeat algorithm accepting all joins (even lossy) (23)

 End if (24)
Next (25)

Theorem 1 cannot be applied directly to produce a join tree for a cyclic graph because
there will be multiple join trees that are all semantically valid. The system cannot
differentiate them without knowledge about the intended query semantics. Although heuristic
algorithms may choose a join tree, it is better to have a precise mechanism for the user to
exploit. Thus, we define query extensions that allow the user to precisely define the
semantics of the query so the system can uniquely determine the join tree required.

5 Query Extensions
To more precisely define query semantics, extensions to the integrated view are possible.

The first extension allows the user to pick the root join table or row in the join matrix.
Semantically, the root join table is the starting point of all join paths. This allows the system
to unambiguously construct a join tree which matches the intended query semantics.

The second optimization enhances the integrated view presentation by displaying join
conditions to the user. If a semantic name is a foreign key to another concept, the system
displays the attributes of the linked concept. For example in Northwind, the EmployeeID in
Orders has a semantic name [Order;Employee] Id as it is the foreign key from Orders
to Employees. When the user clicks on this semantic name, the system links to the Employees
table and displays the fields of Employees (EmployeeID, LastName, FirstName).

This approach has several benefits. It reduces the semantic burden on the user by
automatically displaying concept interrelationships, and reduces the query generation
complexity for the system. By explicitly displaying the join information and associated fields,
the system now has an unambiguous reference from the user on which fields to use, from
what tables, and the corresponding join condition to use to relate the two different contexts.

6 Future work and Conclusions
In this paper, we have demonstrated how the context view produced by our integration

architecture is similar to the Universal Relation. Further, we demonstrated a method for
mapping user queries on an integrated view of semantic concepts to SQL. The system
handles complex join constructs and selects the appropriate fields, tables, and join conditions
to preserve user query semantics. Finally, we propose extensions to the original context view
to allow the user to more formally define the semantics of their query without explicit
knowledge of the structure and interrelationships of database fields and tables.

References
[1] Aho A.V., Beeri C., Ullman J.: The theory of joins in relational databases. ACM Transactions on

Database Systems. 4(3):297-314, September 1979.
[2] Bell J., Rowe L.: Human factors evaluation of a textual, graphical, and natural language query

interfaces. Technical Report ERL-90-12, University of California, Berkeley, Feb. 1990.
[3] Brosda V., Vossen G.: Update and retrieval in a relational database through a universal schema

interface. ACM Transactions on Database Systems. 13(4):449-485, Dec. 1988.
[4] Collet C., Huhns M., Shen W-M.: Resource integration using a large knowledge base in Carnot.

IEEE Computer. 24(12):55-62, December 1991.
[5] Date C.J.: The SQL standard. Addison Wesley, Reading, US, third edition, 1994.
[6] Genesereth M., Keller A., Duschka O.: Infomaster: An information integration system. SIGMOD

Record. 26(2):539-542, May 1997.
[7] Gingras F., Lakshmanan L., Subramanian I., Papoulis D., Shiri N.: Languages for multi-database

interoperability. SIGMOD Record. 26(2):536-538, 1997.
[8] Kirk T., Levy A., Sagiv Y., Srivastava D.: The Information Manifold. In AAAI Spring Symposium

on Information Gathering (1995).
[9] Korth H., Juper G., Feigenbaum J., Gelder A., Ullman J.: System/U: A database system based on

the universal relation assumption. ACM Transactions on Database Systems. 9(3):331-347, 1984.
[10] Krishnamurthy R., Litwin W., Kent W.: Language features for interoperability of databases with

schematic discrepancies. SIGMOD Record. 20(2):40-49, June 1991.
[11] Lawrence R., Barker K.: Automatic integration of relational database schemas. TR-00-15,

University of Manitoba, Department of Computer Science, July 2000.
[12] Li C., Yerneni R., Vassalos V., Garci-Molina H., Papakonstantinou Y., Ullman J., Valiveti M.:

Capability based mediation in TSIMMIS. SIGMOD Record. 27(2):564-566, June 1998.
[13] Litwin W., Abdellatif A.: An overview of the multidatabase manipulation language MDSL. In

Proceedings of the IEEE, May 1987, 69-73.
[14] Maier D., Vardi M., Ullman J.: On the foundations of the universal relation model. ACM

Transactions on Database Systems. 9(2):283-308, June 1984.
[15] Merz U., King R.: DIRECT: A query facility for multiple databases. ACM Transactions on

Information Systems. 12(4):339-359, October 1994.
[16] Sagiv Y.: A characterization of globally consistent databases and their correct access paths. ACM

Transactions on Database Systems. 8(2):266-286, June 1983.

	Introduction
	Background and Previous Work
	Previous Work

	Context View as a Universal Relation
	Context View as a Universal Relation

	Query Parsing and Join Tree Construction
	Determination of Data Source Fields and Tables
	Determining Join Conditions

	Query Extensions
	Future work and Conclusions

