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Abstract:
Restless bandits model the exploration vs. exploitation trade-off in a changing (non-stationary)
world. Restless bandits have been studied in both the context of continuously-changing (drifting)
and change-point (sudden) restlessness. In this work, we study specific classes of drifting restless
bandits selected for their relevance to modelling an online website optimization process. The con-
tribution in this work is a simple, feasible weighted least squares technique capable of utilizing
contextual arm parameters while considering the parameter space drifting non-stationary within
reasonable bounds. We produce a reference implementation, then evaluate and compare its per-
formance in several different true world states, finding experimentally that performance is robust
to time drifting factors similar to those seen in many real world cases.

1 Introduction

Lai and Robbins (1985) introduced the stan-
dard stochastic, finite-armed, multi-armed ban-
dit problem and produced an efficient1 solution
where the rewards of a given arm are station-
ary and independent and identically distributed
(i.i.d.) with no contextual information. A
large number of algorithms have been proposed
since Lai and Robbins (1985) including upper-
confidence bound techniques (Auer et al., 2002),
ε-exploration approaches (Watkins, 1989; Ver-
morel and Mohri, 2005), probability matching
techniques (Agrawal and Goyal, 2012) and oth-
ers. Many variants of the initial problem have
also been investigated in the literature including
the many- or infinite-armed, combinatorial, ad-
versarial, contextual, and non-stationary cases.

In this work, we explore the variant of the
problem where the reward distributions may be
changing in time. Specifically, we explore the
case where the reward distributions may be drift-
ing in time and contextual information is avail-
able. This replicates the online marketing sce-

1In the same work, Lai and Robbins demonstrate
an asymptotic lower bound of regret of O(logN) for
any algorithm.

nario, where an experiment to modify a webpage
may be set up at a given time and run indefi-
nitely with the aim of maximizing revenue. The
web environment has context: user factors (web
browser, operating system, geolocation), world
factors (day of the week), and arm factors (group-
ing of modifications). Utilization of contextual
variables allows learning behavior for classes of
users and observable world effects in order to im-
prove the results.

2 Background

A (finite-armed) multi-armed bandit problem
is a process where an agent must choose repeat-
edly between K independent and unknown re-
ward distributions (called arms) over a (known
or unknown) time horizon T in order to maxi-
mize his total reward (or equivalently, minimize
the total regret, compared to an oracle strategy).
At each time step, t, the strategy or policy se-
lects (plays) a single arm it and receives a reward
of rit drawn from the ith arm distribution which
the policy uses to inform further decisions. In
our application, individual arms represent web-
page modifications with the goal of maximizing
desired user behavior (sales, time engaged, etc.).



2.1 Regret

We define expectation-expectation regret (R̄E) as
our objective variable of interest, computed as
the difference between the expected value of the
best arm (per play) minus the expected value of
the arm that is selected by the algorithm, con-
ditional on all contextual variables, with expec-
tation taken over repeated plays of an arm at a
fixed point in time. This distinguishes from the
stochastic measures of regret computed using em-
pirical estimates of the mean or observed reward
values and from the adversarial measures of re-
gret where the best (oracle) arm is taken only in
expectation over all plays. Formally, our objec-
tive value is

E[R̄E ] = EP

[
(maxi=1,2,...,K

∑T
t=1 EA[ri,t])−

∑T
t=1 EA[rit,t]

]
(1)

Where it is the arm selected (played) at time t,
EP is expectation taken over repeated plays and
EA expectation taken over the arm distribution
at a given time t.

2.2 UCB Algorithms

A well-studied family of algorithms for the sta-
tionary bandit problem are called Upper Confi-
dence Bound (UCB) strategies. In a UCB strat-
egy, at each time step t, the arm is played that
maximizes the average empirical payoff (A(x))
plus some padding function (V (x)). The best ba-
sic UCB strategy we explore is UCB-Tuned (Auer
et al., 2002) where A(x) is defined as the total
observed payoff divided by its number of plays
and V (x) uses the empirical estimate of the arm’s
variance plus a factor to achieve a upper bound of
the true value in high probability. This algorithm
is intended for stationary multi-armed bandits,
however, we test it in the non-stationary case.

2.3 Restless Bandits

Change-point analysis, also known as change de-
tection or structural breakpoints modelling, is a
well-studied problem in the applied stochastic
process literature. Intuitively, a change-point is
a sudden, discrete or “drastic” (non-continuous)
change in the shape of the underlying distribu-
tion. In an offline fashion, change-points may be
detected efficiently and with an adequate set of
tuneable parameters with clustering algorithms.
For bandits, the problem is necessarily an online
problem and offline algorithms for change point

detection are not feasible. The basic idea of on-
line change-point bandits is to use a mechanism
to detect change-points, generally parameterized
for some acceptable false alarm rate, and then
utilizing some mechanism to “forget” learned in-
formation after each change-point as necessary.

Hartland et al. (2006) propose an algorithm
called Adapt-EvE based on the UCB-Tuned al-
gorithm (Auer et al., 2002). Adapt-EvE uses the
frequentist Page-Hinckley test to identify change-
points. Upon detection of a change-point, Adapt-
EvE treats the problem as a meta-bandit prob-
lem. That is, a second layer of bandit optimiza-
tion is instituted with two arms: (1) continues
using the learned data and (2) restarts the UCB-
Tuned algorithm from scratch. This meta-bandit
forms a hierarchical strategy that can be expected
to efficiently evaluate the cost in regret of each
detected change. This technique was the winning
technique in the PASCAL Exploration vs. Ex-
ploitation challenge in 2006 (Hussain et al., 2006)
demonstrating its ability to handle both drifting
and change-point type bandits.

Kocsis and Szepesvári (2006) present a variant
of UCB-Tuned called DiscountedUCB which ap-
plies a continuous discount factor to the estimates
in time. Garivier and Moulines (2008) introduce
Sliding Window UCB (SW-UCB) parameterized
by a window length and show it performs simi-
larly to DiscountedUCB contingent on appropri-
ately selected parameterizations.

Mellor and Shapiro (2013) present an on-
line Bayesian change-point detection process for
switching (discrete change) bandits with constant
switching rate – the frequency with which the dis-
tributions change – in the contexts where switch-
ing occurs globally or per-arm and when switch-
ing rates are known or must be inferred. Their
algorithm is probability matching based, but, as
presented does not support contextual variables.
Further, their technique addresses a bandit with
switching behavior, rather than drifting behavior
as explored in this work.

2.3.1 Stochastic Drift

In time-series analysis, stochastic drift is used to
refer to two broad classes of non-stationarity in
the population parameter being estimated: (1)
cyclical or model-able drift that arise because of
model misspecification and (2) the random com-
ponent. Often it is possible to detrend non-
stationary data by fitting a model that includes
time as a parameter. Where the function of
time is well-formed and appropriate for statisti-



cal modelling, a trend stationary model can be
found with this detrending process. For models
where detrending is not sufficient to make a pro-
cess stationary, difference stationary models may
fit, where the differences between values in time
Yt and Yt−n can be represented as a well-formed
function appropriate for statistical modelling.

Difference stationary models are represented
with autoregressive models. The generalized rep-
resentation of the simple autoregressive model is
referred to as AR(n) where n is the number of
time steps back the current value maintains a de-
pendency upon.

AR(n): Yt=α0+α1Yt−1+α2Yt−2+···+αnYt−n+εt (2)

Where εt is the error term with the normal
characteristics of zero mean (E[εt] = 0), vari-
ance σ2 and independence across times (E[εtεs] =
0,∀t ∈ {t 6=s}) after fitting the autoregressive cor-
relations. If these two detrending strategies are
not sufficient to make a given process station-
ary, more complex filters such as a band-pass or
Hodrick-Prescott filter may be applied.

2.4 Generalized Linear Bandits

Filippi et al. (2010) use generalized linear mod-
els (GLMs) for bandit analysis, extending the
work of (Dani et al., 2008; Rusmevichientong and
Tsitsiklis, 2010) to utilize the UCB strategy of
(Auer et al., 2002) and proving (high-probability)
pseudo-regret bounds under certain assumptions
about the link function and reward distributions.
In some sense, our work extends the Filippi et
al. result to an experimental analysis within
the non-stationary case, as well as introducing a
Thompson sampling based strategy for integrat-
ing GLMs, rather than the UCB technique.

2.5 Probability Matching

Probability matching, especially randomized
probability matching known as Thompson sam-
pling, has been explored in the reinforcement
learning (Wyatt, 1998; Strens, 2000), and multi-
armed bandits literature (Mellor and Shapiro,
2013; Scott, 2010; Kaufmann et al., 2012; May
et al., 2012; Chapelle and Li, 2011; Granmo and
Glimsdal, 2013; Durand and Gagné, 2014). The
basic technique is to express a model that matches
the probability of playing a particular arm with
the probability of that arm being the best, con-
ditional on all the information observed thus far.
That is, select arm i ∼ P [ri is max]. In general,

this technique benefits from the same uncertainty
“boosting” that the UCB policies achieve; for the
purpose of exploration, it is beneficial to “boost”
the predictions of uncertain actions (Chapelle and
Li, 2011). This technique has become very pop-
ular of recent as various experimental and spe-
cific model theoretical analyses (Kaufmann et al.,
2012) have demonstrated regret comparable or
better than the popular upper confidence bound
(Auer, 2003) and Exp4 (Auer et al., 2002) de-
rived techniques. Recently, scalability has been
studied by introducing a bootstrap-based vari-
ant of Thompson sampling (Eckles and Kaptein,
2014). Importantly, practical implementation of
the probability matching technique is simple in a
modern statistical computing environment.

A number of results have shown improve-
ments by performing optimistic Thompson sam-
pling (Chapelle and Li, 2011; May et al., 2012)
where one only considers the positive uncertainty
surrounding an arm estimate. Unlike UCB-based
policies, traditional Thompson sampling both in-
creases (if the draw is above the point estimate
of the mean) and decreases (if the draw is below
the point estimate of the mean) a prediction, de-
pending on the sample draw; for the purpose of
maximizing reward (minimizing regret), the de-
crease appears to have no benefit. For this rea-
son, optimistic Thompson sampling, which only
increases predictions proportional to their uncer-
tainty, outperforms the traditional technique.

3 Overview of the Approach

The general technique we experiment with is
to fit a regression model of varying form to the
data and then to utilize the technique of opti-
mistic Thompson sampling to predict arm pay-
offs in the next iteration of the algorithm. We
explore and compare two primary models, the
autoregressive, time-detrended approach and the
weighted least squares approach for handling non-
stationarities with a regression framework.

3.1 Autoregression and
Detrending

Formally, we fit a model

Yt,i = αt+ARi(p) +Trendi(t) +At,i+ εt,i (3)

Where Trend(t) is a function representing the
expected time trend, AR(p) is the autoregressive



term of order p and Yt,i is the expected reward
for arm i at time t. In practice, this model is gen-
erally fit as a model of Yt with binary (“dummy”)
variables At,i and relevant interaction terms in-
dicating which arm is detected. In our experi-
mental results, we explore how variations (espe-
cially overspecification of the functional form) in
the “correctness” of the selection of Trend(t) af-
fect the overall results. This model, fit with the
ordinary least squares technique, the ridge regres-
sion technique (Tikhonov, 1963) or the Bayesian
conjugate prior technique, returns an estimated
set of time-detrended, plausibly stationary2 coef-
ficients β̂ and estimates of their standard errors
ŜE(β̂). This model can be readily extended to
contain any contextual variables, such as demo-
graphic information about the user (in the web
optimization context) or grouping criteria on the
arms to improve the learning rate.

Combined, we follow in standard experiment
design terminology and call the terms in our
model α, AR(p), Trend(t), and At,i the design
matrix and refer to it as X.

3.2 Penalized Weighted Least
Squares

The weighted least squares (WLS) process in-
troduces a multiplicative weighting of “reliabil-
ity” for each observation, resulting in a technique
which minimizes the reliability-adjusted squared
errors. In the multi-armed bandit context with
drifting arms (without any a priori knowledge of
the functional form of the drift), the weights are
set to the inverse of their recency, indicating that
at each time step t, older data provides a less re-
liable estimate of the current state.

Intuitively, weighted least squares provides a
simple, well-explored, highly tractable technique
to discount the confidence of old data, increasing
predictive uncertainty as time progresses. This is
a desirable quality within the context of restless
bandits as it appropriately accounts for the grow-
ing predictive uncertainty of old observations.

Formally, the weighted least squares pro-
cedure picks β̂, coefficients on a set of vari-
ables, X, called the independent variables (or
regressors), according to the equation β̂ =
(XTΩX)−1(XTΩy) where Ω is the matrix of
weights and y is the rewards as observed (or, in
general, the regressand). Standard errors of the

2As long as the detrending process successfully re-
moved the non-stationarity.

coefficients are also computed, producing an esti-
mate of the standard deviation of our estimators.

To apply the weighted least squares procedure,
we follow in the work of Pavlidis et al. (2008)
which uses a standard linear regression to com-
pute the estimates of each arm and the work of
the LinUCB algorithm (Li et al., 2010) which ap-
plies a non-weighted penalized linear regression
to compute estimates of the payoff for each arm.
As we are a priori uncertain about the functional
form of the non-stationarity in our bandit arms,
we experiment with a variety of time weighting
techniques – logarithmic, with varying scale and
base; linear, with varying polynomials; exponen-
tial, with varying coefficients; and sinusoidal –
demonstrating the generality of this technique. In
all cases we strictly decrease the weight of a sam-
ple as it becomes further in time from our current
prediction time. When additional information
about the form of non-stationarity is available,
weights can be specified appropriately to reduce
the predictive uncertainty.

3.3 Optimistic Thompson
Sampling

Extending the LinUCB algorithm, we propose a
technique that exploits the assumptions of the
linear model and the probability matching tech-
nique of Thompson sampling. Based on the as-
sumption of normality, the regression coefficients,
β̂, are normal and hence the predictions ŷt are
normal. We then optimistically sample (draw-
ing only values above the mean) from a normal
distribution with mean

∑
i(β̂i ·xi,t) and variance∑

i (V̂ar(β̂i) ·x2
i,t) to approximate ŷt. A more gen-

eral form of this fundamentally Bayesian algo-
rithm can be constructed utilizing the techniques
of Bayesian regression (Minka, 2001) at the cost
of higher computational complexity.

4 Simulation Environment

To test our combined strategies and produce
objective comparisons, we produce a synthetic
simulator with a wide variety of “true worlds”
(unobserved to the agent) including arm distri-
bution type and parameters, arm count, and drift
type from a set of functional forms including ran-
dom walk, exponential random walk, logarith-
mic, linear (in varying degree), exponential and
periodic drift (sinusoidal over varying periods).



Each form of drift is parameterized by a randomly
drawn real number constrained to be within the
same order of magnitude as the arm payoffs in
its simulation world which determines the scale
of the parameterization. To validate our results
against plausible modelling error, our simulator
validates each algorithm in the PASCAL chal-
lenge environment (Hussain et al., 2006) and in
the unbiased replay technique of Li et al. (2011).

We present the combined algorithm, param-
eterized in degrees of autoregression, detrending
and functional form of our weighted least squares
discounting process in pseudocode in Figure 1. Of
the n data points, the first p must be collected us-
ing another method (uniformly at random, in our
case) to provide enough degrees of freedom to fit
the regression model with p variables.

Input : λ the pena l ty f a c t o r
w(t) the weight ing s t r a t e g y

f u n c t i o n penalizedWLS (X , y , Ω , λ)
β̂ = (XT ΩX+λI)−1(XT Ωy)
s2 = (y− β̂X)T (y− β̂X)/(n−p)
V̂ar(β̂) = diag[s2(XT ΩX+λI)−1]

end

f u n c t i o n opt imi s t i cSample r ( β̂ , V̂ar(β̂))
samples = [ ]
f o r each arm

e s t i m a t e s [ arm ] = sample est imated reward
payo f f ŷt

end
argmaxarm e s t i m a t e s

end

f u n c t i o n generateWeightMatrix ( t )
Ω = [ ]
f o r e a c h i < t

append w(i) to Ω
end
I · Ω

end

X = y = Ω = [ ]
t = 0
whi le p lay ing
ri,t = play arm opt imi s t i cSample r (

penalizedWLS (X , y , Ω , λ)
)
extend X , the des ign matrix
append ri,t to rewards h i s t o r y y

Ω = generateWeightMatrix (t++)
end

Figure 1: Pseudocode of combined algorithm.

5 Experimental Results

In the results presented, we omit ε-greedy,
UCB1, DiscountedUCB and others as they were
strictly outperformed by UCB-Tuned or SW-
UCB for all parameter choices tested. We also
show only four representative drifting worlds due
to space constraints. Across all true worlds, we
find in general that a detrending term congruent
with the true drift form (e.g. linear detrend in
the linear drift quadrant of Figure 2) outperforms
all other strategies in the long run, producing a
zero-regret strategy (Vermorel and Mohri, 2005)
for restless bandits where the functional form of
restlessness is known. Similarly, we find that uti-
lizing a weighting function which closely approx-
imates the true drift performs well in most cases.
Surprisingly, we find that linear detrending is an
effective technique for handling the random walk,
a result that is robust to variations in the step
type and scale of the random walk. Unintuitively,
WLS techniques also perform strongly even in the
case when there is no drift.

In these experiments, we find no convincing
evidence for a general application for detrending
in polynomial degree greater than one or autore-
gression of any level in our model. Both autore-
gression and higher degree polynomials strictly
reduce regret if the true world trend is autore-
gressive or determined, even partially, by the
chosen form. We find the linear weighted least
squares technique (weights set to the inverse of t)
to be the most robust technique over all experi-
ments, suggesting it is the strongest technique in
the case of no a priori information on the form of
drift: having the lowest mean total regret (20.8),
lowest standard deviation across all drift types
(11.8) and the lowest 75th (worst-) percentile re-
gret (26.6). Due to space constraints and difficul-
ties reproducing some challenge results, we do not
present the PASCAL challenge data here, how-
ever, our preliminary results show similar promise
with the weighted least squares technique.

6 Conclusion

In this work, we have implemented and exper-
imented with integrating time series techniques
and weighted least squares with the highly suc-
cessful Thompson sampling technique to extend
the state of the art in handling restless regression
bandits. We present evidence that weighted least
squares techniques provide a strong solution for
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ongoing multi-armed bandit optimization in an
uncertain-stationarity world even without an a
priori understanding of the modality of drift. The
technique presented allows bandits with context
to handle drift in diverse form and operationalizes
monotonic discounting in a simple, easy to imple-
ment regression framework. This provides a vi-
able solution to the ongoing online marketing ex-
perimentation problem. Future work will explore
how contextual factors improve results for web
optimization, perform real world experiments on
online marketing optimization, and derive formal
bounds for the interaction between weighted least
squares and optimistic Thompson sampling.
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