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ABSTRACT

Web content is consumed on smart phones, tablets, and
computers with a significant variation in device display reso-
lution. Visualizing data is typically performed by extracting
data from a database, packaging it as JSON or XML for trans-
mission to the client and then visualizing with a client-side
JavaScript library. A major challenge is to retrieve only the
required data for visualization. Current approaches require
programmers to manually modify their data extraction queries
and do not adapt to client display characteristics. The contri-
bution in this work is a configurable data compression method
that automatically adapts the amount of data transmitted for
client-side visualization based on device characteristics. We
evaluate several different techniques for time series summa-
rization and compression and show that the amount of data
transmitted can be reduced by between 40% and 80% while
preserving pixel-perfect visualization. Reducing data trans-
mitted improves client responsiveness and allows flexible and
responsive web content without programmer intervention. The
approach is tested on a wide variety of data sets and is imple-
mented as an add-on for a JavaScript visualization library.

Index Terms— data visualization, user interfaces, data
compression, optimization, time series analysis

1. INTRODUCTION

With the proliferation of web devices, designers are challenged
to construct web sites with content that is adaptive to the char-
acteristics of each device, especially display size and resolu-
tion. Client-side libraries [1] allow content to be scaled and
modified for best display. However, there has been consider-
ably less work on how to adapt the amount of data provided to
the web client. Displaying data is a common task for applica-
tions, especially those involving time series data [2].

In these domains, the amount of data to be visualized is of-
ten considerably larger than can be displayed, and transmitting
all data to the client is costly. The amount of data visualized
on a computer with a 27" monitor is different than a smart
phone. Retrieving too much data is costly in time and net-
work bandwidth and requires the visualization library perform
sampling or averaging. Retrieving too little data may result in
the visualization missing key points critical to data analysis.

Sending the right amount of data for visualization improves
performance and reduces the network bandwidth used. From
a developer’s perspective, the ideal case is for the server to
automatically adapt the amount of data sent to the resolution
of the client device.

This work demonstrates a system that takes a time series
database, performs various compression algorithms on the
data, and uses the compressed summaries to only transmit
the necessary data to the client for visualization. There has
been considerable work in summarizing and compressing time
series data. The focus of this work is not on the particular
compression technique chosen, but rather demonstrating how
these techniques can be used in conjunction with knowledge of
web client display sizes to dramatically reduce the amount of
data transmitted for visualization. Our system has been tested
on several standard data sets [3]. On average, the amount of
reduction on data transmitted is 42%. For smart phones, the
reduction is a substantial 77% which is especially significant
due to the bandwidth costs on mobile networks.

The organization of this paper is as follows. Section 2
presents background on the compression, visualization and
general treatment of time series data. Section 3 provides an
overview of the approach including a system architecture. Sec-
tion 4 describes our implementation of sliding window, piece-
wise polynomial approximation (PPA) for time series com-
pression. Experimental results are in Section 5, and the paper
closes with future work and conclusions.

2. BACKGROUND

A standard solution to the problem of presenting large data
is aggregation. For example, if the data consists of sensor
readings sampled every 5 seconds, then a chart displaying
the data over a year will typically aggregate the samples on a
daily basis. The issue is that this aggregation is usually pre-
defined and does not adapt to the display. A larger display
can present more data and should not be limited a priori on
the data that it displays. Conversely, a smart phone display
that attempts to display a chart with data better suited to a
larger display will end up discarding data that does not fit on
its screen or overplotting the data making the visualization
difficult to understand. In a web environment, the transmission
of the data to the client is costly and time-consuming.



Time series data [2] is one of the most common types of
visualized data and is present in many domains including eco-
nomics, environmental and industrial sensors, and network and
computer performance monitoring. Time series data can be
very large making efficient visualization and processing criti-
cal. Time series summarization or compression can be used
for a variety of purposes including time series indexing [4],
clustering [5], and querying or pattern matching [6]. Summa-
rization techniques also have the major benefit of producing
a summary of the data set that is significantly smaller than
the original data set. There are numerous techniques for time
series compression including piecewise linear approximation
[7], piecewise polynomial approximation [8], Discrete Fourier
Transforms [9], Discrete Wavelet Transforms [10], using sym-
bolic encodings [11] and adaptively selecting the best model
for segments of a time series [12]. In this paper, we implement
a piecewise polynomial approximation approach similar to
[13], although other compression techniques may be used.

The closest related work defines perceptually important
points (PIPs) [14] to build a system that only transmits the
most visually important points to a client. PIPs are an imple-
mentation of the well-known line simplification algorithm first
proposed in [15]. The algorithm takes a set of n polygonal
points t1,ta, ..., t, and approximates the set by the line seg-
ment ¢1£,. It then finds the farthest point ¢; from #,¢,, and if
this distance is larger than an error tolerance e recursively ap-
proximates the subchains 1, to, ..., t; and ¢;, ..., t,,. Although
the implementation described in [14] mentions adapting the
number of PIPs to display resolution, it does not define a
practical stopping condition (e).

Despite the ubiquitous need for web data visualization,
there is no prior work or system that adapts data transfer to the
device characteristics automatically.

2.1. Definitions

Consider a time series 1" of n points %1, %o, ...,t,. Assume
this time series will be visualized on a line chart with vertical
height h pixels and horizontal width w pixels. If n < w, the
chart can display the time series with at least one pixel per data
point. If n > w, then there are more data points than can be
displayed and aggregation is required, otherwise overplotting
effects will be visible.

Aggregation reduces data series by averaging values in
intervals, d; = 3 >0, ).,y t; fori = 1.[2]. By con-
trolling the parameter z, the time series can be aggregated and
reduced in size by any factor. For a display of width w pixels
and time series of n points, the minimum = = [n/w].

Consider an example data set consisting of n = 10 points
{5,7,9,7,5,5,1,9,3,5}. If w = 5, then aggregation will
display {6,8,5,5,4}. As shown in Fig. 1, aggregation loses
detail information. Without any aggregation, displaying the 10
data points in 5 pixels results in an overplotted figure as there
is more data points than pixels to display them.

The goal is, given any time series 1" and display dimensions
w and h, transfer the smallest representation of the time series
that has identical visual characteristics to aggregation with
x = [n/w].

The vertical resolution V' is defined as the size of each
pixel in the vertical dimension in terms of the data such that

max(t;) — min(t;)

h

where 7 = 1..n. For the previous example, if the height
of the chart is 100 pixels, V = 91%& = 0.08. Each pixel
represents a value range of 0.08.

A model m is a representation of a time series with values
mi,Ma, ..., M,. The absolute error is defined as the sum of
absolute differences between the data and the model with

V= (1)
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Visual error for model m is defined as the sum of the
number of differing pixels between the resulting visualization
compared to the visualization achieved by aggregation with
x = [n/w]. Visually relevant error is defined as

n
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With our example, absolute error on aggregation with
x = 21is 12. Visual error is defined to be 0 as aggrega-
tion is the baseline model. We are interested in algorithms
that perform lossless summarization in terms of visual er-
ror. Performing PIP with w = 5 results in the five PIPs:
{(1,5),(3,9),(7,1),(8,9),(10,5)} with absolute error of 6
and visual error compared to aggregation of 3.

Assume the example 10 data point set is part of a larger set
such that for visualization only 5 pixels are available to display
the data (w = 5). A system that sends the entire data set to
the client for visualization is leaving it up to the visualization
library to handle the issue. The library may perform sampling,
aggregation, or overplotting, so developers will perform ag-
gregation on the data to ensure it can be visualized properly
and consistently. The minimum amount of aggregation is av-
eraging two points as shown in Fig. 1(b). Aggregation loses
some information (e.g. big change between times 7 and 8)
which is measurable by absolute error. However, it is the best
that is possible given the display characteristics. In Fig. 1(c)
is the output for PIP which models the base data series with
no aggregation but may still be subject to overplotting (e.g.
points 7 to 8 will occupy the same pixel which would leave
it up to the visualization library to resolve). PIP produces
visually different charts compared to standard aggregation. In
Fig. 1(d) is an example of overplotting where too much data is
attempted to be displayed.
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Fig. 1: Time Series Summarization

3. OVERVIEW OF THE APPROACH

An architecture diagram for the approach is in Fig. 2. When
a user requests a web page containing a visualization of time
series data, as part of that request the browser provides infor-
mation on the client environment, including display resolu-
tions. The web server receives that request, and the module
responsible for retrieving the time series data queries and re-
trieves the data from the database. Instead of passing the data
directly back to the client, the data is passed through a com-
pression module that takes the raw time series data as input
and outputs a compressed data stream specific for the client
request. Thus, a request by a smart phone user will receive a
different compressed stream than a request by a PC user due
to the different visualization properties of each device. For
efficiency, the system also caches previous requests so that
multiple users requesting the same time series at the same
resolution can retrieve the data directly from cache rather than
extracting it from the database and compressing it. When the
client receives the compressed data, a small JavaScript routine
uncompresses the data before passing it to the visualization
library. The system is transparent to the visualization library
and functions above the database layer.

The key benefit of the approach is that the web server is
often able to transmit significantly less data to the client to
achieve an equivalent visualization compared to transmitting
the whole data set. This saves bandwidth which reduces the
time and cost for the user and the service provider.

The compression algorithm relies on device characteris-
tics (width and height of the display). Utilizing these charac-
teristics allows for better compression while still remaining
lossless. We have experimented with several compression
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Fig. 2: High-Level Architecture Diagram

algorithms including: no compression, run-length encoding
(RLE), visual aggregation, perceptually important points (PIP),
piecewise linear approximation (PLA), and piecewise poly-
nomial approximation (PPA). Implementation details of these
algorithms follow.

3.1. No Compression and RLE

Both the no compression and run-length encoding (RLE) algo-
rithms provide the complete set of data to the client in lossless
fashion. If there are more data points than can be displayed, the
visualization library is left to handle this issue which typically
results in overplotting and unreadable charts. In practice, fixed
aggregation is performed before data visualization to prevent
these issues. Note that all algorithms could further compress
the data using a Lempel-Ziv type algorithm [16]. This type of
compression is typically performed at the HTTP level using
DEFLATE or gzip and is not considered in this work.

3.2. Visual Aggregation

Aggregation takes time series data and aggregates it over the
time dimension to produce a smaller data set. Aggregation
is commonly performed statically by averaging over time to
reduce the data points. Our implementation performs dynamic,
visual aggregation. Given the display width w and time se-
ries of length n, the time series is aggregated by averaging
[n/w] adjacent points. This guarantees one point per pixel in
the visualization (the minimum possible) and maximizes the
information displayed.

3.3. Visual RLE

A natural extension to RLE is to perform RLE by considering
points equivalent if they are within a given error bound €. This
would allow points 1.1, 1, 0.9, 1 to be considered equivalent
with an error bound of 0.1. Thus, each pixel represents a



possible range of values from [X — R/h, X + R/h]. By setting
€ =V, as defined in Equation (1), considerable compression
may be achieved as similar points may be deemed equivalent
in terms of visual representation. Visual RLE produces an
output that is visually equivalent to visual aggregation.

3.4. Perceptually Important Points (PIPs)

The work on PIPs [14] is one of the only works to consider
summarizing a time series data by its visual characteristics.
As explained in Section 2, PIPs are determined iteratively
by calculating the next point that is furthest from the current
representation. Although [14] indicates that PIPs can be used
to adapt to display characteristics, the authors do not state
specifically how this is achieved in the algorithm. The major
drawback is that there is no stopping criteria defined for PIPs.
Our implementation provides a parameter n denoting how
many PIPs to use for data summary. The algorithm can also
continually calculate PIPs until a given error bound e is hit.
Unlike other algorithms, the output of PIP is not guaranteed to
provide the same visual representation as aggregation.

4. PIECEWISE POLYNOMIAL APPROXIMATION

Our implementation combines piecewise linear and polyno-
mial approximation and functional compression. The algo-
rithm models the data using a series of piecewise linear and
polynomial functions [17] as shown in Algorithm 1. To con-
struct each piecewise segment, functional compression is per-
formed on the data. A fitting function performs a linear scan
through the data with the goal of fitting a piecewise function
of a functional form F'. Fitting continues until the stopping
condition where the error exceeds €. The algorithm then stores
the last good fit as a piecewise section for the model and con-
tinues to construct a new piecewise segment starting from the
point where the previous segment failed to meet the stopping
condition. During the fitting process for a single segment,
if it is not possible to fit F' with a given degree n, the code
backtracks and attempts to fit a degree n — 1 function. This
process continues until reaching the base case where F' is a
singular data point itself to ensure that no point is left unfitted.

Using the example data set {5,7,9,7,5,5,1,9,3,5} PPA
would iteratively perform a series of least squares fits, pro-
ducing a new fit each time the error threshold is exceeded.
For pixel-perfect modeling, the error threshold e = V' from
Equation 1. The resulting model is

0.6 + 5.14¢ — 0.86¢> t<5
f(t) =< 281 — 82t + 6t2 5<t<8 4
—2454+77t—05t2 8<t

Once the algorithm has constructed the piecewise model
where the encoding specifies the function degree and coeffi-
cients for each piece, the model is transmitted to the client.
The piecewise model is then evaluated at an interval based on

Algorithm 1 PPA(Series T, Form F, Threshold ¢)

data = [], pieces = [], model = null
previousModel = null, pieceCounter = 0
for i = 0; ¢ < T.length; i + + do
data.append(%;)
previousModel = model
model = fit(data, F)
error = calculateError(model, data)
if error > ¢ then
pieces[pieceCounter] = model
pieceCounter += 1
i-=1
data =]
end if
end for
return pieces

client resolution requirements to determine y-axis values.

5. EXPERIMENTAL RESULTS

It is well-known that algorithms have widely different perfor-
mance on different data sets. The data sets tested are listed
in Table 1. Data sets flagged as “subset” have been reduced
into smaller chunks so that visualization makes sense. Trying
to visualize very large data sets just results in a lot of aggre-
gation. The data sets chosen have between 500 and 150,000
data points of one dimensional data. The chart resolution was
varied between common device sizes starting from 100x100
(thumbnail charts) to 1440x960 (HD laptop screen). The al-
gorithms are evaluated based on their absolute error, visually
relevant error, and size of data transferred in bytes. The raw
time series data has a size of 4 bytes per entry (size of an
integer). Compression routines like PIP also must store the
time dimension so each PIP entry has 8 bytes. Functional
compression using degree 2 polynomials uses 16 bytes per
functional piece.

Fig. 3 shows the absolute error of each encoding technique
on various screen sizes. The numbers in brackets in the leg-
end indicate the average relative data size for each algorithm,
where a relative data size of 1 indicates the size of the data
itself. The absolute error is the difference between the time
series data and the model representation of the time series.
Techniques such as sending the entire data set and RLE by
definition have no absolute error as they send the entire data
set. PIP has a very high absolute error until it sends all the data
points. Functional compression has considerably less error.

Even more important than absolute error is visually rele-
vant error shown in Table 2 as VRE. Visually relevant error
occurs due to inaccurate data caused by summarization. We
have modified the selected algorithms to exit when there is no
visually relevant error, so the interesting variable to compare
is the relative data size, that is, the amount of data required



Table 1: Experimental data sets.

Table 2: Average results for a representative set of algorithms
over all the test data sets and resolutions.
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Fig. 3: Absolute Error by Screen Resolution

to achieve no visually relevant error with a given algorithm.
Aggregation performing one value per pixel has visual error
of zero. All of the functional compression techniques have a
visual error of zero as the functional summaries are designed to
match the aggregated values. Only aggregation and functional
compression techniques allow for pixel-perfect display that
adapts to the screen resolution.

The goal is to allow adaptive pixel-perfect charts with
minimal data transfer. In Fig. 4 is the relative amount of
data transferred by the different techniques. The relative data
transferred is shown with the entire data set being 1. RLE com-
pression has little savings, although visual RLE does provide
very good performance as values equivalent in the vertical
dimension to the error bound of a pixel can be considered
equivalent. PIPs transfers more bytes than the data set itself.
Although it is possible to send fewer PIPs than the horizontal
resolution as recommended by [14], the amount of absolute
and visual error is extreme which renders the visualization
useless. Functional compression sends, on average, 62% less
data than the entire data set and adapts to the screen resolution.
As expected there is significant savings in data transmitted for
lower resolutions. The compression can be performed in less
than a second for real-time web visualization.

Data Set Size Source

CPI Seasonal Data 787 [18] Algorithm Relative Data | Avg. AE | Avg. VRE
Minutely Soil Moisture Readings 136 503 | [19] RLE 1.01 0 0%

Variable Star Magnitude 600 [20] V. Agg. 0.448 27 366 0%

Artificial AR(1) Process 500 [21] PIP (e = 0) 1.808 6373 0%

Dow Jones Industrial Avg. Closing | 641 [21] PIP (e = best) | 1.185 26 767 3.77%
Central England Temp. (1659-1989) | 3 972 [22] VRLE 0.925 3785 0%

Keogh: fortune500.dat 128 499 | [3] PPA 0.379 3169 0%

Keogh: slips.dat (subset) 2 500 [3]

Keogh: katafu.dat (subset) 5000 [3]

Keogh: stocks-n6480.dat (subset-1) | 10 000 [3] Functional compression utilizing Piecewise Polynomial
Keogh: stocks-n6480.dat (subset-2) | 10 000 [3] Approximation has particularly strong performance in data
Child EEG Readings 49 999 [3] which has a predictable underlying structure, trends or func-

tional form. As an example, consider the econometric data
presented in the test sets: CPI Seasonal (monthly, inflation
data) and the Dow Jones Industrial Average (monthly, stock
data): both data sets have an upward trend that occurs at a
relatively consistent rate. Functional compression with PPA at
any resolution provides a substantial savings over any of the
other methods on these datasets even where visual aggregation
does not. For these two data sets in particular, PPA performs
an average of 57% better than visual aggregation, while other
methods perform no better than average.

Relative Data by Screen Resolution
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Fig. 4: Relative Data Size by Screen Resolution

6. CONCLUSIONS

Visualization of time series data is very common in web appli-
cations. Performance of the visualization is primarily based
on the amount of data sent from the server to the client. Al-
though applying static aggregation in the time dimension is a
common technique to reduce the data transferred, it does not
adapt to device characteristics. Consequently, smaller devices
may receive more data than required, resulting in increased
bandwidth usage and the visualization library overplotting or
sampling the data sent. In this work, we demonstrated a tech-
nique that uses knowledge of the device characteristics as input



for time series compression algorithms, in order to reduce the
amount of data transferred while at the same time achieving
pixel-perfect visualizations. Across a wide variety of different
time series and screen resolutions, the size-weighted average
savings is 42%. Future work will examine low/high-pass style
filtering to extract structural components, find appropriate func-
tional forms for specific data generating processes or apply a
PPA-style technique to higher dimensional data.
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