Using DSVM to Implement Transparent Distributed File Access

Ramon Lawrence
Department of Computer Science
University of Manitoba

May 29, 1998

Abstract

This paper attempts to demonstrate how the use of distributed shared virtual memory (DSVM) can
make theimplementation of adistributedfile system easier. Distributedfile systems based on DSVM and
client-server architecturesare proposed and compared. Prototypesof both architectures areimplemented,

with the DSVM version constructed using Treadmarks.

1 Introduction

Distributed Shared Virtual Memory (DSVM) is a global shared address space accessible by processes on
different machines. Instead of the usual interprocess communication (IPC) methods needed for distributed
processes to communicate, DSVM provides this communication transparently to the processes. Thus,
process cooperation is more easily achieved in a distributed environment.

This project will focus on showing how DSVM can be used to simplify the implementation of a global
application directory for a set of applications distributed over an Ethernet. Two implementations, one
DSV M-based, will be presented which attempt to provide a flat name space for applicationsacrossalimited
network domain. The advantages/disadvantages of both approaches will be discussed and explanation on

why aflat name space for applications may be beneficial in such an environment.

2 Redated Work

Distributed file systems were examined in great detail in the late eighties. Extensive research was carried
out at Cornell University where a prototype distributed file system called Deceit [5] was developed. [t
contained many of the features desirable for efficient file sharing and transparent file access. The work
also produced a set of distributed management tools [2] which simplified the task of creating distributed
software. The system was built on top of Sun NFS[4].

The Deceit system was a client/server architecture which allowed multiple servers. To improve scal-
ability, clients were divided into clusters called cells each served by a server. The system implemented
a superset of NFS functionality and behaved like NFS without client modification. In NFS, the global
directory hierarchy is divided amoung servers in a static fashion. Each server contains a portion of the
hierarchy and the complete hierarchy can only be formed by combining their portions. Although clients
may communicate with many servers, servers don’t communicate amoung themselves. The main difference
between Deceit and NFS isthat in Deceit files are not statically bound to any server. Clients communicate
only with one server, and if the files requested are non-local to the server then the server contacts other
serversto fill the request.

Using thisarchitecture, Deceit was able to provide user-configurabl e replication of filesand afileversion
control mechanism. Replicas couldn’t cross cell boundaries, as cellsfrom alogical unitimplementing repli-
cation and security access mechanisms. Thus, full transparency wasn’t achieved as serversat different cells
had different functionality and stored different files. The system provided global one-copy serializability
which isthat all clients see the whole file system as if only one copy existed of all files. There are many
other such systems demonstrating similiar functionality [7, 6]. The goa of this project is not to duplicate
the past accomplishments, but to show that by using DSV M, the implementation of the distributed system

issimpler.

3 Environment Specification

The networking domain isaseries of interconnected PCs on an Ethernet. Each PC isconsidered asitewhere
applications may be stored. An application is assumed to have a unigue name across the entire network.
A global name table (GNT) is defined to manage the applications on the network. The global name table
permits the operations: add application, remove application, move application, and find application. In
future work, it would be beneficial to have the table support more advanced operations including sharing
and replication of applications. The GNT is managed by the operating system (OS). Operations may come
from the applicationsitself during an install, the user wishing to relocate the application, and the OS itself.
Reasons why the OS may want to manipulate the GNT are discussed later.

The entries of the GNT consist of the application name and the network location of the application.
Currently, the table does not support replication, so an application can only exist at one site on the network.
Although a name and a location are sufficient to find and retrieve the application, another structure is
defined to capture application information. This structure is an application descriptor record (ADR) which
contains information about an applications resource usage (fileshardware,etc.), run-time statistics, and
sharing options. Although an exact definition of the ADR is not necessary here, a structure storing all the
ADRs of applications on the network could increase the utility of the GNT.

Currently, the GNT is simply a table-lookup mechanism to find applications on the network. It provides
theuser with aflat application name space, effectively hiding the network fromthem. By defining application
requirementsformally in an ADR, it may be possible to hide the network from the application. Thispermits
dynamic load balancing which is the balanced distribution of application processes to take advantage of
changing network access statistics. The GNT provides a mechanism to make application access to the user
transparent which allowsthe OSto freely move applicationfiles. The ADR providesamechanismfor hiding
the network from a running application thereby alowing the OS to dynamically choose sites for executing

applications.

One assumption the GNT makes is that all file access by an application is done relative to its home
directory. Althoughthisisnot strictly necessary for the GNT itself, it isimportant for later definition of the
ADR. The GNT stores an absol ute |ocation path along with amachine name to uniquely find an application.
Clearly, if we alow applications to be executed at different sites, absolute paths to files would pose a
problem. It isfeasible for al files that belong to an application to be accessed relative to its home directory,
but user, OS, or other application files may pose a problem.

To achieve this relative path constraint, a few restrictions must be placed on file naming and locating
conventions. For files belonging to an application, file access must be specified relative to their home
directory. Thisrestriction is not to severe as most PC applications aready create and work in their own
directory. OS files used by applications can be assumed to exist in a fixed directory at all sites because the
OS must exist at all sites. If an application references files of another application, it can do so by giving
the unique application name and then specifying the file relative to the other application’s home directory.
Enforcing that an application name be unique across al networks is a harder problem which can only be
suitably solved by having the software vendor register the name with the OS provider. This name may
be different than the local network name which can aways be tailored to a specific network. In order for
applicationsto reference each other meaningfully, some sort of global naming must be done.

Themost complicated problemisuser fil esbecause usershave grown accustomed to creating complicated
directory hierarchies and have had the luxury of scattering their files freely. Being designed for a network,
it is not unreasonabl e to assume that each user has a home directory. Thishome directory can function like
an application’s home directory, so most of the user file access should be specified relative to their home
directory. There is one nasty exception in that some files must be at specified sites at fixed location. This
can be overcome by concatenating the machine name, path, and filename to give unique names. Thesefiles
do not pose much of a concern because there isno reason for the user or OS to move them frequently.

Since applications are invoked from all sites on the network, the GNT must be in some way distributed

across it. The ease with which thisdistribution can be achieved illustrates the power of DSV M.

4 Architectural Differences

4.1 Non-DSVM Architecture

Thenon-DSVM architectureisshownin Figure 1. Itsdistinguishablefeatures are distinct client and server
processes, and the explicit communication between the two. When there are separate client and server
processes, the problem of dividing the tasks between the two becomes a major issue. To enhance efficiency,
many tasks are propagated to the client side. This often resultsin more complicated logic for both the client
and server processes. For example, client buffering can be used to avoid network access to the server, but
then processing updates becomes more complicated as copies stored in client buffers must be invalidated.
This causes both increasing overhead and complexity.

Further, a dedicated server introduces a point of failure as the data is not distributed across all sites.
Multiple servers compensate for this problem, but then the scalability of the system suffers as the servers
must maintain consistency amoung themselves. The synchronization and communication is explicitly
handled by each process, so |PC code can easily obscure control logic in alarge implementation.

The client/server architecture is based on the idea of machinesin isolation. The distribution is achieved
by pessimistic sharing as sharing is only accomplished by explicit requests and responses. This explicit
communication minimizes sharing. Although this may be desirable for implementing security protocols,
with today’s trend for internetworking and communication, it may be desirable to have a sharing protocol
which isoptimistic, in that it allows data sharing unless explicitly prevented.

Finally, the reason why this architecture is so popular is its implementation simplicity. With a single
server, thereisno replication and the message passing iseasy to handle. The communicationoverhead isalso

minimized as only the minimum amount of information need be passed between the client and server. This

allowsfor great flexibility in communication form. The only drawback of using a client/server architecture
with the GNT isthat the majority of GNT accesses will be location searches in the global directory. This

would result in a network access to the server everytime an application is started.

|PC Sockets

IPC Socket : : I PC Socket 3 : IPC Socket

M achine Boundaries

Figure 1: Non-DSVM architecture

4.2 DSVM Architecture

The DSVM architecture isillustrated in Figure 2. In this architecture, there are no distinguishable client

and server processes. Each process performsthe functionsof both aclient and aserver aswould be expected

in atruly distributed system. The DSVM provides the clients at all machines with a single machine view.
The DSVM stores the GNT, so the GNT appears to be local to all processes. DSVM provides optimistic
sharing in that all datain the DSVM region isvisible to al processes unless explicit security protocols are
implemented on top of it. All communication between the processes is handled by the DSVM manager
transparently. The processes would not even know that they are sharing the GNT data structure if it were
not for the locksthat maintain consistency across all sites.

The DSVM provides maximum replication because al sites have access to the GNT. A failure at one
site would allow the other sites to continue as long as process failure occuring while holding the table lock
can be detected. This optimistic sharing may not be desirable if there are priviledged processes or security
constraints, but in this situation each processis assumed to be a well-behaved OS process.

There are hidden costs not explicitly shown in the diagram. The memory at each processor can only
be made consistent using message passing mechanisms. To implement DSVM efficiently, the size of the
DSVM blocks are normally equal to the page size. This may cause high network traffic in the presence
of frequent updates and false sharing if the granularity of the data on the pagesis small. In this case, the
majority of GNT accesses are reads with updates only occurring when an application is added, moved, or
removed; al of which arerare events. Hence, the DSVM implementation of the GNT should scale well due

to the infrequency of updates.

4.3 Architectural Differences

The main difference between the two architecturesisthat the non-DSVM version does explicit communica-
tionwhilethe DSVM version doesimplicit communication. Explicit communicationisamost alwaysmore
efficient as the programmer can decide on the minimum amount of data to be passed and design specific
programming tricks to improve efficiency. Unfortunately, it is harder to code, maintain and standardize

across implementations. The implicit communication done by the DSVM manager closely parallels object-

Client Requests

___Client | - _ _ | Client | | Client

| : 3 3 :

I GNT DSVM GNT DS\/M GNT :
" server | Jserver | server |

M achine Boundaries

Figure 2: DSVM architecture

oriented principles. The codeiseasier to maintain and debug as the communicationisisolated from the rest
of the program. The cost isincreased communication and overhead. The increased overhead arises from
monitoring memory accesses to determine if they access the shared meomry region.

The second major difference is in the sharing methodology. By its nature, message passing is a
pessimistic sharing method as you only share the information that is requested. The non-DSVM version
has machines cooperating by passing commands in the form of messages. The processes are not isolated
because they must know about the others to communicate (at least the server), but are not in a default

sharing situation as each controls its own resources which are only shared by reguests through the server.

The DSVM presents a single machine view. All processes appear to be sharing a global memory resource,
but in addition each process is given the illusion of isolation as the sharing with others is done implicitly.
This parallelsclosely the idea of atransaction in a database system. DSVM access to the GNT ismuch like
transactions accessing a DB. Individual transactions do not have to worry about other transactions, locking
data items, and sharing updates with other transactions. These features are al handled by the DBMS and
provide the database system with itsincreased functionality. Each process accessing DSVM does have to
worry about locking, but it doesn’t need to know about other processes. Thus, itisunder theillusion that it
isthe only process operating on the GNT much like atransaction is under theillusion that it is the only one
operating on the DB.

Thefinal difference isin the amount of replication. The client/server architecture only has one copy of
the datawhile the DSVM version distributesit to all processes. Thus, access to the GNT are more efficient
as they can be done locally. Since the number of updates is limited, this distribution scales well in the

DSVM case even though all processes much be informed of any change.

5 Ben€fitsof a Global Name Table

One of the main benefitsisthat all users are presented with a consistent and identical view of the network
regardless of their sitelocation. Actually, the network would not bein their "view" asall applicationswould
appear to be local. This substantially enhances user familiarity with the system. The network no longer
appears as separate computers who happen to share an application. Instead, it appears as a large computer
storing al the applications with several input terminals. Obviously, machines on the network differ in
power and storage capabilities, but presenting a consistent view of the network reduces the cognitive load
on the user. Currently, iconsin windowing environments provide this location transparency. Once an icon
isconfigured, the application’slocation isunimportant. The GNT providesaway to simultaneous configure

all icons or network links during an application install.

The GNT makes applications more movable. Instead of having to reconfigure all icons or links at all
stations on the network when an application is moved, only one entry in the GNT needs to be updated and
the effect is propagated to all sites. Thisallowsa user to move an application without it effecting the views
of other users. It also allows the OS to move an application without effecting the users' view. If used
in combination with an ADR table, application execution also becomes site independent. Enforcing the
relative path constraint, allowsthe OS to find thefiles referenced by an application or user at any site. Other
system resources or configurations are site dependent such as display characteristics, sound, and graphics.
Hence, to provide application execution transparency, standardized access to these resources must also be
provided. Thiswill be considered in future work.

Several beneficial OS functions arise if the application and its execution are site independent. Benefits
include load balancing, application shipping and replication, and increased/easier sharing capabilities. The
only function directly achievable witha GNT aloneistransparent application shipping which allowsthe OS

to reconfigure the application allocation across the network.

6 Implementing the GNT without DSVM

The GNT must bevisible at all sites, so it could be implemented by replicating the GNT across all sitesand
using I PC to propagate updatesto all sites. Each site could have a GNT server process which manages the
copy of the GNT for itssite. Thishasthe advantage of distributionin case of system failure, but aso results
in alot of message passing between all the siteswhenever an update occurs. Furthermore, the tables are not
consistent in the time it takes an update to propagate to all sites.

Instead, a client-server architecture has been implemented with one site being chosen as the server and
the others designated as clients. This introduces a single point of failure at the server site, but also greatly
reduces the message passing as only one message has to be passed per update. The biggest disadvantageis

that every time an application isinvoked anetwork access to the server isrequired whereasin the distributed

10

case the query would be local. Whenever an application is referenced, its found by name in the GNT. If it
isstored at anon-local site, requested files are shipped to the client site. Currently, the GNT is only stored
in memory, but any full implementation would store the GNT persistently in case of system failure.
Clearly, the hardest part of implementing the GNT is achieving the required distribution. Each process
must do explicit IPC to get the required information. This increases the programming complexity and

possibility of errors or inconsistenciesin the way the structure is maintained.

6.1 Non-DSVM code explanation

The server process manages the GNT in memory. For simplicity, the GNT is an unsorted array indexed by
application name. The server registers a UNIX socket and waitsfor client requests. A client request can be
either add application, remove application, move application, or find application. The GNT does not check
for duplicate application names nor proper application locations.

The client connects to the server by a UNIX socket. If it does an add application, it prompts for an
application name and uses the machine namethat it isrunning on as anetwork location. Remove application
just removes the application given itsname, while move applicationsmovesit to another site. The site name
is not checked for validity. The find application request returns the site of the current application.

The queries and responses are formulated as simple records. The server process is capable of handling
upto 20 clientsat the sametime. The server does busy waiting while waiting for queries because all sockets
were made non-blocking. This allows each client socket connection to be polled in round-robin fashion by
the server process.

The client basically acts like a dumb terminal for requests as every request is sent to the server
for processing. More complicated implementations may allow client buffering, but this adds unneeded
complexity for this demonstration. The server isvery flexible in its form of communication. New clients

can connect to it at any time and may connect/disconnect several times. Thisis a desirable feature in this

11

situation as not all network machines may be running at the same time. Everytime a machine reboots, it

could reconnect to the server and issue requests. Thus, only the server need be active at all times.

7 DSVM

In theory, DSVM is a global address space accessible by any number of processes which may reside at
different sitesacross anetwork. Essentialy, itisaform of 1PC which implements message passing between
processes in away that is transparent to the application programmer. Instead of passing explicit message
across network channels, processes read and write to the global address space, and it is the responsibility of
the DSVM manager to insure the information they see is consistent.

Clearly, the main advantage is the distribution transparency. A process implementor does not have to
worry about communicating with other processes explicitly. Communicationisachieved by shared memory
accesses of the same form as regular local memory accesses. DSVM, like any other high-level protocol,
does not come without a price. Message passing still must be done by the DSVM manager to maintain the
consistency of the global memory, but thisis handled separately from the process requiringthe DSVM. The
advantages of DSVM are similiar to the advantages of object-oriented programming. The implementation
is hidden from the user, in this case the intercommunicating processes, alowing for more modifiable code

and easier task decomposition.

8 Treadmarksimplementation of DSVM

Treadmarks [3, 1] isa commercia implementation of DSVM intended for running parallel algorithms over
anetwork. It was designed as an alternative to message passing systems. It isimplemented at the user level,
asaC++ library whichislinked into the parallel applicationsrequiring DSVM, and requires no modification

to the OS kernel.

12

Treadmarks does not implement the full-functionality of DSV M. Itsmain limitationisthat all processes
accessing DSV M must be of the sametypebecause it doesafork() systemcall to distributethe parent process
tothedifferent sitesand uses propertiesof the similiarity of their address spaces’ to maketheimplementation
of DSVM more efficient. A DSVM region can be allocated by any process dynamically with a call similiar
to maloc() in the C environment. A separate call then distributes a pointer to this memory region to al
running processes. This pointer must be declared as a global variable because Treadmarks copiesit directly
into the same location into each of the other processes address spaces. By unmapping the shared memory
region from a processes address space, the DSV M manager of Treadmarks can capture accesses totheregion
and propagate changes to the other sites. This unmapping causes the process to generate SEGV signals
when accessing DSV M, limiting its usefulness in system-programming where system calls are interrupted
by signals. Treadmarks provides exclusive locks and barriers as synchronization primitives so access to the
DSVM region can be controlled explicitly by the programmer.

The DSVM management protocol, lazy release consistency, isdefined in terms of these synchronization
primitives. A barrier stopsall processes at the barrier point until al processes reach that point. Exclusive
locks are not associated with any dataitem in DSVM in particular but are used to guarantee that data access
inthe DSVM region isconsistent. An acquire primitiveis either when a process acquires an exclusive lock
or it leaves a barrier. The local memory at the process must reflect global updates at that point. That is,
before a processor can continue after an acquire, al accessesto the DSVM region that preceeded the acquire
must be reflected at this processor.

There are several mechanisms for maintaining the consistency of DSVM. Sequential consistency isthe
method used by most parallel machines where updates are reflected at al sitesimmediately after they are
performed. Thistype of consistency is undesirable in the network environment due to the high amount of
unnecessary communication. The alternative is release consistency which guarantees that shared memory

is consistent only after synchronization primitives occur. That is, broadcasting of the updates is delayed

13

until arelease or an acquire. In eager release consistency, the updates are sent to al sites when the lock is
released at one site. Thisinvolvestoo much overhead as the other sites may never need to know about the
update. In lazy release consistency, the updates are propagated only to the site doing the acquire as that is
the only site that needs to know the changes at this point. Release consistency is equivaent to sequential

consistency if all synchronization operations are done using system-supplied primitives, and there is a
release-acquire pair between conflicting accesses to the shared memory at different locations. Treadmarks
enforcesthis constraint by requiring the programmer use its synchronization primitivesto guarantee that the
shared memory is consistent.

The second major optimization Treadmarks does is allowing multiple-writers. This is to reduce the
amount of false sharing as the DSVM region is broken (and guaranteed consistent) by pages which is often
a much larger granularity than objects in the DSVM region. Basically, when a processor first updates a
page, the page is duplicated at that processor and all following updates to the page are performed on the
copy. When a synchronization primitive occurs, the page is compared to the original to form a "diff" and
the "diffs' are sent to other sites. The other sites then merge the "diffs' to form the new updated pages.
Besides allowing increased concurrency the size of the "diffs' is often smaller than a page which reduces
the amount of transmitted data. If two "diffs" access the same memory region on the same page, then a data
race occurs, and the result istiming dependent. If thisisundesirable, use the synchronization primitives(ie.
locks) to insure that this does not occur.

Although Treadmarkswas designed to be usedin coding parallel algorithms, itisstill useful for prototype
demonstrationslike this one. Its usefulnessfor system programming is limited by its use of signalsand the
requirement that all processes be homogeneous. A more general DSVM implementation would be needed

for any practical project.

14

9 Implementing the GNT using DSVM

The GNT structure is still an unordered array of application names and their locations, but in this case it
is dynamically alocated in DSVM. This guarantees that the structure is seen by all processes at al sites.
Since the GNT is now distributed, concurrency control mechanisms must be applied to insure that the data
structure is manipulated correctly. Thus, the table islocked whenever an access is done. Treadmarks does
not provide shared locks, so only one process is allowed to access the table at atime.

The main limitation of the implementation is that all clients must be forked at startup, but this is a
limitation of the Treadmarks package itself. Also, process failures after lock acquire are not handled which
would be vital in a production system. The simplicity in the code is evident, as except for the locks, each
process thinks that it is operating on its own copy of the GNT and does not have to worry about what the

processes at other sites are doing.

9.1 DSVM code

Treadmarks requires a file specifying machine names on the network where processeswill be forked. When
the parent process is started, Treadmarks forks processes to the designated sites. All processes stop at the
barrier until the parent process can create and initialize the GNT structure and "distribute it" to the other
sites. Once the barrier is passed al processes are identical. There are no distinguishable client or server
processes because each process functions as both a server and aclient. On termination, the parent process

isresponsiblefor deallocating the GNT.

10 DSVM vs. Non-DSVM Implementation

The obvious advantage of the DSVM implementation isits simplicity. DSVM access is virtualy identical

to local memory access making it easier to code and debug than explicit IPC mechanisms like sockets,

15

message queues, or UNIX shared memory. The migration to DSVM parallels the trend in object-oriented
programming. DSVM is an abstraction of IPC principles into a simplified interface (object methods)
provided transparently (object encapsulation) to the application implementor.

Object encapsulation is not free. At its lowest level, DSVM still must be implemented as a form of
message passing, but abstracting the IPC into aDSVM interface allowsfor theimplementation of DSVM to
be improved without effecting applicationsinwhich itisused. Thisissimiliar to theimplementation hiding
which object-orientation provides. It iseasier and more practical to improveasingle DSVM agorithmthan
to optimize code based on lower-level |PC.

A non-DSV M implementation can be more efficient than aDSVM implementationif coded intelligently,
but much like the debate over using C instead of C++ for efficiency, devising such an implementation may
prove more work than it isworth. It istime to stop reinventing the wheel everytime a new application or
protocol isdesigned and start accepting higher-level protocolswhich EFFICIENTLY implement lower-level
constructs. Future work onthe GNT and the ADR are a push in thisdirection. More efficient and powerful
systems can result by optimizing a layered-protocol system and abandoning the idea that an application
must do everything in the system for sake of efficiency.

In this case, the non-DSVM implementation is less efficient than the DSVM implementation in terms
of server performance. Inthe non-DSVM case, the server monitors numerous sockets at atimeforcing it to
continually poll existing sockets for queries and check for any new communication from new clients. This
resultsin alot of busy waiting. The clients are efficient because they can block on their one communication
socket. Onthepositiveside, communicationisminimal, but thisismostly because of the limited distribution
of data. If the GNT was distributed across al sites like the DSVM case, then each process would need at
least 2 sockets connecting to the others and practically would have to be connected to al sites. Thiswould
result in message passing between all processes for every update, and all processes would have to perform

busy waiting as blocking cannot be done on more than 1 socket.

16

11 Conclusions

DSVM is a higher level IPC protocol in the same vein that an object is a higher level data structure. It
providesan easier programming interface and amechanismfor | PC standardization that essentially provides
network distribution transparently to the application designer. Asshown by a simpleimplementation of the
GNT, the benefits to the programmer are very similiar to the benefits of object-oriented design: resource
encapsul ation, standardized interface, and implementation hiding.

The GNT initsown right is essentially a higher-level OS function providing transparent network file
access to the user. Just as DSVM does not provide anything that existing IPC mechanisms cannot, the
GNT does not provide the user with any more functionality than icons or aiases in windowing systems,
but it is a simpler method to accomplish the same task. The GNT is a mechanism which abstracts the
file naming problem into a ssimple interface which could be readily standardized to provide a file access
mechanism independent of OS implementation and optimized as a separate entity to make file allocation

more transparent to all aspects of the system.

12 FutureWork

The GNT, as described, providesjust the shell of functionality required for any real system. The operations,
access functions, and data stored in the GNT must be refined to make it usable. By simultaneously defining
the ADR as amethod for abstracting application execution from network location, atruly dynamic network
may result which allows application files and executing processes to be freely migrated throughout the

network by the OS to improve system efficiency and utilization.

References

[1] Cristiana Amza, Alan L. Cox, Sandhya Dwarkada, , Peter Keleher, Honghui Lu, Ramakrishnan Raja-

17

(2]

(3]

[4]

[5]

(6]

[7]

mony, Weimin Yu, and Willy Zwaenepoel. Treadmarks: Shared memory computing on networks of

workstations. Technical report, Rice University, 1994.

Kenneth P. Birman, Robert Cooper, Keith Marzullo, and Mark D. Wood. Toolsfor distributed application
management. Technical Report TR90-1136, Cornell University, Computer Science Department, July

1990.

Pete Keleher, Alan L. Cox, Sandhya Dwarkada, and Willy Zwaenepodl. Treadmarks: Distributed shared

memory on standard workstations and operating systems. Technical report, Rice University, 1994.

R. Sandberg, D. Goldberg, S. Kleiman, D. Walsh, and B. Lyon. Design and implementation of the Sun

network file system. Technical report, Sun Microsystems, Inc., 1985.

Alexander Siegel, Kenneth P. Birman, and Keith Marzullo. Deceit: A flexible distributed file system.

Technical Report TR89-1042, Cornell University, Computer Science Department, November 1989.

Andrew S. Tanenbaum and Sape Mullender. An overview of the Amoeba distributed operating system.

ACM, 15(3):51-64, July 1981.

Bruce Walker, Gerald Popek, Robert English, Charles Kline, and Greg Thiel. The LOCUS distributed
operating system. In Proceedings of the Ninth ACM Symposium on Oper ating System Principles, pages

49-70. ACM, October 1983.

18

