
Simulating MDBS Transaction

Management Protocols

Ramon Lawrence, Ken Barker, Aruna Adil

Department of Computer Science

University of Manitoba

umlawren,barker,aruna@cs.umanitoba.ca

Technical Report: TR-98-05

August 20, 1998



Abstract

This paper investigates the performance of two MDBS transaction management protocols with
di�erent transaction submission characteristics. One algorithm, the Ticket Method algorithm, has
an aggressive approach to global subtransaction submission to allow greater concurrency between
subtransactions. The other algorithm studied, the Global Serial Scheduler (GSS), is a pessimistic
algorithm in that it will not submit subtransactions if there is a possibility they may conict. We
have used a detailed simulation study implementing both algorithms in a realistic MDBS environ-
ment to study their performance. The Ticket Method algorithm displayed very poor performance
in the studies and did not scale well when presented with higher database loads. The GSS, al-
though it submitted transactions more serially, had much better performance and scalability under
all database loads. Thus, this work demonstrates that optimistic protocols su�er surprisingly worse
performance than more pessimistic, serial-like protocols, due to the high abort rates and conicts
among global transactions present in optimistic protocols.



1 Introduction

A multidatabase system (MDBS) is a collection of autonomous database participating in a global

federation to exchange data. Ensuring consistency of the data in each autonomous database is

a di�cult task because the global level transaction manager cannot directly access local database

objects. Several transaction management protocols have been proposed to allow global transactions

access to data across numerous autonomous local databases. This work examines and simulates

two such protocols: the Ticket Method algorithm, and the Global Serial Scheduler.

This work contributes to existing work by summarizing and analyzing these two proposed

algorithms. It examines their strengths and weaknesses and uses simulation to prove the arguments.

A general, MDBS simulator capable of simulating any global transaction management protocol and

MDBS con�guration has been implemented. This simulation system can be used to investigate

new protocols under varying MDBS loads and organizations. Finally, the simulation studies on the

two algorithms yield many interesting results including that aggressive subtransaction submission

results in worse performance than more serial submission approaches.

2 Multidatabase Architecture

A multidatabase is a collection of autonomous databases participating in a global federation

that are capable of exchanging data. The basic multidatabase system (MDBS) architecture (see

Figure 1) consists of a global transaction manager (GTM) which handles the execution of global

transactions (GTs) and is responsible for dividing them into subtransactions (STs) for submission

to the local database systems (LDBSs) participating in the MDBS. Each LDBS in the system has

an associated global transaction server (GTS) which converts the subtransactions issued by the

GTM into a form usable by the LDBS. Certain algorithms also rely on the GTS for concurrency

control and simulating features, such as visible 2PC, that the LDBS does not provide. Each LDBS is

autonomous so modi�cations are not allowed. Many proposed algorithms assume the LDBS exhibits

certain properties which may violate the principle of full autonomy. Finally, local transactions not

under the control of the GTM are allowed at each LDBS as if the LDBS was not participating in

the MDBS.

1



GTM

LDBS1 LDBS2 LDBSn

GTS GTS GTS

LTs
LTs

...

GT GT...

Subtransactions

...

Figure 1: MDBS Architecture

3 Previous Work

There have been several algorithms proposed to handle the MDBS concurrency control problem.

The two algorithms examined in this paper are the Ticket Method proposed in [4], and the Global

Serial Scheduler proposed in [1].

The amount of published database simulation work is limited. Shasha [6] developed a simula-

tion model for centralized database systems to evaluate the performance when chopping random

transactions. A MDBS simulation model based on a closed queuing model was designed in [7] to

evaluate the performance of their proposed deadlock detection algorithms. They conclude that

their method of deadlock detection is superior than timeout-based methods.

Determining the performance characteristics of di�erent global transaction managers for a

MDBS is an important issue because of the growing need for MDBSs in industry. With the large

variety of database systems in existence and the current trends of consolidation and intercommu-

nication, many organizations are tackling the problem of database system interoperatability. The

interoperability problem can be solved by de�ning a suitable transaction management protocol and

a mechanism for integrating the diverse database schemas. No practical and general solutions have

been found to solve this problem. This research aims to tackle the transaction management portion

of the interoperability problem. Simulating current transaction protocols will allow greater insight

2



into their bene�ts and shortcomings which will lead to better protocols or pragmatic proofs that

the consistency problem is too restrictive as de�ned.

4 Ticket Method Algorithm

The ticket GTM is a method for global concurrency control proposed by Georgakopolous et al.[3, 4],

and henceforth referred to as the Ticket Method (TM) algorithm. The basic idea behind the algo-

rithm is that normally undetectable local conicts can be detected by forcing every subtransaction

of a global transaction to "take-a-ticket" at the LDBS. Global transactions can then be serialized

based on this ticket information.

The ticket GTM algorithm processes a GT (G) by:

� Setting a timeout for G and submitting all its subtransactions

� Waiting for all STs to enter the prepare-to-commit state

� Performing a global serializability graph (GSG) check

� If G passes the GSG check, commit G otherwise abort and restart G

� G is also aborted if any subtransactions abort

The global serializability graph (GSG) check involves constructing a digraph with nodes being

"recently" committed GTs. There is an edge from Gi ! Gj if at least one ST of Gi was serialized

before a ST of Gj . To check G, add node G and any edges. If the graph has a cycle, G fails the

GSG check and is aborted, otherwise it is committed.

This method has the advantages of preserving LDBS autonomy, simplicity in implementation,

and the potential for high concurrency. Unfortunately, the algorithm has numerous disadvantages.

The algorithm may be susceptible to GT conicts and restarts, has no method of guaranteeing

transaction execution order, and requires a prepare-to-commit state from all participating LDBS.

Also, the ticket in each LDBS may be a bottleneck. Finally, since all STs are submitted with no

ow control, the algorithm is very susceptible to a high abort rate, overloading the LDBSs, and a

high residence time for GTs. Solving this problem requires tuning the timeout and resubmissions

times which is di�cult for speci�c cases and virtually impossible in a large, dynamic MDBS.

3



5 Global Serial Scheduler

The Global Serial Scheduler (GSS) ensures MDB-serializable schedules by submitting global trans-

actions serially[1]. It determines if all active global transactions access no more than one of the

databases accessed by the global transaction (GT) being scheduled. The GT with only one sub-

transaction will always meet this condition and thus can always be submitted.

The following information is stored and updated. DBMS set contains databases which are

required by a GT but have not been accessed so far. The transactions currently scheduled in a

database form an Active set. The Conict set of a global transaction GTi contains databases in

DBMS set of all the active transactions present from the time transaction GTi was scheduled until

GTi is complete.

When a global transaction GTi is initiated, scheduling decisions are made. Since a GTi with only

one subtransaction can always be submitted, it will be submitted immediately. If the DBMS set

of GTi does not conict with the Conict set of all active GTs, i.e. there is no more than one

database in common, then GTi is submitted, otherwise GTi goes into a wait queue.

A GT reaches the commit phase after completion of all its subtransactions. DBMS set and

Active set are updated at the completion of the GT. Then the wait queue is checked to schedule all

eligible transactions. To commit the transaction, a cycle check is not required as GTs are submitted

with interleaving allowed at only one DB, thereby avoiding the possibility of a cycle.

The most important feature of the GSS is that it indirectly restricts the number of global sub-

transactions executing at each LDBS. This is because it is highly likely that as the number of global

subtransactions currently submitted to all LDBSs increases, the potential for conicts between the

subtransactions increase. As soon as a conict may be possible between a subtransaction which

may be submitted and ones that are already submitted, the subtransaction is not submitted. This

provides a form of high-level ow control and insures that the GTM does not overload LDBSs with

global subtransactions.

Since conicts are prevented at submission time, subtransactions at local databases can be

committed without a pre-commit stage because their is no need for global-level serialization. Any

subtransaction that commits at a LDBS will never need to wait on other subtransactions to commit

at other LDBSs. This reduces the time that subtransactions hold locks on LDBS objects and

enhances concurrency. However, submission at the global level may be nearly serial as the number

of submitted global transactions increases as there are many potential conicts, even though not all

4



conicts may actually occur. The GSS algorithm considers a "conict" as two global transactions

accessing more than one database in common. Note, that a conict may occur even if both global

transactions are read-only. Thus, the GSS could be improved by examining the types of operations

(read,write) performed at each LDBS, though this is beyond the scope of this paper.

The major advantages of the GSS is that by controlling global subtransaction submission it

insures that global subtransactions do not overload individual LDBSs and guarantees that global

transactions are committed in the order that they arrive. Also, since a global subtransaction can

commit in an LDBS without a pre-commit state or waiting for other global subtransactions at other

LDBSs to complete, the autonomy of each LDBS is more strictly enforced as the execution time

of a transaction is only related to the object access in each LDBS. This eliminates the problems

associated with a prepare-to-commit state and the potential for global transaction deadlocks and

aborts due to global level conicts beyond the control of the individual LDBSs.

6 Simulation Architecture

The simulation system used to simulate the Ticket Method and the GSS protocols was developed

using a C++ library designed at Vrije Universiteit [2] which provides a C++ interface for common

simulation requirements including event scheduling, statistics gathering, and random number gen-

eration. The simulation system consists of approximately 15,000-20,000 lines of C++ code and is

structured using object-oriented techniques to limit code duplication.

Simulating a MDBS requires simulation of both local databases (and their local transactions)

participating in the MDBS, and the global-level transaction management protocols handling the

submission and execution of global transactions. The following sections briey describe the simula-

tion system with a more detailed description available in [5]. A short overview of the implementation

of the two global transaction management protocols is also discussed.

6.1 LDBS Simulation

The �rst step in constructing a MDBS simulator involves constructing a simulator capable of mod-

eling a local database system (LDBS). We have developed a generic database simulator designed to

handle di�erent transaction managers with varying database con�gurations. The database simula-

tion is capable of modeling one database and its transactions. Collections of these (local) databases

can then be combined into a MDBS simulation. Although it is typical to use a LDBS simulator as

5



part of a larger MDBS simulation, it is possible to simulate an individual LDBS without considering

global transactions.

A local database system (LDBS) consists of objects and their interrelationships and a mechanism

for accessing the objects. The transaction management (TM) protocol is the mechanism that the

local database uses to mediate access to the data objects. Current protocols include two-phase

locking (2PL), timestamping, and optimistic methods. Database users enter queries to the database

which vary in size, complexity, frequency, and data usage and are managed by the TM protocol.

A local database is simulated by using two types of simulation processes: transaction processes

and the transaction generator process. The transaction generator process runs for the duration of

the simulation and generates new transactions at a given arrival rate. Each transaction entering the

system is its own process which competes for database objects under the control of the transaction

manager. A transaction executes a speci�c query from a list of possible queries read as input by

the system. A query is selected by its probability of occurrence.

Database objects are modeled using a db object class which is uniquely identi�ed by name and

stores the size of the object being accessed and references with other database objects. A db object

provides a locking facility that may be used by transaction management protocols, and gathers

usage statistics including percentage of time that it is locked and average queue size for the object.

The time to access an object (read or write) is a linear function based on the size of the object and

the speed (measured in bytes/sec.) of the LDBS. Lock activities are assumed to take zero time

because the time to access a lock in a real system is negligible compared to the time to read/write

the relation. By combining database objects in a suitable structure, a LDBS can be represented.

For this study, relational databases were simulated by associating each relation with a db object

and storing the set of all relations in a B+Tree.

The transaction management protocol is implemented as a separate C++ class. The transac-

tion management protocol examined in this work is relational strict-2PL. All LDBSs in the MDBS

simulations use the relational strict-2PL protocol and provide a visible-2PC for use by GTM al-

gorithms. The TM gathers statistics on the number of transactions (committed and aborted) and

throughputs in both transactions/sec and bytes/sec. An important statistic is average transaction

execution time (avg exec) which is a good comparison between transaction managers.

6



6.2 MDBS Simulation

The multidatabase simulator allows multiple MDBS con�gurations and di�erent global transaction

managers (GTMs). The MDBS simulator is divided into a set of classes which provide the MDBS

functionality. Testing di�erent MDBS transaction managers only requires rede�ning the one class

associated with transaction manager speci�c functions. This allows for greater code reuse and

continuity across simulations of di�erent transaction managers.

The basic simulation functionality is provided by the same C++ library as used for the LDBS

simulations. It is important to note that the MDBS is simulated using one simulator (one sched-

uler for the whole simulation) and not by using a number of intercommunicating local database

simulators. Intercommunicating local database simulators (schedulers) would allow for increased

parallelism and performance as each simulator could be run on a di�erent machine and communi-

cate using IPC. However, the complexities involved in parallelizing the simulation did not warrant

the bene�ts, as the simulation had adequate performance with a single scheduler running on a

SPARC machine.

At the global level, there are two simulation processes: the global transaction processes and

the global transaction generator process. Both of these types of processes behave similarly to their

local database counterparts. The global transaction generation process runs for the duration of the

simulation generating new global transaction processes at a set interval. Each global transaction

process represents a single GT which will be either executing or waiting for local transaction

completion. A process terminates after completion of the global transaction. Figure 2 shows how

processes are scheduled in the simulation. In the �gure, a dashed line represents initiation of a

process at startup time. A solid line represents process scheduling that is always performed, and a

dotted line represents other scheduling that may occur.

Simulation initialization involves setting up the MDBS con�guration and initializing the sim-

ulation processes. A global transaction server (GTS) is created for each LDBS to communicate

with the MDBS. The GTS is responsible for managing the global view provided by the LDBS and

initializing structures to maintain a communication channel between the two entities. It is also

responsible for creating a new local transaction from a global subtransaction and returning the

result after its execution.

We assumed that the time to communicate between the global level (MDBS) and the LDBSs

through the GTS is zero. Obviously in a real system, this would be unrealistic, but the value is the

same across all simulation experiments so it would have a uniform impact. Recall out goal is to

7



TransactionTransaction
Generator

Global. Trans.
Generator

Global
Transaction

One for each local DB

One for global level

Figure 2: Global Process Scheduling

determine which GTM algorithm performs best under identical communication conditions based

solely on the restrictions on performance/parallelism inherent in the algorithm and its management

procedures independent of the environment or MDBS con�guration.

Obviously, a zero communication time bene�ts algorithms which do a lot of communication more

than algorithms that perform little. Every GTM algorithm must submit and receive results for all

STs at least once, so the communication costs would be identical if not for transaction resubmission

or prepare-to-commit validation (using prepare-to-commit requires a round-trip message).

Each LDBS provides a list of objects accessible by the global view which may be a subset of the

objects in its local view. The global transaction manager provides access to these global objects

and insures that the submission of global transactions and their subtransactions are serializable. A

GTM has virtual functions for initializing, running, and committing transactions. It also maintains

statistics on the number of committed and aborted transactions and the residence time of global

transactions in the system.

The local ow of control at each LDBS is une�ected by global transactions and vice versa, but

it is important to remember that although each LDBS and the global level are sharing the same

scheduler, logically there are separate run-time environments for each LDBS and the global level.

Each LDBS has its own local transactions, and global transactions can only work in a LDBS by

issuing local transactions. Thus, each LDBS is a separate logical entity with its own scheduling

8



mechanism. Similarly, the global level scheduling can be considered a separate entity with global

transaction generation and execution separate from any local scheduling. Note however that global

transaction execution depends on local scheduling decisions as global transactions must submit

transactions and retrieve results from local databases.

6.2.1 The Ticket GTM Implementation

Implementing the Ticket Method algorithm based on the MDBS simulation framework is relatively

straightforward. The ticket GTM implementation starts by adding a ticket object to each LDBS

in the MDBS. A ticket consists of a 1-tuple relation of size 10 bytes. The ticket for each LDBS is

also added to the global view.

When initializing global transactions, the GT is registered (assigned a unique id) and its ini-

tialization time is recorded. Since the ticket method imposes no restrictions on the order of sub-

transaction submission, all subtransactions of the GT are submitted immediately. The GT process

is then passivated waiting for results from subtransaction completion. However, in addition to the

normal operations of the subtransaction, the ticket method adds an operation to increment the

ticket counter. This operation was added to the start of each subtransaction of the GT.

When subtransactions complete, the GTS reactivates the GT. If there are still outstanding

STs, the GT is passivated again. Otherwise, it attempts to commit. In the commit phase, the

GTM determines if there were any global conicts using the global serializability graph (GSG)

test. If there were conicts, all STs are aborted, and the GT is restarted. Otherwise, all STs are

committed.

6.2.2 The Global Serial Scheduler Implementation

The GSS simulation implementation is more complex than the Ticket Method. This is because

the GTM must manage the di�erent conict sets to insure their are no global conicts instead of

relying on the conicts generated at the LDBS-level by ticket accesses.

Recall that the DBMS set contains databases which are required by a GT but have not been

accessed so far, and the transactions currently scheduled in a database form an Active set. Also,

the Conict set of a global transaction GTi contains databases in DBMS set of all the active

transactions present from the time transaction GTi was scheduled until GTi is complete.

When a global transaction GTi is initiated, scheduling decisions are made. Since a GTi with only

one subtransaction can always be submitted, it will be submitted immediately. If the DBMS set

9



of GTi does not conict with the Conict set of all active GTs, i.e. there is no more than one

database in common, then GTi is submitted, otherwise GTi goes into a wait queue.

A GT reaches the commit phase after completion of all its subtransactions. DBMS set and

Active set are updated at the completion of the GT. Then the wait queue is checked to schedule all

eligible transactions. To commit the transaction, a cycle check is not required as GTs are submitted

with interleaving allowed at only one DB, thereby avoiding the possibility of a cycle.

6.3 Simulation Performance

The overview presented of the simulation system hides some of its complexity and exibility. At

the LDBS-level, the simulation can be designed to handle any database model, including object-

oriented models, with appropriate de�nitions of db objects and their interrelationships. Also, it

is relatively simple to implement di�erent transaction management protocols by de�ning di�erent

instances of the transaction manager class.

The LDBS simulations in this work use the relational model and strict-2PL. The number of

relations was kept small(6), so that the di�erent interactions could be studied in-depth. However,

there is no limitation on the number of relations that could be in the system, although it does

represent considerable e�ort to de�ne a realistic set of queries which access a large number of rela-

tions. The relations sizes (75-11,000 bytes) and the database processing speeds (10,000 bytes/sec.)

in the simulation are very small compared to today's standards. However, they can be scaled

appropriately as the time to access an object is de�ned by a linear function based on object size

and database speed. Clearly, a relation of size 1,000,000 bytes and a processing speed of 1,000,000

bytes/sec. may be more reasonable values in today's environment, but the e�ect on the simulation

would be the same: the time to access the particular object would be still about 1 second. Thus,

object sizes and database processing capabilities can be scaled appropriately to match real-world

situations.

The MDBS simulation system is very general. It allows any number of local database which may

have di�erent objects, stored under di�erent data models, and accessed using varying transaction

management protocols. By appropriately de�ning the transaction management classes and the GTS

class which maps from a global-level view into a local view, any conceivable MDBS con�guration

could be simulated using this architecture.

However, there are practical limitations on the number of LDBSs that can be used in the

simulation. For more than 10 LDBSs, the time to simulate the local transactions is high and

10



results in long simulation times. It is highly unlikely that a global transaction would access more

than 10 LDBSs, so this limitation is not overly restrictive.

7 Determining MDBS Simulation Parameters

This section explains how the simulation parameters were derived. Since there is limited data on

the performance and use of MDBS systems, many parameters were chosen as "good estimates"

that did not favor either of the two simulated transaction management protocols.

7.1 Simulating a LDBS

A simulation of a local database was performed to validate the system and determine how in-

creasing the transaction generation frequency (database load) a�ects database performance. These

performance statistics were then used to set the database loads of the local databases in the MDBS

simulations. The MDBS simulations will use the same local database con�gurations, local transac-

tions, and database performance measures as this local database. Thus, a local transaction arrival

rate (local database load) can be determined from this simulation for each LDBS used in the MDBS

simulations.

The local database simulator contains 6 relations varying in size from 75 to 11000 bytes with

average relation size of 3400 bytes. The database processing speed is set at 10000 bytes/sec.

Obviously, these numbers are too small to be realistic in today's environment but can be scaled

appropriately.

There are ten di�erent query types presented to the database. They are divided into �ve read

and �ve write query types and are a representative set for the possible queries that can be posed to

the database. The probability of a read-only query type is 0.8 with the remainder being write query

types. Each query type has an associated probability. The probabilities of all read query types sum

to 1, as do the probabilities of all write query types. The average number of bytes accessed over

all query types is approximately 10500 bytes. Thus, the average time to execute a query should be

1.05 sec.

The local database simulator was run 10 times for 1000 seconds. Each run has no run-up period

and is terminated with a hard-close after 1000 seconds. Statistics were gathered on transaction

residence time and object lock times, wait times, and queue sizes. As Figure 3 shows, the average

transaction residence time increases rapidly as the interarrival time increases beyond 0.3 transac-

11



Average Residence Time for LTs

0
2
4
6
8

10
12
14
16
18

0 1 2 3
Interarrival Time

T
ra

n
sa

ct
io

n
 

R
es

id
en

ce
 T

im
e

Figure 3: Transaction residence time vs. Interarrival Time

tions/sec. Note that the system does not get overloaded at an arrival rate of 1 transaction/sec as

queuing theory would suggest. This is because even though the arrival rate is greater than the ser-

vice rate, the increased parallelism allowed by executing multiple read transactions simultaneously

allows for a higher arrival rate than could normally be achieved.

Based on these results, an interarrival time of 1 second represents a moderate database load.

This arrival rate will be used for the local databases when simulating the MDBS.

7.2 MDBS Parameters

The MDBS con�guration simulated consisted of 3 nearly identical LDBSs. Local databases 1 and

3 are identical. Local database 2 has the same object sizes as the other local databases, but some

objects have di�erent names. Each LDBS has a local transaction arrival rate of 1 transaction/sec.

and a processing speed of 10,000 bytes/sec. The set of local query types are the same for each.

Thus, the average local query execution time is 1.05 seconds for each local database. Finally,

without loss of generality, all local database objects are available in the global view.

The set of global queries to the MDBS consists of 10 query types of varying probabilities. A

global query can access from 1 to 3 LDBSs. If all global subtransactions are executed serially, the

average global transaction execution time is 3.1 sec and the maximum time is 5.3 sec If all GSTs

12



are executed in parallel, the average global transaction execution time is 1.5 sec with the maximum

being 2 sec.

The MDBS simulator is run 10 times for 100 global transactions. A global transaction must

commit before it is allowed to leave the system, so it may be restarted many times until it commits.

After 100 global transactions have been generated, the global transaction generator no longer

submits global transactions although the local database transaction generators continually submit

local transactions. This demonstrates how di�erent GTMs handle the same load. The set of 100

GTs generated will be exactly the same for both GTMs.

Although we would have like to run the simulation for more than 100 transactions, the Ticket

Method algorithm su�ered poor performance and often would fail when presented with high global

transaction arrival rates or long simulation times. Thus, a value of 100 transactions was chosen in

order to have a meaningful comparison. The GSS algorithm did not su�er these failings and could

be run for 10,000 transactions or more with very high global transaction arrival rates. We must

stress that the simulation failed because of the characteristics of the Ticket Method algorithm and

not due to software or hardware problems in the simulation implementation.

Statistics are gathered on the number of global transaction aborts, and the mean and maximum

global transaction residence times. Also, the number of aborts and average transaction execution

time are recorded at each LDBS.

7.3 Scalability and Realism Arguments

The parameters chosen for the MDBS simulations were not intended to directly model real-world

systems, however they can be scaled appropriately. Larger relations and faster databases can easily

be accounted for in the simulation by increasing the relation sizes and database speed parameters.

The type and frequency of both local and global queries is completely de�ned in input �les which

can be varied as needed. Currently, both local and global level queries are read-only with about

an 80% probability which tracks real DBMS query mixes. Although the number of relations and

databases simulated is small, these values can always be increased. However, adding more relations

to each LDBS does not change the validity of the simulation. Rather, adding more relations will

tend to expose features of global schedulers related to relation access. Although it is beyond the

scope of this paper, it would be possible to model GTM performance based on the number of

relations in the system. It is important to note that both algorithms are mostly une�ected by the

number of relations in the component LDBSs. In the case of the GSS algorithm, conicts are at

13



the LDBS-level so the number of relations in each LDBS is unimportant. In the Ticket Method

algorithm, each subtransaction must take a ticket at each LDBS. Thus, regardless on how many

other relations a set of global subtransactions contend for, they will always contend for the ticket

resource which will be the major bottleneck.

8 Simulation Results

The simulations yielded many interesting results that were unexpected. The most important result

is that additional concurrency o�ered by the Ticket Method algorithm is more of a drawback than

an asset. The major results are summarized below.

8.1 Tuning the Ticket Method

The Ticket Method GTM has two parameters critical to its performance. They are the timeout

value assigned to a global transaction (g timeout), and the time for global transaction resubmission

after abort (g resubmit). The algorithm is very sensitive to these parameters. If the g timeout is

set too low, global transactions may abort when they are not in global deadlock. If g timeout is too

high, the system su�ers from lower concurrency as the time to recognize global deadlock is high.

Also, when g timeout is too high, local database overloading is possible as global transactions hold

local resources from local transactions which queue up waiting for the resources. Since the global

transactions tend to access about the same number of bytes in each database, g timeout is made

constant over all transactions.

De�ning the global transaction resubmit time is even more complex. If g resubmit is zero, the

GTM may overload local databases by continually resubmitting global transactions which cannot

complete. Furthermore, besides taking resources and impeding local transactions, these resubmitted

global transactions are more likely to continually abort as the delay times at the local databases

increase due to overloading. G resubmit has been de�ned to be the square of the number of times

the transaction has aborted times a constant factor 10. Even the choice of this constant factor is

very sensitive. In testing for a constant value of 10, the average GT residence time was 4 seconds.

However, with constant values of 5 and 20, the average GT residence times were 131 seconds and

32 seconds, respectively.

The tuning performed resulted in a g timeout value of 5 sec, and a g resubmit = 10*num aborts2.

Also, it turns out to be better not to limit the growth of g resubmit (say at some constant 100).

14



Average Residence for GTs (Ticket Method)

0

50

100

150

200

250

300

350

400

450

500

550

600

0 10 20 30 40 50 60 70 80 90 100
Global Interarrival Time

G
T

 R
es

id
en

ce
 T

im
e

Figure 4: GT residence time vs. Global Interarrival Time for Ticket Method

This tuning is speci�c to the MDBS con�guration. It is highly unlikely that this tuning can be

performed in a general and dynamic MDBS. Thus, the Ticket Method GTM su�ers from a lack of

robustness.

8.2 Ticket Method Results

The Ticket Method algorithm was run on the MDBS con�guration outlined 10 times for 100 global

transactions. The results gathered indicate the fundamental aws with the Ticket Method algo-

rithm. Figure 4 shows the residence time of global transactions, and Figure 5 shows the residence

time of all transactions at local database 1. Also, Figure 6 shows the number of global transaction

aborts that occurred.

The Ticket Method allows all global subtransactions to be submitted as soon as a global trans-

action is submitted. The ticket in each LDBS, and the GSG check insures global serializability,

but there is no global ow control. That is, all global subtransactions are submitted regardless of

the load on the LDBSs. This often results in lower concurrency as the LDBSs become overloaded.

The overloading causes more global transactions to timeout and abort. However, restarted aborted

transactions reenter the system competing for resources again. Without this global-level ow con-

trol, the Ticket Method cannot guarantee that transactions are committed in the order they are

received which often results in highly variable global residence times and abort rates. This high

15



Average Res. Time for All Transaction at LDB

0

0.5

1

1.5

2

2.5

3

3.5

0 10 20 30 40 50 60 70 80 90 100

Global Interarrival Time (Ticket Method)

T
ra

n
sa

ct
io

n
 R

es
id

en
ce

 T
im

e

Figure 5: Transaction res. times at LDBS 1 vs. Global Interarrival Time for Ticket Method

Average Global Trans. Abort Rate

0

10

20

30

40

50

60

70

80

90

100

0 10 20 30 40 50 60 70 80 90 100

Global Interarrival Time (Ticket Method)

G
T

 A
b

o
rt

Figure 6: GT aborts vs. Global Interarrival Time for Ticket Method

16



variability explains the unexpected jump in residence time at LDBS 1 for a global interarrival time

of 20 seconds. The Ticket Method algorithm is highly sensitive to timing issues, and in this case,

su�ered even worse performance than expected.

The tuning of the Ticket Method as described previously is di�cult and has a great e�ect on

its performance. Unfortunately, this tuning is not very robust and can easily fail as LDBSs loads

increase/decrease, global transaction arrival rates change, or the query mix changes. Thus, the

Ticket Method is not very robust and su�ers from poor performance in the general case. Even

though the algorithm is simple and o�ers the potential for higher concurrency, the lack of global-

level ow control often overwhelms the LDBSs causing many global transaction conicts and aborts

leading to an overall weaker performance.

It is noticeable that even at moderate LDBS loads, the residence times for global transactions

are high and highly variable. This is because subtransactions of global transactions are constantly

competing with each other for resources, especially the ticket resource. Also, the constant resub-

mission after aborts often overloads the LDBSs which further exasperates the problem. In total, the

Ticket Method algorithm does not provide higher concurrency by submitting all global subtransac-

tions because it often overloads the LDBSs causing long wait times and frequent global transaction

aborts.

8.3 GSS Results

The Global Serial Scheduler was run on the MDBS con�guration outlined 10 times for 100 global

transactions. The results gathered indicate several desirable properties of the GSS algorithm.

Figure 7 shows the residence time of global transactions, and Figure 8 shows the residence time of

all transactions at local database 1.

The GSS algorithm is deadlock-free and does not cause global transaction aborts. This allows

the average and maximum GT residence times to be fairly consistent until the arrival rate passes

the threshold of about 5 transactions/sec. The average GT residence time is very low and tends to

be around 2 seconds which is somewhere in between the average parallel execution time (1.5 sec)

and the average serial execution time (3.1 sec). Also, transactions are committed in the order they

arrive which further reduces the average residence time.

At the local level, the GSS algorithm causes no local aborts, and the global residence time at

an LDBS does not depend on the global arrival rate. Thus, the total residence time of all LDBS

transactions is not a�ected by the global arrival rate (except a little at very high arrival rates). The

17



Average Residence Time for GTs

0

5

10

15

20

25

30

35

40

45

50

0 10 20 30 40 50 60 70 80 90 100

Global Interarrival Time (GSS)

G
T

 R
es

id
en

ce
 T

im
e

Figure 7: GT residence time vs. Global Interarrival Time for GSS algorithm

Average Residence Time for All Trans. at LDBS

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

0 10 20 30 40 50 60 70 80 90 100

Global Interarrival Time (GSS Algorithm)

T
ra

n
sa

ct
io

n
 R

es
id

en
ce

 T
im

e 
at

 L
D

B
S

Figure 8: Transaction res. times at LDBS 1 vs. Global Interarrival Time for GSS algorithm

18



stability of the residence time at the LDBSs arises because the GSS algorithm implements both

concurrency control and ow-control at the global level. Global subtransactions are only submitted

when no conicts can arise which limits the number of global subtransactions active at any LDBS,

and consequently prevents the MDBS from overloading a LDBS with global subtransactions. Al-

though performance may be limited slightly by executing some STs serially, this performance is

more than made up for by limiting the burden placed on the LDBSs by global transactions. Thus,

global subtransactions that are submitted to a LDBS can execute faster than if they were compet-

ing for the same resources with other global subtransactions. Global-level ow-control is especially

important when the global transaction arrival rate is high and when one or more LDBSs are heavily

loaded.

8.4 Comparison between the two GTMs

In terms of performance, there is no comparison between the two GTMs. The possible higher

concurrency for which the Ticket Method algorithm was designed to allow ends up being a drawback

to its performance. It su�ers from frequent transaction aborts, local database overloading, and

performance loss through global deadlocks. All these factors signi�cantly reduce the concurrency

and performance.

The GSS has better performance because it controls the ow of global transactions entering the

LDBSs. Although this may reduce concurrency in some situations, it does not cause global deadlock,

LDBS overloading, or global transaction aborts. Thus, the GSS has much better performance than

it would �rst appear.

In terms of implementation, the GSS is also much easier to build and con�gure. It is highly

robust and is only slighted e�ected by increases in LDBS load, query mix changes, or varying global

transaction submission rates. The Ticket Method algorithm is highly susceptible to performance

concerns if the deadlock detection time and the restart time are not properly con�gured. Unfortu-

nately, the performance varies greatly even within the same con�guration in multiple runs. Also,

it is next to impossible to properly con�gure the system to handle changing MDBS conditions. For

example, the GSS can easily handle local transaction arrival rates of less than one second for the

given MDBS con�guration. The Ticket Method algorithm does not even complete the simulation

for such values as it gets stuck in long cycles of global aborts and restarts. The Ticket Method with

its high abort/resubmission rate and use of prepare-to-commit is slightly favored in this simulation

environment because of the zero communication time over the GSS algorithm which does not abort

19



GTs or use prepare-to-commit.

9 Conclusion and Future Work

In conclusion, this paper presented two di�erent global transaction management algorithms and

argued about their performance in the MDBS environment. A general simulation system was

constructed to prove claims about algorithm performance and characteristics. The data gathered

by the simulation studies yielded important results on the desirable features of a GTM algorithm.

The simulations showed that the GSS algorithm is superior because it robustly handles di�erent

global transaction and local transaction arrival rates. It has better performance in all situations

and o�ers more consistent global transaction residence times. The Ticket Method algorithm is

highly dependent on arrival rates and abort frequencies and su�ers from poor performance and

highly variable global transaction residence times.

The di�erence between the algorithms is that the GSS algorithm implements global-level ow

control by restricting the number of global subtransactions submitted to the LDBSs. This insures

that the MDBS does not overload the LDBSs. The Ticket Method submits all global subtransac-

tions which continually compete for resources. This results in more conicts and overloading of the

LDBSs. It is most likely the case that algorithms which do not implement some form of global-level

ow control will su�er from the same performance liabilities as the Ticket Method algorithm.

Future work involves extending the simulator to handle di�erent local transaction managers

and database models. Also, di�erent global transaction managers can be simulated. It would be

interesting future work to determine if other global transaction algorithms which do not provide

global-level ow control have the same performance liabilities as the Ticket Method GTM.

References

[1] K. Barker. Transaction Management on Multidatabase Systems. PhD thesis, University of

Alberta, 1990.

[2] D. Bolier and A. Eliens. Simulation modeling support for discrete event simulation in C++.

Technical report, Vrije Universiteit, Departement of Mathematics and Computer Science, Oc-

tober 1995.

20



[3] D. Georgakopolous, M. Rusinkiewicz, and A.P. Sheth. On serializability of multidatabase trans-

actions through forced local conicts. In Proceedings of the Seventh International Conference

on Data Engineering, pages 286{293, April 1991.

[4] D. Georgakopoulos, M. Rusinkiewicz, and A.P. Sheth. Using tickets to enforce the serializability

of multidatabase transactions. IEEE Transactions on Knowledge and Data Engineering, 6(1),

February 1994.

[5] R. Lawrence, K. Barker, and A. Adil. Simulation MDBS transaction management protocols.

Technical report, University of Manitoba, Department of Computer Science, March 1998.

[6] D. Shasha, F. Llirbat, E. Simon, and P. Valduriez. Transaction chopping: Algorithms and

performance studies. ACM Transactions on Database Systems, 20(3):325{363, 1995.

[7] P. Trianta�llou. An approach to deadlock detection in multidatabases. Information Systems,

22(1):39{55, 1997.

21


