
XML has recently ev
support B2B inte
environment. Althou
data exchange betwe
few concrete propo
flexible to exploit tr
been proposed to fa
business. The first te
to which all business
must conform. Alter
middleware solution 
type of data exchang
data that needs to be
underlying semantic
without forcing co
Further, since our sy
in a format that can 
reading XML data 
available for subsequ

Much emphasis has r
paradigms for c
interactions. The n
different than other in
on an as needed bas
architectures such 
inappropriate becaus
their primary goal 
database systems. Pa
applications is the 
systems [6] in that “o
is defined. Each part
an export schema, 
available, and an im
being extracted fr
architecture is simi
applications, it suffe
occurs each time a
federation.

Many industrial and 
of “standards” as the
Several standards ha
exchange including B
any standard is v
compliance is nec
functionality. For ex
only feasible if thos
generally accepted s
across organizations 
two organizations c
immediately evident 

Computer Sc
Calga

barker
Flexible Semantic B2B Integration Using XML Specifications

Ken Barker Ramon Lawrence
ience, University of Calgary and Computer Science, University of Iowa
ry, Alberta, Canada Iowa City, Iowa, USA
@cpsc.ucalgary.ca ramon-lawrence@uiowa.edu
Abstract
olved as the key enabling technology to
gration in the modern computing
gh much hype exists around the issue of
en multiple businesses on the web, very
sals have evolved that are sufficiently
ue data exchange. Two approaches have
cilitate data exchange from business to
chnique uses a standard exchange format
es wishing to participate in data exchange
natively, the businesses need to utilize a
that is sufficiently flexible to capture any
e but powerful enough to represent any

 exchanged. The system captures the key
s of the participating business data
nformance to an inflexible standard.
stem is based on XML, it exchanges data
be utilized by any application capable of
so both the schema and content are

ent analysis.

Introduction
ecently been placed on developing suitable
onducting business-to-business (B2B)
eeds of this application are inherently
tegration models because they are formed

is and often are ad hoc. Thus, traditional
as multidatabase systems [1] are

e they introduce too much overhead since
is to provide integration across many
st work that is most similar to the B2B
work undertaken on federated database
ne-off” integrations between two systems

icipant in a federated system must supply
which describes the data being made
port schema, which describes the data

om a remote system. Although the
lar to that being developed for B2B
rs from the explosion of mappings that
 new system is incorporated into the

research B2B applications propose the use
 mechanism to facilitate communication.
ve been developed to support B2B data
izTalk [2], SIL [3], etc. Conformance to
oluntary, but in many environments

essary to facilitate progress or even
ample, network and inter-networking is
e participating are willing to follow the
tandards. Support for network standards
is also provided by common goals. Even if
ompete at all other levels it should be
that they can only both exist on the same

“Internet”' if they are willing to support a common network
protocol.

Thus, the motivation for this work is based on the premise that
although standards have a role to play in B2B interactions, they
will never be a complete solution to the problem. This
argument is based on two key facts. First, guaranteeing
conformance to a standard will only work if one is defined for
your particular application environment. Secondly, it would be
impossible to anticipate all of the ways any two businesses
might want to exchange data a priori, so a more flexible,
possibly proprietary protocol, needs to be developed to enable
data exchange.

Architectural Framework
Before discussing the details of our methodology, a B2B
architecture is presented to frame the discussion. Figure 1
depicts two businesses that wish to exchange data across a
network. A typical B2B scenario might be a supplier that
provides some components required by a manufacturer to
produce some product. The kinds of information that might
need to be exchanged include order information (eg. POs, Sales
Contacts, SKU Numbers, Shipping Dates, etc.), invoice
information (eg. Invoice numbers, Contact information, Due
Dates, etc.), and distribution channel information (eg. Shipper
information (FedEx), delivery routing, tracking information
etc.) The likelihood that both the shipper and receiver utilize
homogeneous systems is extremely small so middleware is
required to facilitate data exchange.

Figure 1: B2B System Architecture

To illustrate the B2B requirements, we will track an invoice
sent from the supplier to the manufacturer depicted in Figure 1.
We will make the unlikely assumption that the manufacturer
wants to receive the invoice as quickly as possible and that it
will be processed as soon as it arrives so the supplier can be
paid immediately. To make the problem more realistic we will
assume that the manufacturer's database is driven by Oracle
while the supplier's is IBM's DB2. Both businesses will have
their own schema and data formats and each will access their
databases in quite different ways. It should be fairly obvious
that each business will have an application that is capable of
producing an invoice, processing it and ultimately ensuring that
the transaction is completed successfully.

Thus, the supplier will generate an electronic invoice by
extracting the required data from the data stored in its DB2



database. This will involve generating an internal invoice
number, a description of the service supplied for the invoice,
and a “e-packet” in the format used internally by the supplier's
systems. This e-packet cannot be transmitted directly to the
manufacturer because the format used by the manufacturer will
likely be quite different. Thus, the manufacturer and supplier
must agree on a common representation. If we assume that the
two businesses agree on BizTalk as their exchange language,
the supplier's e-packet must be converted to this format by the
adapter before subsequent processing of the transaction can
take place. In  Figure 1 the processing of the invoice is
accomplished using the module labelled Inter-Business
Workflow Management where the “business logic” is
performed. Executing this workflow will undoubtedly require
data and/or permissions from the manufacturer, but this can
only be achieved if the request is translated from the BizTalk
format to the native format processable at the manufacturer's
site. This requires another adaptor capable of translating the
request into an e-packet capable of executing the necessary
transaction on the manufacturer's machine. Once this has been
processed, the entire process must now be reversed to move the
answer, hopefully an acknowledgement of the receipt and
payment of the invoice. This requires that another e-packet
(native to Oracle) be produced, which is then translated to
BizTalk for further workflow processing. Finally, the result of
this intermediate processing is then translated back to a format
understood by the supplier's DB2 database before a final
acknowledgement of the transaction can be made.

Contributions
Based on this scenario we can now describe where this paper
contributes. We are primarily interested in the middle
component of Figure 1. Further, we are primarily interested in
the technology necessary to facilitate data transmission through
this middle component. The details of the workflow are clearly
key to any B2B application, but our focus is not primarily on
how to write this business logic. Rather, we are interested in the
suitability of various techniques to exchange data from one
business (the supplier) through the middleware component to
another business (the manufacturer). We argue that
standardization efforts aimed at developing a universally
accepted lingua franca for such high level B2B applications
will never be fully successful. These systems are too rigid to
adapt to unanticipated application needs and will ultimately be
ignored by businesses because of the costs of changing
previously built applications that no longer conform to the new
standard. As proof of this claim, consider the enormous time
lag between the proposed change from IPv4 to IPv6 in the
network community despite the nearly universal
acknowledgement of the need for the update. Instead we argue
that successful data exchange is only achievable if a system is
provided that is readily extendable to new application needs
while providing a framework that ensures participants easily
conform to the lingua franca. Thus, our work focuses on
developing an extensible exchange “language” that captures the
semantics of the businesses that are willing to conform to the
lingo.

To this end we propose a system capable of capturing the
specific data needs for individual businesses. Although we do
not believe it will be ultimately necessary, it is possible for our
system to define specific exchange schemas between any two

businesses in much the same way as was initially proposed for
federated systems. Thus, individual businesses can use our tool
to write specific “wrappers” for each of their systems.
However, based on substantial experience, we know that there
is an enormous amount of overlap between businesses. This is
particularly true when you consider who is likely to participate
in a B2B exchange. To illustrate this point consider the
following simple example. Select any major book retailer
(Barnes and Noble or Chapters) and consider for a moment
with whom they are likely to undertake a B2B transaction.
Clearly the answer is a related business such as a book supplier
(Morgan Kaufmann or Wiley Press). It is extremely unlikely
that a pharmaceutical business will undertake a B2B transaction
with the book retailer to sell drugs. Thus, businesses in the
book industry are likely to have a common linguo that is used
by all participants and the slight differences, that will
undoubtedly exist, can be readily addressed using the system
described shortly.

We can now consider the key elements that must exist to
facilitate this exchange. First, the core of any conversation is
the need to have both participants speak a common language.
Booksellers are able to undertake a dialog because they have
common terms for common concepts. Thus, the first element is
a “standard dictionary” that can be used to define what term is
used to represent what concept. Unfortunately, data exchange
between businesses is never based on using precisely the same
terms to represent the same semantic in both organizations.
Thus, we must be able to map from the syntax used to represent
the concept at an organization to its representation in the
standard dictionary. Fortunately, we only need to do this once
for each business and it is interesting to note that the mapping
from the standard dictionary term to the syntax used at the
business is simply an inverse of the first mapping. Once the
dictionary is defined and the mappings are in place, executing
transactions between the two businesses requires that the
business workflow for all such transactions be written. The
architecture presented here is inherently different than past
proposals because the business logic is not accomplished using
the language of the legacy systems at each business but rather
by using the standard dictionary's terms and concepts so
applications developers can manipulate an integrated view of
the data for the first time.

The balance of the paper describes the process for creating the
standard dictionary by presenting an architecture that describes
the capture process. Selection of the underlying representation
language is always a critical decision when developing any
system suitable for integrating legacy systems. The problem is
further complicated because no matter what selection is made,
it too, will ultimately be another legacy system. Thus, we want
to select a environment that will likely have the longest possible
life looking into the immediate future but, more importantly, is
sufficiently extensible to allow it to adapt to changing needs
into the more distant future. Thus, we have selected XML as
the implementation language because of its inherently
eXtensible nature. These issues in addition to our capture
process to create the standard dictionary are detailed in the
section describing Unity’s architecture.. The integration of a
business' data source into the system is accomplished by
defining mappings using common terms that are used by the
middleware, and is detailed afterward. The final technical



element described in this paper details how queries are
accomplished using the middeware described. Clearly, the key
element of the workflow management component depicted in
Figure 1 is only feasible if queries can be posed by one system,
translated to the common language, and posed at the other
business. Once queries can be asked and answered it should be
evident that the system is capable of providing the middleware
necessary for B2B processes. Next a query process is described
to detail the query processing features of our middleware and
provides an example of its utility. The penultimate section
provides a very brief review of other research activities leaving
the final section to summarize our insights and provide pointers
for subsequent research.

Unity Architecture
As mentioned above, the adapters depicted in Figure 1 are the
focus of the work reported here. Although it would be tempting
to consider these little more than wrappers for the participating
business' database, the system is actually much more powerful.
Unlike wrappers, these adapters must also provide facilities to
define the underlying ontology often provided by standards
conformance. This requires a representation of the ontology, the
software to produce an arbitrary ontology, translation
mechanisms to a flexible semantic notation, and a query
processing capability so results can be exchanged from B2B.
These adapters are the essence of our middleware solution,
which is called Unity1 to reflect a goal of providing a unified
data exchange mechanism. This section explores some of the
details associated with Unity.

The Unity architecture consists of five main components: a
standard term dictionary, a dialect of XML used to specify
metadata (X-Specs) that captures data semantics, an integration
algorithm for combining X-Specs into an integrated view, a
query processor for resolving conflicts at query-time, and
“wrapper” software at each database site responsible for
accessing participating databases available at businesses.  The
dictionary provides terms for describing schema elements and
avoiding naming conflicts thereby forming an unambiguous
lingua franca.  The integration algorithm matches concepts
from X-Specs to produce an integrated view, and the query
processor translates a semantic query on the integrated view in
the dialog expected by the business receiving the request.  The
wrapper software verifies user access to the system, processes
SQL requests, and returns results.

The architecture utilizes three component processes:

• Capture Process: A capture process is independently
performed at each data source to extract database
metadata into a XML document called a X-Spec.

• Integration Process: The integration process
retrieves X-Specs from each database and combines
X-Specs into a structurally-neutral hierarchy of
database concepts called an integrated context view
(see Figure 2-a).

                                                
1 Unity is a proprietary system developed at the University of
Manitoba.

• Query Process: The user formulates queries on the
integrated view that are mapped by the query
processor to SQL. The SQL is transmitted to each
database wrapper. The results returned are integrated
and formatted (see Figure 2-b).

To illustrate the architecture, we use the following example
involving two book databases.  The first company, called
Books-for-Less, has a database as given in Figure 3. The
second company, called Cheap Books, stores its database as
described in Figure 4. Note that database field and database
names appear italics and semantic names in the integrated view
are in Arial Narrow.

Figure 2: (a) The Integration Process of Unity; (b) The
Query Process in Unity

Tables Fields
Book ISBN, Title, Author, Publisher, Price, Qty

Figure 3: Books-for-Less Database Schema

Tables Fields
Book ISBN, Author_id, Publisher_id, Title,

Quantity, Price, Description
Author Id, Name
Publisher Id, Name

Figure 4: Cheap Books Database Schema

The Capture Process
The capture process is an off-line procedure where the
semantics of a relational database schema are captured into a
XML document called a X-Spec.  The X-Spec is designed to
store sufficient schema metadata such that it can be compared
and integrated across systems.  Using a standard term
dictionary allows related concepts to be uniquely identified by
name.

Standard Dictionary
The foundation of the architecture is the acceptance of a
standard term dictionary which provides terms to represent
concept semantics that are agreed upon across systems.  Thus,
the architecture operates under the assumption that naming



conflicts are prevented by utilizing standard terms to exchange
semantics.  Without a standard set of terms or names to
communicate knowledge, knowledge cannot be integrated or
exchanged because its semantics are not known.  Thus, by
accepting a standard dictionary, schema, or set of XML tags, a
system assumes away the naming problem by accepting a
lexical semantic framework for the expression of data
semantics similar to our human acceptance of spoken languages
to facilitate communication.

The standard dictionary is a hierarchy of concept terms.
Concept terms are related using `IS-A' relationships for
modeling generalization and specialization and `HAS-A'
relationships to construct component relationships.

Constructing Semantic Names

A semantic name captures system-independent semantics of a
relational schema element by combining dictionary terms. In
the relational model, a semantic name is a context if it is
associated with a table and a concept if it is associated with a
field.  A context contains no data itself and is described using
one or more concepts. A semantic name, which is a concept,
represents atomic or lowest-level semantics. In relation to the
object-oriented model, a context is like an object, and a concept
is an attribute of an object.

A semantic name consists of a context and concept portion. The
context portion is one or more terms from the dictionary, which
describe the context of the schema element. Adjacent context
terms are related by either IS-A (represented using a “,”) or
HAS-A (represented using a “;”) relationships. The concept
portion is a single dictionary term called a concept name and is
only present if the semantic name is a concept (maps to a field).
The formal specification of a semantic name (sname) is:

sname ::= [CTerm] |
[CTerm] <CN>

CTerm ::= <CT> |
<CT> ; CTerm |
<CT> , CTerm

where CT and CT are dictionary terms.

The semantic names for Books-for-Less and Cheap Books are
given in Figure 5 and Figure 6, respectively.

Type Semantic Name System Name
Table [Book] Book
Field [Book] ISBN ISBN
Field [Book] Title Title
Field [Book] Price Price
Field [Book] Quantity Qty
Field [Book;Author] Name Author
Field [Book;Publisher] Name Publisher

Figure 5: Books-for-Less Semantic Names

Type Semantic Name System Name
Table [Book] Book
Field [Book] ISBN ISBN
Field [Book] Quantity Quantity
Field [Book] Title Title
Field [Book] Price Price
Field [Book] Description Description
Field [Book;Author] Id Author_id
Field [Book;Publisher] Id Publisher_id
Table [Book;Author] Author
Field [Book;Author] Id Id
Field [Book;Author] Name Name
Table [Book;Publisher] Publisher
Field [Book;Publisher] Id Id
Field [Book;Publisher] Name Name

Figure 6: Cheap Books Semantic Names

X-Spec - A Metadata Specification Language
A X-Spec is a XML-based specification document which
encodes relational database schema information using
dictionary terms and metadata including keys, relationships,
joins, and field semantics.  Further, each table and field has a
semantic name as previously discussed.  Metadata information
on joins and dependencies are stored for query processing. A
X-Spec is constructed using the specification editor component
of Unity during the capture process.

The Integration Process – Forming the Ontology
The integration process combines the X-Specs retrieved from
each data source into an integrated context view.  The
integration algorithm is a straightforward term matching
algorithm. The same term in different X-Specs represents the
identical concept regardless of its format. The algorithm
receives as input one or more X-Specs and uses the semantic
names present to match related concepts.  The integration order
is irrelevant, and the same X-Specs may be integrated several
times with no change.  As more X-Specs are integrated, the
number of concepts grows, but assuming the semantic names
are properly assigned, the effectiveness of the integration is
unchanged.  The integrated view produced for the book
databases is given in Figure 7.

Global View Trm Data Source Mappings (not visible)
V (view root) N/A
  [Book] CB.Book, BfL.Book
     ISBN CB.Book.ISBN, BfL.Book.ISBN
     Title CB.Book.Title, BfL.Book.Title
     Price CB.Book.Price, BfL.Book.Price
     Quantity CB.Book.Qty,BfL.Book.Quantity
     Description CB.Book.Description
        [Author] CB.Author

    Id CB.Book.Author_id, CB.Author.Id
            Name CB.Author.Name, BfL.Book.Author

[Publisher] CB.Publisher
    Id CB.Book.Publisher_id, CB.Publisher.Id
    Name CB.Publisher.Name, BfL.Book.Publisher

Figure 7: Integrated View



The Query Process

The integrated view of concepts, called a context view, is a
hierarchy of concepts and contexts, which map to physical
tables and fields in the underlying databases.  Businesses can
query each others’ repositories by generating queries by
manipulating semantic names.  The querying business is not
responsible for determining schema element mappings, joins
between tables in a data source, or joins across data sources.
The system inserts joins based on the relationships between
schema elements.

The query processor in Unity:

• Determines the semantic names of concepts requested
by the query, and for each data source, determines the
best field mapping(s) for each semantic name and
their associated tables.

• Given a set of fields and tables to access in a data
source, determines which joins to insert to connect
database tables.

• Generates SQL queries created in the previous steps,
and transmits SQL queries and authentication
information to the wrapper systems for each data
source.

• Retrieves row results from wrapper systems, applies
reverse mappings back to semantic names, and
displays formatted results to the query poser.

• Determines if row results should be unioned or joined
together across databases based on the presence of
common keys.

Query Example

Given the two bookstores described above, we now consider a
typical e-business scenario. A third book retailer (FindAll
Books) needs to locate as many copies of a book entitled “How
to Query Databases” as possible. The first step is to integrate
the FindAll’s business into the ontology described earlier.2
This requires the creation of an X-Spec so the results, once
located, can be returned. The integration algorithm must
integrate FindAll's X-Spec into the integrated dictionary to
form the ontology. FindAll can then submit a query based on
the integrated schema so it can retrieve the necessary
information from both stores.  Authentication and security
access codes for each business' database are required, but this is
the responsibility of the Workflow Management component of
Figure 1.  For each database, this information is stored in Unity
(the adapter) so information such as its website address and
authentication information can be retrieved and transmitted
automatically.
                                                
2 This is not strictly required if the only business requirement is
to retrieve data from the two bookstores. However, if business
workflow is required between the three businesses, the
workflow manager (see Figure 1) must understand the
ontological model of all participants

FindAll now selects the quantity available of the book entitled
``How to Query Databases'' using the integrated context view
illustrated in Figure 7. Thus, two attributes are required from
the integrated ontology:

[Book] Title = “How to Query Databases”
[Book] Quantity

The query processor now uses the mappings described in
Figure 7 to produce the following SQL for each data source,
which are sent to the adapters (recall Figure 1) for submission
to each of the bookstore databases for processing:

Cheap Books Books-for-Less
Select Qty
From Book
Where Title = “How to \
Query Databases”;

Select Quantity
From Book
Where Title = “How to \
Query Databases”;

This wrapper then returns results to Unity, which subsequently
follows the directions of the workflow manager to return the
integrated results to FindAll. Purchasing the book copies would
require additional business logic that would need to be placed
into the workflow manager, but FindAll does not need to do
anything further for subsequent data exchange with Cheap
Books or Books-for-Less. Clearly, this is an extremely
powerful data interchange paradigm.

Related Work and Architecture Discussion

Mediator and wrapper systems such as Information Manifold
[4] and TSIMMIS [5] answer queries across a wide-range of
data sources.  These systems construct integrated views using
designer-based approaches, which are mapped using a query
language or logical rules into views or queries on the data
sources.  Once an integrated view and corresponding mappings
to source views are logically encoded, wrapper systems are
systematically able to query and provide interoperability
between data sources.

Internet and industrial standards organizations take a more
pragmatic approach to integration by standardizing the
definition, organization, and exchange mechanisms for data
communications. Work on capturing metadata in industry has
resulted in the formation of standardization bodies for
exchanging data such as Electronic Data Interchange (EDI),
Extensible Markup Language (XML [7]), and BizTalk [2].
Industrial systems achieve increased automation by accepting
standards to resolve conflicts.

Unity combines standardization with algorithms for conflict
resolution. By separating the specification of database
semantics from the integration procedure, Unity implements
automatic procedures to combine specifications and resolve
conflicts. The combination of standardization with research
algorithms to address the schema integration problem is unique.

The key benefit of the architecture is that the integration of data
sources is automatic once the capture processes are completed.
By their nature, capture processes are partially manual, as they
require designers to capture semantic information in X-Specs



using the X-Spec editor. Once a capture process for a data
source is completed, it never has to be re-performed.  Thus, the
advantage of the architecture is a global view is automatically
created once designers independently define the local views of
the individual data sources. Further, Unity preserves full
autonomy of all data sources.

The major challenge inherent in the architecture is creating the
standard dictionary. Although defining terms to represent
concepts is challenging, it is not without precedent. Industrial
systems such as XML and BizTalk all rely on the acceptance of
standard formats. Our architecture is even less restrictive as
names are standardized but not structure.

Unity achieves automatic conflict resolution by using a
standard dictionary to build semantic names, constructing a
structurally-neutral integrated view from semantic names, and
mapping semantic queries to SQL.  The standard dictionary
resolves the table naming conflict and the attribute naming
conflict because contexts (tables) and concepts (attributes) will
not be integrated unless they have the same semantics.
Structural conflicts are resolved by mapping queries through
the integrated view.  Data level conflicts are resolvable by
defining functions, which convert between contexts, and by
formally expressing context semantics.

Future Work and Conclusions

This paper has described Unity's ability to support the
important environment commonly referred to as “B2B”. By
utilizing Unity's philosophy of combining standardization and
ad hoc schema integration, an extremely powerful paradigm is
achieved. Thus, the user is able to create the key component to
data exchange in the B2B environment, namely an ontology for
data exchange. This ontology is based on the database
semantics independently captured using the emerging XML
language to exchange data between businesses. The paper has
illustrated some of the power of X-Specs, which store semantic
names for schema elements thereby identifying identical
concepts across systems. We also illustrated how the integrated
schema is mapped to queries at the participating databases and
returned results used for subsequent business workflow.

Unity is not yet a complete work. The current implementation
has shown utility in multidatabase and datawarehouse
environments, but these are predominantly characterized by
being “read-only”. The B2B environment will require support
for updates at multiple data sources. Although we believe
support for updates in Unity should be a fairly easy extension
for a single database, it is likely to prove quite challenging for
an arbitrary business workflow that must atomically update
multiple data sources. Thus, we are investigating transaction
support for Unity in a B2B environment.

Bibliography

[1] M.W. Bright, A.R. Hurson, and S.H. Pakzad, “A
Taxonomy and Current Issues in Multidatabase
Systems”, IEEE Computer, 25(3):50-60, March 1992.

[2] Microsoft Corporatation, “BizTalk Framework 1.0 –
Independent Document Specification”, Technical
Report, Microsoft, November 1999.

[3] Uniform Code Council Inc., “SIL – Standard
Interchange Language”, Technical Report, January,
1999.

[4] T. Kirk, A. Levy, Y. Sagiv, and D. Srivastava, “The
Information Manifold”, In AAAI Spring Symposium on
Information Gathering, 1995.

[5] C. Li, R. Yerneni, V. Vassalos, H. Garcia-Molina, Y.
Papakonstantinou, J. Ullman, and M. Valiveti,
“Capability based medication in TSIMMIS”, In
Proceedings of the ACM SIGMOD Conference on
Management o f Data, pages 564-566, June 1998.

[6] A. Sheth and J. Larson, “Federated Database Systems
for Managing Distributed, Heterogeneous and
Autonomous Databases”, ACM Computing Surveys,
22(3):183-236, September, 1990.

[7] W3C, “Extensible Markup Language (XML) 1.0”,
Technical Report, February 1998.


	Introduction
	Architectural Framework
	Contributions
	Unity Architecture
	
	Fields


	The Capture Process
	Standard Dictionary
	Constructing Semantic Names
	X-Spec - A Metadata Specification Language

	The Integration Process – Forming the Ontology
	The Query Process
	Query Example

	Related Work and Architecture Discussion
	Future Work and Conclusions

