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ABSTRACT
Databases have reduced the cost associated with data man-
agement by abstracting applications from information pro-
cessing challenges. There is an increasing need for managing
and analyzing data in smaller embedded devices and sensor
nodes. Due to resource limitations, these devices typically
do not have well-defined data management APIs and stan-
dards such as the relational model and SQL. This results in
increased complexity and cost. LittleD1 is a SQL relational
database allowing ad-hoc queries on sensor devices. The
novel implementation of LittleD adapts to memory and code
size restrictions by streamlining query parsing and execu-
tion and implementing efficient memory management tech-
niques. Experimental results demonstrate that LittleD exe-
cutes queries with joins and selections on devices with less
than 2 KB memory in a few seconds.

Categories and Subject Descriptors
H.2.4 [Systems]: Query Processing

Keywords
Sensor node, microprocessor, embedded device, query, SQL

1. INTRODUCTION
Relational databases and SQL have reduced the cost and

time to manage and analyze data. Increasingly, massive
amounts of data are collected by small embedded and sensor
devices and aggregated at servers for analysis. The ability to
perform data analysis on device reduces latency and network
transmissions which makes the devices more energy efficient
and robust. Further, data collection may occur without net-
work communication. As such, adapting database technol-
ogy to these smallest devices is critical.

Despite the need, there are few data management systems
or APIs for embedded and sensor devices. The resource con-

1https://github.com/graemedouglas/LittleD.
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straints of commonly used sensor nodes and embedded sys-
tems pose a serious challenge. The most constrained devices
might have as little as 16 KB of ROM for compiled code, 2
KB of RAM, and less than 1 MB of stable storage. These
resource limitations restrict data management approaches
and eliminate common embedded databases such as SQLite
that run on more powerful hardware such as smart phones.
Systems and algorithms must also adapt to the storage char-
acteristics of flash memory. Flash memory has asymmetric
performance with writes taking an order of magnitude longer
than reads.

Previous systems such as PicoDBMS [2] and TinyDB [9]
implement only the query execution engine on the device
and rely on external input to parse, translate, and optimize
the query plan to run on the device. The only system that
has a near-SQL API is Antelope [10] which uses a similar
but non-SQL compliant language to enable ad-hoc querying
and execution. Antelope is designed to work with Contiki
[4] and has some restrictive query processing limitations.

The contribution of this work is a SQL-compliant query
engine that runs on devices with as little as 2 KB of memory.
The distinctive features of LittleD are:

• A novel hand-written parser to minimize memory con-
sumption.

• A query translation system that builds a query execu-
tion plan directly while parsing without the overhead
of building parse and logical query trees.

• A guaranteed, fixed memory allocation system that
performs query execution with a specified memory size
while maintaining performance.

• The ability to perform the join of two or more tables,
using filtering predicates and indexes where possible.

• Support for general expression evaluation.

LittleD has been experimentally evaluated by simulation
using MSPSim on a Zolertia Z1 device and compared to
Antelope [10]. Experimental results demonstrate that Lit-
tleD consistently uses less memory and is more flexible in
query processing, with a higher degree of SQL compliance.
LittleD achieves a resource efficiency that is vastly superior
than that of Antelope.

The organization of this paper is as follows. In Section
2 is background information on data techniques for embed-
ded and sensor devices. Section 3 provides an overview of
LittleD, and Section 4 contains experimental results. The
paper closes with future work and conclusions.



2. BACKGROUND
Databases store, retrieve, and transform data. Relational

database management systems (DBMSs) provide Atomicity,
Consistency, Isolation, and Durability (ACID) properties as
well as a Structured Query Language (SQL) for schema and
data definition, retrieval, and transformation. Ideally, such
facilities would also be available for a relational DBMS for
microprocessors and sensor nodes.

Relational databases using SQL translate a user-specified
query into an executable sequence of steps (see Figure 1).
The parser tokenizes a query string to build a parse tree and
then converts this parse tree into a logical query plan. An
optimizer converts the logical query plan into an optimized
query plan which is then translated into a physical (or ex-
ecutable) query plan (see Figure 2). Operators are inner
nodes within the tree and scans of relations are leaves. The
evaluator then executes the program to produce the results.
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Figure 1: Query Processor Architecture for a typical
SQL database and LittleD

SELECT R.x, T.y, T.a+T.b FROM R, T WHERE R.x=T.y

ProjectR.x,T.y,T.a+T.b

JoinR.x=T.y

Scan(R) Scan(T )

Figure 2: An example executable query plan.

For resource constrained environments, this query execu-
tion process is infeasible due to memory usage and code size

constraints. Embedded devices may only have 16 to 128 KB
of code space, and complicated components like the opti-
mizer cannot be implemented. Further, devices may have as
little as 2 KB of RAM. The generation of intermediate rep-
resentations such as the logical and optimized query plans
consume too much space. Consequently, systems are forced
to make compromises on the components implemented and
the level of SQL support.

One of the most common trade-offs is to perform only
query execution on the device. In this case, a query is spec-
ified using a SQL-like language on a workstation, and then
optimized and translated to an executable plan on the work-
station. The executable plan is transmitted to the embedded
device to execute. Although this eliminates a considerable
amount of code complexity by removing the parser and op-
timizer, the embedded device now becomes dependent on
an external device. It also adds another level of complexity
when implementing data algorithms.

Systems such as COUGAR [3] and TinyDB [9] are dis-
tributed data systems intended to manage information over
many networked sensors. These systems perform query pars-
ing and translation off-device. A lead system exists which
manages queries across the network.

Another technique is to simplify the database execution
algorithms used and re-compute as much as possible. Pi-
coDBMS [2] provides a framework for designing RAM-lower
bound query execution algorithms. The authors demon-
strate that confining algorithms to the absolute minimum
RAM possible, even with available indexes, results in sig-
nificant re-computation. However, increasing the RAM pro-
vided to these algorithms in even modest quantities drasti-
cally improves the algorithms’ performance. PicoDBMS is
designed for devices such as smart cards which have EEP-
ROM and about 1 KB of memory.

For larger mobile devices, such as smart phones, embed-
ded database products exist. SQLite2 is a popular embed-
ded database. Other similar SQL DBMSs include the H2
Database Engine3, SQL Server Compact4, and Mini SQL5.
None of these systems target the most constrained of de-
vices, but instead target more powerful platforms like mobile
phones. Non-relational alternatives include BerkeleyDB6

and UnQLite7. For example, SQLite requires at least 200
KB of code space and cannot run on popular platforms such
as the Arduino.

For sensor devices, the most capable SQL-like database
available is Antelope [10]. Antelope provides a query parser
and execution system that can run on small embedded de-
vices and a query language called AQL which is similar to
SQL. AQL splits statements into smaller chunks to mini-
mize memory usage. Data-retrieving queries are written in
a more explicit form. For example, joins are given their own
command. While this allows for shorter queries, it is also
less flexible and does not conform to the SQL standard.

This work focuses on query processing on constrained de-
vices. Related issues, including those of data persistence

2http://www.sqlite.org/
3http://www.h2database.com/
4http://www.microsoft.com/en-us/sqlserver/
editions/2012-editions/compact.aspx
5http://www.hughes.com.au/products/msql/
6http://www.oracle.com/technetwork/products/
berkeleydb/overview/index.html
7http://www.unqlite.org/



and indexing on flash memories, have been widely studied
including algorithms for updating data on flash memories [7],
and efficient indexing structures optimized for wear-leveling
and flash access patterns [1], [8]. The focus of this work is
on the entire query engine and not specific implementations
of indexing or flash-aware algorithms.

3. LittleD OVERVIEW
LittleD implements a SQL relational database execution

engine capable of processing queries on resource-constrained
devices. LittleD performs SQL parsing, translation, and
optimization in a single component (Figure 1) that greatly
reduces the memory-overhead for building query execution
plans. As embedded devices have strict limits on memory,
and static memory allocation is preferable over dynamic
memory allocation, LittleD will execute a query given a
statically-assigned memory buffer. All query planning and
execution is performed using this static memory buffer, and
memory allocation during query execution is tightly con-
trolled and planned to maximize memory use efficiency. The
programmer simply passes LittleD a byte-array to use.

LittleD implements SQL SELECT-FROM-WHERE syntax. A
summary of the features implemented in comparison with
Antelope is in Table 1. Each query string is stored as part of
the compiled code or generated by the programmer dynam-
ically. By eliminating traditional query translation, imple-
menting relational operators as iterators, and using a stack-
based memory allocator, LittleD attains efficient RAM usage
and query performance.

The algorithms for each relational operator were restricted
to single-pass or “tuple-at-a-time” approaches. Scan, Se-
lection, and Projection all require only one tuple in
memory at a time. There are two Join implementations:
nested-loop join and index-nested loop join. Both algo-
rithms require only one tuple of each relation be memory-
resident at a time. Sort performs a single-record selection
sort over some relation. This operator is used when an index
does not exist for the sort attribute.

General expression evaluation is supported for common
arithmetic, bitwise, and logical operators. The system uses
a compact postfix notation to represent parsed expressions
in the form of byte-code. A shunting-yard style algorithm is
used to parse expressions [6]. The evaluation procedure con-
sists of multiple steps. Each separate node in an expression
is added to a temporary stack. When an operator is encoun-
tered, inputs are automatically converted to a common type,
as is done in all relational databases. For example, if 1 + 2.3
is the expression being performed, 1 must be converted to a
floating point value. After type promotion, the partial ex-
pression rooted at the operator is evaluated and its result
fed back onto the top of the temporary stack. This proceeds
until the root operator or function has been evaluated.

LittleD is implemented using the C programming lan-
guage. The system provides a compile-time configuration
file so developers can choose which system features they
need. The system compiles on systems supporting the GNU
C Compiler or LLVM group of compilers including Linux,
Windows, and Mac OS X, as well as for several devices the
Contiki project supports. All relation schema information
is stored in secondary storage with each relation.

3.1 Query Translation
Query parsing and optimization is memory and code space

intensive. The use of a parse tree creates a number of chal-
lenges for highly constrained systems. An auto-generated
lexer from existing tools is impossible to leverage since the
generated code compiles to too large of a binary to be use-
ful. The parse tree itself uses up memory. This extra RAM
consumption puts the system at risk of running out of space
for a query that it could otherwise execute. For this reason,
the lexer and parser were manually written to convert SQL
directly into executable byte-code.

Since query parsing, validation, and optimization are all
combined into a single component, it must generate the best
possible execution plan without complete information of the
query. The idea is to generate the plan while scanning the
input SQL string. This creates a unique set of challenges
which are handled by applying common optimization heuris-
tics to build quality, but not guaranteed optimal, plans. The
heuristics and transformations applied are described below.

• Left-deep join trees are exclusively used as they gener-
ally provide better performance than right deep trees
or bushy trees. Standard unindexed join algorithms it-
erate over tuples in the right relation while pulling each
tuple from the left once. If the right child of a join is
itself a join, it will need to be computed several times.
As such, the right relation of each join operator is set
to be a physical scan operator, so that re-computation
can be avoided.

• Where possible, unindexed joins are upgraded to in-
dexed joins. An indexed join uses one un-ordered re-
lation to pull single tuples, and based on its filtering
predicate, searches the other relation, assumed to be
indexed.

Using these transformations provides the basis needed to
build executable query plans. Given a FROM clause in a query,
the corresponding scan operators for each of the physical re-
lations can be built in order and then the joins can be ini-
tialized in reverse. For example, “FROM R1, R2, ... , Rn” is
scanned in left to right order. Once memory space for each
join has been allocated, the join between Rn−1 and Rn is ini-
tialized followed by the join between Rn−2 and Rn−1. Once
all the joins have been initialized and then the expressions
parsed and verified, joins that can use indexes are upgraded
to do so. An example query translation is in Figure 3.

Example structures for expression nodes are in Figure 4.
Sizes for these and other structures are provided in Table 2.
Note that the Scan, Join, and Project operators may also
generate some in-memory relation meta data. This meta
data uses 2+4∗(number attributes)+(attribute name sizes)
bytes. Tuple sizes are schema and platform dependent. A
two integer record on the Z1 requires 5 bytes.

3.2 Memory Allocation
Memory allocation must be done as compactly as possi-

ble. To avoid fragmentation, LittleD uses a custom memory
manager using two-stacks contained within one section of
memory. The front stack’s top starts at the beginning of
the memory section, while the back stack’s top is initially
located at the end. Allocations always occur at the top
of one of the two stack positions. While the LittleD mem-
ory manager never allows allocation to occur in any location



Table 1: Relational Operator Support and Implementation Details
Operator LittleD Antelope

Join Nested tuple and index-based Index-based

Select Single-pass Single-pass and index-based

Project Arbitrary expressions Only simple attributes

Sort
Single-record selection sort on arbi-
trary expression

Index-based

Table 2: Fixed costs of common structures on Zolertia Z1.
Structure Description Size in memory

db_exprnode_t Expression node supertype 2 bytes
db_exprnode_attr_t Attribute node 6 bytes
db_exprnode_dbint_t Integer value node 4 bytes

db_exprnode_dbstring_t String value node 4 bytes + string size
scan_t Scan operator 24 bytes
select_t Selection operator 8 bytes
ntjoin_t Nested-loop Join operator 20 bytes
project_t Projection operator 10 bytes

Figure 3: Example of LittleD’s query translation
process

other than the top of a stack, memory segments may be freed
from places that are not on the top. Due to the flow of data
through an executable query plan, memory allocations and
de-allocations tend to occur in a fixed order. The overhead
costs to such a design are minimal, costing the equivalent
of two pointers per allocated segment on the front and one
pointer per allocated segment on the back.

Another advantage to using this memory management
strategy is that it is trivial to detect and handle out-of-
memory errors on the fly. It is also possible for the system
to detect out of memory errors long before they occur by
directly calculating the memory required to execute a phys-
ical query plan after it is built. This could potentially save

/∗ Base type in expre s s i on by tecode . ∗/
typedef struct
{

db uint8 type ;
} db exprnode t ;

/∗ Bytecode node f o r an a t t r i b u t e . ∗/
typedef struct
{

db exprnode t base ;
db uint8 a t t rpo s ;
db uint8 whichtable ;

} db exprnode at t r t ;

/∗ Bytecode node f o r an i n t e g e r va lue . ∗/
typedef struct
{

db exprnode t base ;
db int i n t e g e r ;

} db exprnode int t ;

Figure 4: Example expression nodes for LittleD

valuable execution cycles for more complicated queries the
system does not have the resources to answer. More im-
portantly, it prevents segmentation faults from happening,
which could lead to data loss, device restarting or other de-
structive, unpredictable behaviour.

3.3 Indexing
The indexing method used by LittleD is the same as Ante-

lope’s inline indexing [10]. It uses O(1) additional space and
assumes that the relation is physically stored in monotoni-
cally increasing order of the key. This is a common occur-
rence for time series data collected using sensors. Equality
joins over such an attribute allow for binary search of the
indexed relation to find matching tuples and then simple
in-order reads until a non-matching tuple is encountered.
Implementing other indexing methods is future work.



4. EXPERIMENTAL RESULTS
LittleD and Antelope were compared using the MSPSim

simulator8 on a simulated Zolertia Z1 device. The queries
evaluated for LittleD and Antelope, as expressed in SQL
and AQL respectively, are given in Table 3. Execution time
and memory results were collected for LittleD. Antelope has
a fixed cost of 3.4 KB of RAM of static allocations along
with a variable amount of dynamic allocations, between 0
and 328 bytes [10]. In comparison, LittleD is given a fixed
amount of memory to allocate from. Less than 1 KB of
memory was required for each query executed. This means
that for the most memory intensive queries executed, Ante-
lope uses at least 500% more memory than LittleD. For the
least memory intensive query, this disparity grows to over
1300%. This is extremely important as memory is the most
limited component on embedded devices. LittleD has ex-
tremely low memory requirements that makes it possible to
run queries on even the smallest devices.

Figure 5: LittleD vs. Antelope Memory Usage
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Both systems use inline indexes on the first attribute for
all tables and give preference to using the right relation for
indexing a join whenever possible. Although no benchmarks
are provided here, it is also possible to execute unindexed
joins using LittleD, while it is not possible for Antelope (see
Table 1).

Both systems require considerable code space. When com-
piled for the Z1 device, Antelope required about 48 KB,
while LittleD required approximately 55 KB. Both code
space sizes include a small amount of utility code to gen-
erate data and run benchmarks. The amount of extra code
used is comparable to that needed to collect data in a real
world application.

Query 1 is a raw, serialized scan over a large relation, and
LittleD outperforms Antelope in this task because LittleD
does not require projections when selecting all data, whereas
Antelope does.

Both databases exhibit nearly identical times for queries
2 and 3. This is attributed to the use of the indexes to
significantly reduce the number of tuples processed. For

8This is the cycle-accurate simulator used by Contiki for
testing. https://github.com/mspsim/mspsim

Figure 6: Query Execution Experimental Results
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query 4, Antelope uses an index, while LittleD currently
has more limited index support. When no index is used, the
two databases perform nearly identically for Selections, as
query 5 shows.

Query 6 highlights that the time required to execute a
query is approximately linearly proportional to the number
of calculations in all of the expressions. Despite the small
output relation size, the cost of calculating the result of three
operations over each tuple drastically affects the execution
speed. Further, this query highlights LittleD’s ability to
project arbitrary expressions, whereas Antelope is only able
to project individual attributes.

Queries 7, 8, and 9 show that Antelope outperforms Lit-
tleD on similar joins. However, Antelope tacitly assumes
that all joins are equijoins involving single attributes of the
same name, while LittleD can evaluate an arbitrary join ex-
pression. This allows LittleD to have greater flexibility in
how indexes can be leveraged, at the cost of execution speed;
Antelope’s joins are approximately two to three times as fast
as LittleD’s. Furthermore, our experimentation revealed er-
rors in Antelope’s joins that affected its correctness. For
the test cases presented, the number of results generated
was correct, but for a variety of other joins the output was
incorrect. Given the limitations in the Antelope join imple-
mentation, it is difficult to have a meaningful comparison.
Query 7 is faster than query 8 for both systems because it
performs fewer binary searches on the indexed relation.

A unified measure of performance is derived by multiply-
ing execution time by memory consumed. We call this the
resource product, and it indicates how well the database bal-
ances memory usage and execution time. The lower the
resource product, the better the database uses its resources.
LittleD has a smaller resource product for all queries tested.
The best case for Antelope is query 8 where its resource
product is twice as large as LittleD. In the worst case, An-
telope’s product is over 40 times larger. LittleD is the most
memory efficient, which is the most constrained resource,
while maintaining comparable query time performance and
providing more general SQL query capabilities.



Table 3: Queries Executed
Query LittleD SQL String Antelope AQL String Relation Info Result Size

1 SELECT * FROM r SELECT * FROM r |r| = 10000 10000

2
SELECT * FROM r WHERE attr0 >

4999

SELECT attr0, attr1 FROM r

WHERE attr0 > 4999
|r| = 10000 5000

3
SELECT * FROM r WHERE attr0 <

100

SELECT attr0, attr1 FROM r

WHERE attr0 < 100
|r| = 10000 100

4
SELECT * FROM r WHERE attr0 >=

7 AND attr0 <= 6009

SELECT attr0, attr1 FROM r

WHERE attr0 >= 7 AND attr0 <=

6009
|r| = 10000 6003

5
SELECT * FROM r WHERE attr1 <

100

SELECT attr0, attr1 FROM r

WHERE attr1 < 100
|r| = 10000 6003

6
SELECT attr0, attr2/4,

(attr1+1)*2 FROM r WHERE attr1

< 10 OR (attr2 / 4) = 13

No Executable Equivalent |r| = 10000 6

7
SELECT * FROM l, r WHERE

l.attr0 = r.attr0

JOIN l, r ON attr0 PROJECT

attr0, attr1
|l| = 100, |r| = 1000 100

8
SELECT * FROM l, r WHERE

l.attr0 = r.attr0

JOIN l, r ON attr0 PROJECT

attr0, attr1
|l| = 1000, |r| = 100 100

9
SELECT * FROM l, r WHERE

l.attr0 = r.attr0

JOIN l, r ON attr0 PROJECT

attr0, attr1
|l| = 100, |r| = 100 100

Figure 7: Query Resource Efficiency Results
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5. CONCLUSIONS
This work presents LittleD, a relational SQL database

for the smallest embedded devices. LittleD is feature and
performance competitive with Antelope while being more
flexible and using drastically less memory for query process-
ing. Future research will focus on indexing and algorithmic
improvements to relational operators to lower RAM and en-
ergy usage. This will include the implementation of MinSort
[5] to greatly improve unindexed sorting speeds. Different
parsing techniques, from off-device query compilation to new
representations for SQL-like languages, will be explored to
reduce the code space requirements of a complete system.
Further work will be done to use this system on common
platforms such as the Arduino9.

9http://www.arduino.cc/
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