Fast Sorting on Flash Memory Sensor Nodes

Tyler Cossentine
Department of Computer Science
University of British Columbia Okanagan
Kelowna, BC, Canada
tcossentine@gmail.com

ABSTRACT

Sensor nodes are being used in numerous domains for data
collection and analysis. The ability to perform on device
data processing increases the functionality and lifetime of a
network as it avoids network transmission. Previous work
has developed algorithms for sorting on sensor nodes with
flash memory. These algorithms favour reads over writes due
to the asymmetric costs. However, previous algorithms have
not exploited the ability to perform random reads at the
same cost as sequential reads. In this paper, we propose a
new algorithm called Flash MinSort that uses random reads
to rapidly sort in flash memory using a small amount of
memory. The algorithm works especially well for sensor data
which is often temporally clustered. Experimental results
on random and real sensor data show that Flash MinSort is
two to ten times faster than previous approaches for small
memory sizes where external merge sort is not executable.

Categories and Subject Descriptors

C.2.4 [Distributed Systems]: Distributed databases;
H.2.2 [Physical Design|: Access Methods;
H.2.4 [Systems]: Query Processing

Keywords

sorting, sensor node, flash memory, query processing

1. INTRODUCTION

Sensor networks [6] are widely used for environmental
monitoring, industrial automation, data collection, and event
detection and tracking. Sensor nodes are primarily limited
by battery life and component costs, so a sensor node has
limited computational and memory resources. Most sen-
sor nodes have a very small amount of main memory (1
to 40KB), most of which is used for networking and other
tasks and not available for data processing. Data storage
is achieved using flash memory. Sorting is widely used in
query processing for ordering output, joins, grouping, and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

IDEAS10 2010 August 16-18, Montreal, QC [Canada]

Editor: Bipin C. DESAI

Copyright (©)2010 ACM 978-1-60558-900-8/10/08 ...$10.00.

Ramon Lawrence
Department of Computer Science
University of British Columbia Okanagan
Kelowna, BC, Canada
ramon.lawrence@ubc.ca

aggregation. The ability to sort allows for more powerful
query processing on the node, which saves communication
time and energy, as nodes can perform computations locally
rather than sending data to a collection site. Reducing com-
munication improves battery life and the overall lifetime and
robustness of the sensor network.

The contribution of this paper is an efficient flash sorting
algorithm that significantly reduces the amount of time and
I/O operations performed over previous algorithms. The
algorithm favours reads over writes due to the asymmet-
ric costs of writing and reading in flash memory. To avoid
writes, previous algorithms would scan the entire table mul-
tiple times even though most of the data scanned was of
no value. The performance improvement is achieved by
maintaining data statistics that allow the algorithm to effi-
ciently scan only tuples of interest. Another major benefit is
that the algorithm performs exceptionally well in the case of
sorted or near-sorted data and exploits the temporal clus-
tering common in sensor network data. When compared
with existing algorithms under memory constrained condi-
tions, Flash MinSort is twice as fast for random data and
ten times faster for real sensor data. Another contribution
is an analytical and experimental evaluation of existing al-
gorithms and an analysis of the types of inputs and memory
sizes where each algorithm is superior.

The organization of this paper is as follows. In Section 2
is background on sensor nodes, their components, and key
issues with developing algorithms for use with flash mem-
ory. This section also summarizes the current algorithms
for flash-based sorting. Our new Flash MinSort algorithm
is presented in Section 3. Section 4 contains a theoretical
analysis for Flash MinSort and other existing algorithms.
The experimental evaluation is in Section 5, and the paper
closes with conclusions and future work.

2. BACKGROUND

Sensor networks are used in military, environmental, agri-
cultural and industrial applications [1, 6]. A wireless sen-
sor node consists of an embedded processor, power manage-
ment, sensing system, and a communications link [7, 11].
The memory consists of a small amount of random access
memory (DRAM) in the range of 1 to 100KB and a larger
amount of flash memory (100KB to 10 MB or more) for
data storage. Wireless sensor devices can have both inter-
nal and external sensor systems. Communications between
devices is accomplished using radio frequency (RF) modu-
lation techniques [6, 11]. Devices may process data locally,
always send it back to a collection point called the sink, or

do some combination of the two depending on the sensor
network configuration.

Device energy usage is a major research challenge [11].
Nodes typically use an 8-bit processor [1, 11] with a small
amount of local memory. Accessing flash memory requires
transferring data from the flash device over the bus to the
processor. Devices are chosen to be low in cost and en-
ergy efficient. For data processing applications, only a small
amount of the RAM is usable as the rest is dedicated to
sensing and network communication functions. Thus, it is
critical to develop algorithms that function efficiently with
minimal memory usage.

A typical flash memory consists of pages (512 bytes to
4 KB) that are combined into blocks (4 KB to 128 KB).
Reads and writes are done at the page level, although some
devices [4] support direct byte reads. A page must be erased
before it can be written. The erase unit is typically a block
of pages.

Flash memory has unique performance properties. On a
sensor node, flash memory is directly accessed from a flash
chip. Unlike flash devices [5] that provide a block-level in-
terface and have layers of software for block mapping, wear
levelling, and error correction, flash memory chips provide
basic hardware functionality. Flash memory allows random
reads at approximately the same rate as sequential reads.
This is considerably different than hard drives used in other
data processing applications. Further, there are asymmet-
ric read and write costs with writes being between 1.5 to
100 times more costly depending on the flash memory chip.
Writes are more costly due to the requirement that flash
blocks must be erased before they are written. Most devices
have an internal buffer to store one or more pages. The pro-
cessor will transfer data from an internal flash buffer to its
RAM to process it. Although the transfer size between the
flash memory and the buffer on the device is in the unit of
pages, the transfer between a flash buffer and the processor
can be done at the byte level.

The Atmel AT45DB161D [4] flash chip with 16-megabits
(2 MB) of storage is used in our experiments. This is a
popular chip for sensor nodes and embedded applications
due to its low cost, low energy usage, and performance. The
chip supports both page and byte reads and supports erase
at the unit size of a page (512 bytes), block (4 KB), sector
(128 KB), and entire chip (2 MB). The chip has two internal
page buffers that can be used for both reading and writing.
Read operations read a page from flash to the buffer then
transfer bytes from the buffer to the processor. It is also
possible to directly stream a page or any sequential bytes
from the chip to the processor, bypassing all buffering. Thus,
it is possible to read from this device at the byte-level rather
than the page-level. Pages are written to the device from one
of the internal buffers.

For sorting a table of records, we will use T" to denote the
number of tuples (records) in the table and P as the number
of pages. Lp is the size of a page in bytes (depends on
the flash device) and Lt is the tuple size in bytes (depends
on the data). Assuming an unspanned record layout, the
number of tuples per page is Ny = L%J, or for simplicity
Nr = L. The amount of memory available to the sort
operator in bytes is M. The size of the attribute(s) sorted,
called the sort key size, is Lx. The number of distinct values
for the sort key is D. The algorithm presented in this paper
will group pages into regions. We denote the number of

regions as R, and the number of pages in a region as Np. A
summary of these parameters is in Figure 1.

Notation Definition
T number of tuples in table to sort
P number of pages in table
Nr number of tuples per page = T'/P
Lp page size in bytes
Lt tuple size in bytes
M sort memory size in bytes
Lk sort key size in bytes
D number of distinct values for sort key
L integer size in bytes
Np number of pages in a region
R number of regions

Figure 1: Sorting Parameters

Query processing on sensor nodes has been studied [9],
including issues on local data processing and in-network ag-
gregation and data processing. There have been several al-
gorithms proposed for sorting on flash memory [2, 3, 10]
which are designed to do more reads instead of writes due
to the asymmetric costs. These algorithms are summarized
below including performance formulas. For this discussion,
we will assume sorting in ascending order. General external
sorting algorithms were surveyed in [12].

The most memory efficient algorithm is the one key scan
algorithm [2] that performs a read of the table for each dis-
tinct sort key value. The algorithm works by storing two
key values, current and split: current is the key value that
is being output in this scan and split tracks the next lowest
key value after current and is updated while doing the scan.
All records with the current value are output in order in the
current scan. The algorithm needs an initial scan to deter-
mine the values of current and split. It is straightforward to
see that this algorithm performs D + 1 scans, regardless of
the data size, with each pass performing P page I/Os. The
major advantage is the memory consumed is only 2L .

The heap sort algorithm, called FAST(1) [10], uses a bi-
nary heap of size N tuples to store the smallest N tuples
during each scan. Another value, last, is maintained which
stores the largest sort key output so far. The number of
scans is [%] regardless of the data. One complication is
handling duplicate sort key values. The solution [10] is to
remember both the last value and the integer record number
of the last tuple output. During a scan, a tuple is only con-
sidered if its key is greater than last or its key is equal to
last and its record number is larger. Duplicates also compli-
cate the heap structure as each record must store its record
number as well as the sort key to allow for the heap to main-
tain the order of duplicates, which occupies L; * N space.
This space overhead can be avoided by using a sorted array
as a data structure, but insertions are then O(N) instead
of O(logN). One page buffer is used as an input buffer.
Despite using more memory, this algorithm may be slower
than one key scan if the number of distinct sort key values
is small.

The standard sort-merge algorithm performs one read pass
to construct sorted sublists of size M, which are output to
secondary storage. The merge phase then buffers one page
from each of the sublists and merges them to produce an
output. On each merge pass, L%j — 1 sublists are merged

so multiple merge passes may be required. FEzternal merge
sort and its extensions have two basic issues. First, writing
is more expensive than reading, so multiple read scans are
often faster than read/write passes. The larger issue is that
to execute a sort-merge efficiently requires numerous page
buffers in RAM. At minimum, three pages must be avail-
able where two would be used to buffer one page of each of
the two sublists being merged and another is used to buffer
the output. With so few pages, it is common for the algo-
rithm to require many passes which reduces its efficiency.
Even three pages may be too much memory for some ap-
plications. Three 512 byte pages occupy 1536 bytes, which
is a significant amount of the 4K available for small sensor
nodes. FExternal merge sort becomes more useful as M and
P increase.

FAST [10] is a generalized external merge sort algorithm
that builds on FAST(1) to allow multiple passes and larger
data files. FAST uses FAST(1) to perform multiple scans
of a subset of the input rather than building more sublists.
Thus, instead of sorting up to L%J pages in a single pass
like external merge sort, the sublist size can be up to Q
pages, where L%J < @ < P. The number of pages Q is
configurable. This has the advantage as it avoids writing by
using reads instead. The algorithm uses a heap to allow it
to merge @ sublists in each pass instead of L%j — 1. The
optimal selection of Q) requires searching all possible values.

FSort [3] is a variation of external merge sort with the
same merge step but uses replacement selection for run gen-
eration. Replacement selection generates runs of approxi-
mate size 2M. The rest of the external merge sort algorithm
performance is unchanged.

An algorithm performance summary is in Figure 2. The
algorithm costs assume that the sort output is not counted.
All of the merge sort variants (external merge sort, FAST,
and FSort) also perform writes as well as reads. None of
the algorithms explicitly adapt to the data distribution in
the table. The cost to sort a sorted table is the same as the
cost to sort a random table. It is common in sensor networks
that the sensor data exhibits spatial and temporal clustering
that can be exploited. Note that none of the algorithms
dominates the others as performance depends on the relative
sizes of the sort parameters. An analytical comparison of the
ranges of algorithm dominance is in Section 5.

3. FLASH MINSORT ALGORITHM

The core idea of the Flash MinSort algorithm is that ran-
dom reads can replace sequential scans for retrieving only
the tuples required. All previous algorithms assumed the
input was scanned sequentially and often read records that
were not necessary. Since random I/Os have the same cost
as sequential I/Os, this can be exploited to avoid reading un-
necessary data. The algorithm works by building a simple
dynamic index over the table that stores the minimum value
in each region. This minimum value is updated as the sort
progresses. Instead of scanning the entire table, only the
region with the minimum value is searched. The minimum
value in the region is updated and the process repeats.

The term region is used to refer to a sequence of one or
more pages. In the ideal case, a region consists of only one
page. The amount of space required to store the minimum
value per page is Lk * P which may be larger than M. Thus,
we group adjacent pages into regions and compute the max-

imum number of regions that there is sufficient memory to
be able to store one key value for. The algorithm is adapt-
able to the amount of memory available, and the minimum
amount of memory is 4Lk + L for two regions. With two
regions, only two minimum values must be stored. For each
sort key value, we only search the regions where it occurs.

The algorithm maintains a current minimum value and
next minimum value. It also uses an integer (or perhaps
smaller) counter to represent the location of the next min-
imum tuple in a region (nextlIdz). This variable is used to
improve efficiency and handle duplicates. If the algorithm
encounters another tuple in the region with a key value the
same as current, it stops and sets nextldx to that location.
That tuple will be the next one output. This guarantees
that duplicates are output in the order they appear.

As the algorithm is scanning a region for records with a
key value equal to current, it is simultaneously updating the
minimum value associated with that region. The algorithm
continues scanning the region from the position of the cur-
rent tuple (loc). It will stop the scan immediately if it finds
a tuple with current value. Otherwise, it continues to the
end of the region updating the value of next as smaller val-
ues are seen. The algorithm does not need to scan the start
of the region up to loc as either this was done during the
search for current (starting from record 0 in the region) or
the records before loc were scanned and next updated when
searching for a previous value of current in the region. Since
a region is always scanned from the beginning, all tuples are
considered when determining the next minimum.

An optimization for sorted regions allows the algorithm
to avoid scanning the entire block for the next minimum.
Detecting sorted regions is an optimization that can be done
during the initial scan that determines the minimum values
in the regions and requires at least one bit of space per
region. The complete algorithm is given in Figure 3.

The performance of Flash MinSort is very good, especially
for data sets that are ordered, partially ordered, or exhibit
data clustering. If a region consists of only one page, then
in the worst case a page I/O must be performed for each
tuple for a total of P + T page 1/Os. It is possible that the
entire page must be scanned to find the next minimum value
resulting in 7'+ T % N tuple I/Os. If a region consists of
multiple pages, then in the worst case a whole region must
be read for every tuple output (and a minimum calculated).
Then the number of page I/Os is P+T '« Np and the number
of tuple I/Os is T+ T * Np * Nr.

In the best case, which occurs when the relation is sorted,
the number of page I/Os is 2 * P (first pass to determine if
each page is sorted and to calculate minimums and a second
pass that reads pages and tuples sequentially). The number
of tuple I/Os is 2 x T. If the relation is reverse sorted, the
page I/Os are P+ T % Np as it reads each page once and the
tuple I/Os are T+ T * Np x Nr as it must search the entire
region for the next minimum every time.

On average for random, unsorted data the performance
depends on the average number of distinct values per region,
Dpg. The algorithm scans a region for each distinct value it
contains. Each scan reads all tuples and pages in a region.
Average page [/Os is: P4+ R*xDr* Np = Px (14 Dgr) and
average tuple I/Osis: T+ R* Drx Np+x Ny = Tx(1+ Dg).
With a sorted region, the algorithm does not scan the region
for each distinct value as long as it does not leave the region
and return. If the algorithm leaves a region, it must start the

Algorithm | Memory Scans Read Scans | Write Scans
one key 2% L S=D+1 S 0
FAST(1) M S =1t S 0

\;LT‘*'LIFJ
merge sort M S =]’logtﬂjil([#])] S+1 S
Lp
FAST M S = [loga 511 S+ 1 s
FSort M S = (logL#Jil([%])] S+1 s
P

Figure 2: Existing Sort Algorithm Performance Formulas

scan from the beginning again since it does not remember
its last location. A binary search can be used instead of a
linear search from the beginning for a sorted region. We
have also investigated the performance of storing both the
minimum value and the offset in the region to avoid scanning
the region, but the results did not show an improvement as
additional memory is consumed that is better used to reduce
the region size.

One key optimization is that the algorithm does not need
to operate on entire tuples and pages to perform the sort.
Only when the tuple is output does an entire tuple need
to be read. Otherwise, only the sort key attribute must
be read to update the minimum. This has the potential to
dramatically reduce the amount of I/O performed and the
amount of data sent over the bus from the flash memory
to the processor. If the flash chip supports direct byte ad-
dressable reads, searching for the minimum key in the region
does not require reading entire pages assuming the sort key
offsets can be calculated. This calculation is trivial as fixed-
size records are often used for sensor nodes. Considering
only byte I/Os, the amount transferred in the worst case is
TxLxk+Tx*Lr+Tx*xNpx Nr* Lk, the average case is
TxLxk~+T*Lr+ R+DgrNpx*xNrx* Lk, and the best case
isT* Lk +Tx*Lr. The term T * Lk is the cost to perform
the initial scan and compute the minimums for each region.
This scan does not need to read the entire tuple (or pages),
but only the key values. The second term, T % Ly, is the
cost to read and output each tuple in the file in its correct
sorted order. The last term varies depending on the number
of region scans. Each region scan costs Np x Nt x L as the
key for each tuple in the region is read. In the best case, a
region is scanned only once and tuples are never revisited.
In the worst case, each tuple will trigger a region scan but
on average the number of region scans is R * Drg.

In Figure 4 is an example with 7' =48, P = 12, Ny = 4,
Lk =Ly =4, Ly =20, D =9, Dp = 2.3 and M = 60
bytes. This allows MinSort to store a minimum value for
each page. In the diagram, a value with a rectangle around
it is output as a minimum value in that iteration, and a value
with a circle around it was scanned in order to determine
the next minimum in the page. The first six iterations are
shown. On each iteration a tuple is output in the correct
sorted order. The algorithm first scans the entire table and
calculates the minimum value for each page. These values
are stored in an array in memory. The first iteration searches
the array for the minimum value and finds the value 1 in
page 1 is the minimum. It then loads the page and searches
for a 1 which it finds in the first tuple. This tuple is output.
Next, it updates the minimum value by continuing to search
the page. The minimum in the page is initially 9, but then
it finds another 1 at record 4. It sets mextIdx to location
4 in the page and leaves the block minimum unchanged.

On iteration 2, it is not necessary to search the minimum
array as nextldr = 4. Page 1 is currently in memory and
the algorithm jumps directly to record 4 to output it. The
minimum in page 1 is set to 9 without scanning the rest of
the page as next = 9 from the scans searching for the two
1 values. Iteration 3 requires searching the minimum array
to find the minimum is 1 in page 7. The search for this
record finds it in location 2. While updating the minimum
in the block, it finds another 1 and sets next/dr = 4. This
allows it to directly output this record in iteration 4 and
update the minimum in the block to 2. Iteration 5 requires
searching the minimum array and finding 1 is the minimum
in page 8. A record with key 1 is found as the first record in
page 8 and output. Updating the minimum in the page stops
immediately at the next record which is also a 1. The second
record in the page is output in iteration 6. The algorithm
continues until all records are output.

Page# Data Min Iteration #1

Iteration #4

6665 Iteration #5

Output page 1 record 4

Output page 8 record 1

1 1991 9 Output page 1 record 1 Output page 7 record 4
9999 9 Min=1, next=9 Min on page 7 is 2
9899 8 190D .
8877 7 .

Iteration #2
5
2

© ® N L A W N

4432

Min on page 1 is 9

Min on page 8 is 1

2121 1

11111 1o D1

2345 2 Iteration #3 Iteration #6
10 6789 6 Output page 7 record 2 Output page 8 record 2
11 98938 8 Min=1, next=2 Min on page 8 is 1
12 8999 8 O 11O

Figure 4: MinSort Example

In this example, the number of page reads is 39, tuple
reads is 148, and bytes read is 1444. In comparison, the
one key sort would perform 10 passes reading all pages for a
total of 120 page 1/Os, 480 tuple I/Os, and 9600 bytes. The
FAST(1) heap sort would be able to only store 3 records in
the heap (ignoring all other overheads of the algorithm) and
perform 16 passes for a total of 192 page 1/Os, 768 tuple
I/0s, and 15,360 bytes. One key sort reads 3 times more
pages and over 6 times more bytes than Flash MinSort and
heap sort reads almost 5 times more pages and over 10 times
more bytes. This data exhibits a typical continuous function
common for sensor readings.

In the worst case with a random data set with all distinct
sort key values, Flash MinSort has costs of 60 page 1/Os, 240
tuple I/Os, and 4800 bytes which is still considerably better
than the other two algorithms. The direct read version of
Flash Minsort would only read 1920 bytes.

procedure FlashMinScan()

: PagexL
numPagesPer Region = [29eXoK]

M—2xLg—Lj
numRegions = ’—numlll:grgsiagre;egion
Scan input and update minInRegion array with minimum value in each region
nextldr = 0;
while (data to sort)
if (nextldx == 0)
i = location of minimum value in minInRegion array
current = minInRegionli;
next = maxvalue;
end if

startIndexr = nextldx;

Scan region ¢ starting at startIndex looking for current

During scan update next if (key > current AND key < next)
Output record with key current at location loc to sorted output

// Update minimum in region
if (sorted region)
current = r.key of next record or maxvalue if none
nextldz is 0 if next key does not equal current, or next index otherwise

else
nextldx = 0;
for each record r in region i after loc
if (r.key == current)
nextIdr = location of record in region
break;
end if
if (r.key > current AND r.key < next)
next = r.key;
end if
end for

if (nextlde == 0)
minInRegion[i] = next;
end if
end if
end while
end procedure

Figure 3: MinSort Algorithm

3.1 Sorting in Data Processing

Sorting is used extensively in data processing for ordering
output, joins, grouping, and aggregation. For sorted out-
put, the sort operator is typically applied at the end of the
query plan. Sorting used for joins, grouping, and aggrega-
tion requires the algorithm to be implemented in an iterator
form. This section discusses some of the issues in using Flash
MinSort in iterator-based query plans.

Sorting a base table can be done with or without using an
iterator implementation as the algorithm has direct access
to the table stored in flash. Flash MinSort requires the abil-
ity to perform random I/Os within the input relation. At
first glance, Flash MinSort does not work well in the itera-
tor model as it requires the input relation to be materialized
to allow for random reads that it uses to continually get the
next smallest tuple. One simple solution would be to materi-
alize the input relation before the operator. Materialization
is typically used [2] as an alternative to rescanning the input
many times which is often more costly than materialization

depending on the complexity of the subplan. However, in
many cases avoiding materialization is preferable due to the
large write cost and the temporary space that is required.
A better alternative is to exploit the well-known idea of
interesting orders for sorting [13]. Instead of executing the
sort as the top iterator in the tree, the sort can be executed
first during the table scan and ordering preserved through-
out the query plan. This allows Flash MinSort to execute
without materialization. Depending on the query plan, early
sorting with MinSort may still be more efficient than per-
forming sort as the last operation using other algorithms.
Consider a query plan consisting of a base table scan,
selection, projection, and sort to order the output. The plan
with the sort on top is only executable with Flash MinSort if
the input from the projection is materialized first. However,
if the sorting is done first the plan is executable and may still
be more efficient than the original plan using another sort
algorithm. The selection potentially reduces the number of
distinct values to be sorted, and both operators reduce the

size of the input relation in terms of bytes and pages. Let o
represent the selectivity of the selection operator, so if the
original number of distinct sort keys was D then the number
actually sorted is o * D. Let a represent the reduction in
input size from both operators, so if the original table was
of size T' * Lt the sorted relation size is o * T * L. The
cost formulas in the following section can be modified by
multiplying by o or « to compare the performance of Flash
MinSort with the other operators. A similar analysis holds
for plans with joins, so the query optimizer can easily cost
out all options to select the best plan.

4. THEORETICAL ANALYSIS

In this section, we compare the theoretical performance of
Flash MinSort with existing algorithms to determine classes
of inputs where each algorithm dominates.

The performance of one key scan depends directly on the
number of distinct sort keys D. The performance of heap
sort depends on the sort memory size M and tuple size Lr.
One key scan will be superior if D+1 < 2= or for sim-

]
plicity D < . If the number of distinct values is small
or the number of tuples or their size is large, one key scan
will dominate. Since M is small, one key scan dominates for
sensor applications until D approaches T'.

Flash MinSort always dominates one key scan in both
page I/Os: P(1+4 Dgr) < P(1+ D) and tuple I/Os: T'(1 +
Dr) < T(14 D) as Dg the average number of distinct values
per region is always less than the number of distinct values
for the whole table D.

Flash MinSort dominates heap sort when 14+ Dpr < T“;VII’T
Flash MinSort is superior unless the size of the table being
sorted T'x Lt is a small fraction of the available memory (e.g.
input table is only twice the size of available memory). In
the worst case, Dr = Nr (each tuple in a page is distinct),
Flash MinSort will dominate unless the ratio of the input
size to the memory size is less than the number of tuples
per page. Given the amount of memory available, this is
very rare except for sorting only a few pages.

In comparison to external merge sort, the relative perfor-
mance depends on two critical factors: the number of dis-
tinct sort keys and the write-to-read time ratio. The number
of distinct sort keys affects only Flash MinSort. The write-
to-read time ratio is how long a write takes compared to a
read. As each pass in the sort merge algorithm both reads
and writes the input, a write ratio of 5:1 would effectively
cost the equivalent of 6 read passes. To simplify the discus-
sion, we will assume that external merge sort is given suffi-
cient memory to only require two passes. In practice, this is
highly unlikely due to the device memory constraints. With
this amount of memory, Flash MinSort is able to have a re-
gion be one page and most likely will not use a large amount
of the available memory. If the write-to-read ratio is X, then
Flash MinSort dominates if P % (1 + Dr) < (24 X) % P or
Dr < X + 1. Since the common ranges of the write-to-
read ratio are from 1.5 to 100, and Dg is bounded by the
number of records that can fit in a page (Nr), Flash Min-
Sort will dominate external merge sort for a large spectrum
of the possible configurations even while using considerably
less memory and performing no writes.

This analysis considered only complete page I/Os, if the
flash chip allows direct memory reads, the performance of
Flash MinSort is even better.

TxLp

S. EXPERIMENTAL EVALUATION

The experimental evaluation compares Flash MinSort with
one key sort, heap sort, and the standard external merge
sort algorithm. The sensor device used for the experiment
has an Atmel Mega644p processor with speed of 8 MHz, a
local memory size of 4KB, and a Atmel AT45DB161D [4]
chip with capacity of 2 MB. The maximum amount of mem-
ory available for data processing is 2000 bytes with the rest
of the memory used for node functions and program stack
space. This node design was used for field measurement of
soil moisture for use with an automated irrigation controller
[8]. The system was designed to collect sensor readings ev-
ery minute, store them locally, and periodically send them
back to the controller. For this evaluation, we took contin-
uous portions of some of the 3 months of the live data and
loaded it onto the device for testing. We also generated or-
dered and random data sets. The record size is 16 bytes,
and the sort key is a 2 byte integer which represents the soil
moisture reading computed from a 10-bit analog-to-digital
converter. The flash page size is 512 bytes. All numbers are
the average of 3 runs.

5.1 Raw Device Performance

The raw device performance was tested to benchmark the
read and write times. 50,000 records were used for a file
size. The Atmel chip provides three different read mecha-
nisms: direct byte array reads to RAM, direct page reads
to RAM, and read page to buffer then transfer at the byte-
level to RAM. We constructed three types of file scans: one
that reads individual tuples using a direct byte array read,
a second that reads a whole page to RAM, and a third that
reads a page into an on-chip buffer then access the tuples on
the page one at a time. The time to scan the file with each
of these methods was 31, 23, and 33 seconds respectively.
Thus, buffering has no performance difference compared to
direct to RAM reads. However, there is a performance dif-
ference in transferring large amounts to RAM from flash
memory (buffered or not) as there are fewer requests to be
sent over the bus with each request having a certain setup
time. Although there is a full page memory cost of doing
the direct page read, we use it for one key sort, heap sort,
and Flash MinSort to improve their performance and do not
count this memory usage for the algorithm. The first two al-
gorithms especially benefit because they perform numerous
sequential scans of the data.

The direct byte array read feature allows Flash MinSort to
read only the sort keys instead of the whole page (records).
We tested three types of key scans. The first reads only
the keys directly from flash, the second reads a page into
a flash buffer then reads the keys from the buffer, and the
third reads an entire page into RAM and only copies out
the necessary key values. For 16 byte records (32 records
per page), the time to perform a key scan using the three
methods was 21, 22, and 30 seconds respectively. We use
the first method that reads keys directly from flash as it has
the best performance and does not require buffering a page
in RAM for good scan performance. The performance of
this direct read increases further as the record size increases
relative to the key size.

In terms of write performance, the flash memory requires
an on-chip buffer to be filled then wrote out as a page. You
can either fill the on-chip buffer a tuple at a time or a page at
time. For writing 50,000 records, buffering a tuple at a time

takes 58 seconds and buffering a page at a time takes 37
seconds. Compared to the read performance, when trans-
ferring tuples from on-chip buffers the write-to-read ratio
is 1.8, and the ratio is 1.6 when transferring pages from
on-chip buffers. This flash memory is especially designed
for fast write performance, so the ratios are extremely low
which benefits external merge sort. The raw write perfor-
mance of the flash chip is masked by the slow processor and
bus speeds. A doubled bus speed increases the ratios to 2.8
and 2.2 respectively.

5.2 Real Data

The real data set consists of 10,000 records (160KB) col-
lected by the sensor network system during Summer 2009
[8]. Since the data is collecting soil moisture, the data vari-
ation is in a confined range, and the data follows a fairly
regular pattern. There are 43 distinct data values. The per-
formance of the algorithms by time and 1/Os is shown in
Figures 5 and 6. Each chart shows the algorithm perfor-
mance as the memory available increases. Note that we do
not display the data for heap sort as its times are an or-
der of magnitude larger. For a memory size of 30 bytes, it
buffers only one tuple and performs 10,000 passes for a time
of 24,403 seconds. For memory size of 100 bytes (5 tuples),
the time is 9800 seconds and for 1200 bytes (74 tuples), the
time is 1671 seconds. Heap sort would never be competitive
on this data set as the maximum memory available is 2KB.

One key sort is good due to the limited number of dis-
tinct values, which is common in sensor applications due to
the use of 10-bit analog-to-digital converters. One key sort
performance does not change as more memory is added.

There are two implementations of Flash MinSort: basic
MinSort transfers a complete page from the flash to RAM
while MinSortDR performs direct byte reads from the flash.
All algorithms except MinSortDR buffer one page in mem-
ory which is not counted in the memory cost. MinSortDR
performs fewer 1/Os than regular MinSort and is faster for
small memory sizes. Further, it did not need to buffer a
whole page for scanning to improve its performance, so its
effective memory usage is even smaller. The advantage de-
creases as more memory is available as MinSort will typically
use most of the records on every page it retrieves as the re-
gions are smaller. MinSortDR would be even better if the
record sizes were larger. With 32 records per page, the 32
separate calls to memory for 2 bytes at a time are not greatly
faster than one call to read a whole 512 byte page.

The smallest amount of memory that ezternal merge sort
can run with is 1536 bytes (3 pages). Its runtime is 143
seconds, and it performs 7 write passes and 8 read passes.
Flash MinSort runs faster than external merge sort with con-
siderably less memory and no writes. As memory increases,
external merge sort would become more competitive since
Flash MinSort no longer benefits from additional memory
once a region equals one page. However, for small memory
sizes, external merge sort is not possible for on-node data
processing due to its large minimal memory requirement.

5.3 Random Data

The random data set consists of the 10,000 records, but
each original data value was replaced with a randomly gener-
ated integer in the range from 1 to 500 (duplicates allowed).
The number of distinct values was 500. This number of
records was selected as the performance of one key sort be-

200 : : r : r : r

S

250 + .

200 .

g OneKey —e—
o 150 MinSort —e+— 1
E MinSorntDR —a—
" 100 |
50 .
—i
N S |

0 100 200 200 400 500 600 700 800
Memory (bytes)

Figure 5: Sorting 10,000 Real Data Records (Time)

8000 r r r : : : :

7000

5000 .

5000 .
Onekey ——

4000 MinSot —s— 1
MinSortDR —a—

3000

110 (bytes x 1000)

2000

1000 ﬁ) 1
0 N N * I ; N !

0 100 200 300 400 500 600 70O 8OO
Memory (bytes)

Figure 6: Sorting 10,000 Real Data Records (Bytes)

comes too long for larger relations, and it is realistic given
that sensor values are commonly in a narrow range. The
performance of the algorithms by time and I/Os is shown in
Figures 7 and 8. Both heap sort and one key sort have the
same execution times regardless of the data set (random,
real, or ordered). External merge sort took 155 seconds for
the random data set as the sorting during initial run gener-
ation took slightly more time.

5.4 Ordered Data

The ordered data set consists of the same 10,000 records as
the real data set except pre-sorted in ascending order. The
results are in Figures 9 and 10. As expected, Flash MinSort
dominates based on its ability to adapt to sorted inputs. The
MinSort implementation does not explicitly detect sorted
regions but still gets a benefit by detecting duplicates of the
same value in a region. MinSortDR stores a bit vector to
detect sorted regions as a special case. This along with only
retrieving the bytes required gives a major advantage. One

3500 . .

3000 F°]
2800 1
g 2000 ¢ Onekey —s— -
- MinSort —e—
£ 1500 } MinSorntDR —a— A
'_
1000 | 1
500 .
A

0 100 200 300 400 500 600 700 800
Memory (bytes)

Figure 7: Sorting 10,000 Random Records (Time)

90000 r . r r . . r
80000
70000 .
50000 1
50000 ¢
40000 ¢
30000
20000
10000

Onekey —s—y |
MinSort —+—
MinSotDR —=— 1

/O (bytes x 1000)

0 100 200 300 400 500 B00 700 800
Memary (bytes)

Figure 8: Sorting 10,000 Random Records (Bytes)

key sort is still competitive while heap sort (not shown) is
not for these memory sizes. External merge sort took 137
seconds. Heap sort had the same times as the other two
experiments.

5.5 Discussion

MinSort dominates one key sort and heap sort with or
without using direct byte reads from the device. This is due
to its ability to use random I/Os to jump to the relevant
tuples. With sensor data that exhibits temporal clustering,
its performance is especially good. Even the worst case of
random data still shows a significant benefit. Larger record
sizes would benefit MinSortDR as it would perform fewer
small requests to retrieve keys as there are fewer tuples on
a page. MinSortDR was faster despite not having the scan
page buffer overhead used by all other algorithms.

MinSort is a generalization of one key sort as both func-
tion the same if there is only one region. The difference
is that MinSort is able to use additional memory to divide
the table into smaller regions and reduce the amount of I/O

300 r : : r r : r

F

250 .

200 .

Onekey —«—
150 MinSaort —e—
MinSortDR —=—

100 .

Time (sec)

50 .

T |
O 1 1 1 1 1 1 1
0 100 200 300 400 500 600 700 800

Memory (bytes)

Figure 9: Sorting 10,000 Ordered Records (Time)

8000
7000

5000 .

5000 .
Onekey —se—

4000 MinSort —+— -

MinSontDR —=—
3000 .

110 (bytes x 1000)

2000
1000

o
0 100 200 300 400 500 600 700 800
Memory (bytes)

Figure 10: Sorting 10,000 Ordered Records (Bytes)

performed. The primary factor in the performance of both
algorithms is the number of distinct values sorted. A smaller
number of distinct values results in better performance.

As the memory available increases, heap sort becomes
more competitive. It is not the absolute memory size that
is important, but the ratio of memory available versus sort
data size. For small sensor nodes, both the absolute memory
and relative amount of memory is very limited. In our sen-
sor node architecture, heap sort would only be superior for
sorting data less than 10 pages in size (since we can at most
buffer 4 pages in memory (2K)). Otherwise, the number of
passes and execution time increases significantly.

Ezxternal merge sort has good performance but only with
a very large minimum memory consumption of 1536 bytes
which makes it not applicable for many small sensor applica-
tions. Flash MinSort is faster for the practical memory sizes
that are executable on the test device. Interestingly, for the
real data set, external merge sort will never be faster regard-
less of the amount of memory provided (assuming at least
two passes are required). The effective number of distinct

values per region Dpg is about 2 and the effective write-to-
read ratio is 1.6 resulting in an effective number of passes of
3 for Flash MinSort and 2 read passes and 1 write pass =
3.6 for external merge sort. For the random data set, the ef-
fective Dr is just under 32, so the effective number of passes
is 33 for Flash MinSort. If external merge sort uses the min-
imum 3 pages of memory, the weighted number of passes
for external merge sort is 7 write 4+ 8 read = 19.2 which ex-
plains why it outperforms for the random data set. Ezternal
merge sort benefits significantly from the very competitive
write times on the device compared to reads.

Another issue with external merge sort and any algorithm
that performs writes in passes is that the amount of flash
memory consumed is three times the size of the input table:
the original source input table (the raw data), the sorted
runs in the previous pass, and the sorted runs being pro-
duced in the current pass. If external merge sort is used on
the table storing sensor readings, the maximum input ta-
ble is 1/3 of the maximum memory size and only one sort
algorithm can run at a time. Further, whenever writes are
introduced the system must deal with wear levelling. For
applications whose primary function is environmental moni-
toring and data collection, dealing with the additional space
required and wear levelling significantly complicates the de-
sign and performance.

6. CONCLUSIONS

This work has presented Flash MinSort, a sorting algo-
rithm especially designed for sorting in flash memory on
small sensor nodes. Its performance dramatically improves
over previous algorithms by exploiting random I/Os to only
retrieve tuples of interest. Future work includes implement-
ing an entire tiny database specifically for these sensor nodes
which will use this sorting algorithm, and modifying the ex-
isting irrigation sensor application to use the database.

7. REFERENCES

[1] I. Akyildiz, W. Su, Y. Sankarasubramaniam, and
E. Cayirci. A Survey on Sensor Networks. IEEFE
Communications, 40(8):102-114, Aug 2002.

[2] N. Anciaux, L. Bouganim, and P. Pucheral. Memory
Requirements for Query Execution in Highly
Constrained Devices. In VLDB, pages 694-705, 2003.

[3] P. Andreou, O. Spanos, D. Zeinalipour-Yazti,

G. Samaras, and P. K. Chrysanthis. FSort: external
sorting on flash-based sensor devices. In DMSN’09:

Data Management for Sensor Networks, pages 1-6,

20009.

[4] Atmel. Atmel Flash AT45DB161D Data Sheet, 2010.
[5] L. Bouganim, B. T. Jénsson, and P. Bonnet. uFLIP:
Understanding Flash 10 Patterns. In CIDR, 20009.

[6] C. Buratti, A. Conti, D. Dardari, and R. Verdone. An
Overview on Wireless Sensor Networks Technology

and Evolution. Sensors, 9(9):6869-6896, 2009.

[7] D. Culler, D. Estrin, and M. Srivastava. Guest
Editors’ Introduction: Overview of Sensor Networks.
Computer, 37:41-49, 2004.

[8] S. Fazackerley and R. Lawrence. Reducing turfgrass
water consumption using sensor nodes and an

(10]

(11]

(12]

(13]

adaptive irrigation controller. In IEEE Sensors
Applications Symposium (SAS), pages 90 —94, 2010.
M. J. Franklin, J. M. Hellerstein, and S. Madden.
Thinking Big About Tiny Databases. IEEE Data Eng.
Bull., 30(3):37-48, 2007.

H. Park and K. Shim. FAST: Flash-aware external
sorting for mobile database systems. Journal of
Systems and Software, 82(8):1298 — 1312, 2009.

M. Vieira, J. Coelho, C.N., J. da Silva, D.C., and
J. da Mata. Survey on Wireless Sensor Network
Devices. In Emerging Technologies and Factory
Automation, pages 537-544, 2003.

J. S. Vitter. External memory algorithms and data
structures: Dealing with massive data. ACM
Computing Surveys, 33(2):209-271, 2001.

X. Wang and M. Cherniack. Avoiding ordering and
grouping in query processing. In VLDB, pages
826-837, 2003.

