
A COST-BASED APPROACH FOR CONVERTING
RELATIONAL SCHEMAS TO XML

Ramon Lawrence
Iowa Database and Emerging Applications (IDEA) Lab, University of Iowa

ramon-lawrence@uiowa.edu

ABSTRACT: Converting relational database schemas
to XML schemas is important as applications originally
written to manipulate relational data are converted to
XML-enabled applications. An important challenge is
determining good XML schemas from existing
relational schemas, so that applications may be
migrated to use XML. In this paper, we propose a
general algorithm for converting relational schemas to
XML schemas that returns the optimal XML encoding
exhibiting no redundancy and respects user constraints
on the resulting XML schema. Previous conversion
algorithms required the user to specify a complete
mapping or did not allow user-specified constraints.
The conversion is performed based on a user-supplied
cost function. In this paper, the cost measure is based
on the space efficiency of the XML encoding as a metric
for measuring the XML schema's desirability. The
result is a fully automatic system for migrating
relational schemas to XML schemas while respecting
conversion constraints.
Keywords: XML, schema conversion, schema
mapping, space efficiency, application migration

1. INTRODUCTION
As XML becomes the standard for data exchange,
existing applications are being migrated from using
relational databases to XML. One of the challenges of
this migration process is creating a new XML schema
from the existing relational schema. Since considerable
effort was invested in designing a good relational
schema, the goal is to preserve this investment while at
the same time exploit the modeling advantages inherent
in XML. The major modeling advantage of XML over
the relational model is the ability to define nested
schemas. This allows data to be displayed more
naturally and organized more efficiently. A result is
that the number of foreign keys and joins necessary to
relate data in XML is reduced.

Although converting a relational schema into an XML
schema is trivial if a flat translation is used (no nesting),
flat translations do not take advantage of XML's
hierarchical nature. By exploiting nesting in an XML

document, it is possible to define XML encodings of the
relational data that are more natural, easier to read,
faster to query, and are more space efficient. In this
work, we present an algorithm for translating relational
schemas to XML using a specified cost-function. The
cost-function used measures space efficiency.

The contributions of this work are:
• A fully automated relational to XML schema

conversion algorithm that minimizes a user-specified
cost function (in this case related to space efficiency)
that does not require the user annotate the relational
schema or map to an intermediate model.
• The algorithm incorporates user preferences during

the mapping if they are present. Thus, the mapping can
be completed with no user involvement, or as much
involvement as the user desires. The algorithm then
determines the optimal mapping based on the user's
constraints on their desired form of the XML schema.
• Empirical results demonstrating how XML nesting

improves on flat translation by creating more space
efficient schemas without introducing redundancy.

We begin the discussion with a short motivation
(Section 2) of the importance of relational to XML
translation. Section 3 covers background work and
overviews the current translation algorithms. In Section
4, we discuss the advantages that nesting in XML has
over flat relations in the relational model, and how we
can exploit this hierarchical nature to improve
readability and space efficiency. Nesting allows more
efficient XML encoding of the same data than a flat
translation, and we develop a cost metric to quantify
this advantage. An algorithm that uses the cost metric
to develop the optimal space efficient mapping from
relational to XML is given in Section 5. An advantage
of this algorithm is that user input in the form of
constraints on the desired form of the XML schema can
be quantified as costs, and the algorithm will compute
the optimal solution given the constraints. Section 6
provides experimental results that demonstrate the
advantages of the algorithm. The paper closes with
future work and conclusions.

2. MOTIVATION
Converting relational databases to XML is increasingly
important as data stored in relational databases is
accessed and exchanged using XML. Research has
been performed on the query aspects of how to build
XML documents efficiently when queries are generated
through an XML view of a relational database [8,14].
Although efficient query generation and execution is a
major challenge, another important consideration is the
ability to automatically generate entire XML schemas
from existing relational schemas.

To rapidly migrate existing relational database
applications to XML applications, the relational schema
must be mapped to an XML schema. Ideally, this
mapping should be automatic and preserve the
considerable effort required to develop the relational
schema. It is clearly undesirable for the XML schema
to be totally redesigned if the application domain is
mostly unchanged. Rather, an automatic algorithm that
converts the relational schema into a good XML schema
is desired. This conversion algorithm should require
minimal user input, preserve the normalization present
in the relational schema, and take advantage of the
nesting in XML schemas to improve readability and
storage efficiency. Automatic tools that generate good
XML schemas from relational schemas with minimal
user input would save considerable time during such
software conversions.

Selecting space efficient XML representations is
important as encoding data in XML has high overhead,
which affects storage space and query performance.
Even when exploiting XML compression [15], it is
desirable to develop an XML schema that encodes the
information efficiently as this reduces the number of
data elements and the file size before compression. It is
useful to have a tool that indicates the desirability of a
particular XML encoding with respect to others.
Although there are multiple possible metrics [11] for
desirability, including redundancy avoidance
(normalization), readability, and query efficiency, the
metric used in this paper is space efficiency. A cost-
based approach has been used for the reverse mapping
of XML documents to the relational model [4].

3. BACKGROUND
One of the challenges in relational to XML translation
is that schema overhead is as big a factor as data
redundancy. Thus, the ability to avoid encoding data
items has a double benefit: the data item itself is not
encoded and its accompanying tags are not encoded.
Further, the translation should be easily expressible and
preferably require minimal user input. The common

weakness with most approaches is that the relational
model is mapped to a different data model before
conversion to XML and this procedure requires human
involvement. Once the user has built the intermediate
model, they have limited impact on the final result as
the mapping is performed by translation rules.

This work is unique in that it does not require the user
understand intermediate models for conversion and
allows the user to specify constraints on the mapping
that are respected by the algorithm. Note this work is
not about XML normalization [1]. The assumption is
that the relational schema has already been normalized,
and the algorithm must only ensure redundancies do not
get re-introduced during conversion.

We overview four categorizes of translation methods:
• Flat Translation - converts relations to XML

without using nesting [12]. Each relation is translated to
an element E, and each relational attribute is either
translated to a subelement (element approach) or
attribute (attribute approach) of E.
• Query-based Translation - conversion occurs by

using a query extraction language that is an extension of
SQL or a new XML query language. SilkRoute [8] and
XML publishing using a relational database engine [14]
are examples of this approach.
• Model-based Translation - converts the relational

schema to an intermediate model that is then mapped to
XML using conversion rules. Approaches include
[3,5,7]. Challenges include that conceptual models are
not always the starting point for conversion to XML,
and the user must use the intermediate model.
• Dependency-based Translation - converts the

relational schema using dependency information. Two
algorithms, NeT and CoT [12], are defined. NeT
determines optimal nestings of attributes from a single
table, while CoT is used to determine nestings of
multiple tables. CoT is a schema-level nesting
algorithm (that uses inclusion dependencies), and NeT
is a data-level nesting algorithm that scans the data to
determine when nesting is appropriate. In most cases,
the payoff for schema-level nesting is much greater than
data-level nesting as most relational databases are
highly normalized, and data-level nesting is very costly.

Commercial vendors have translation modules [2,10,13]
that convert from relational to XML. Most of these
systems rely on either simple flat translation or
extraction queries. Simple flat translation is easy to
implement, but not necessarily the best encoding, as it
does not exploit the hierarchical nature of XML to
improve any of the desirable properties listed
previously. Specifying queries requires extensions to

the base SQL language or new query languages [8] and
is a lot of work. The extraction queries convert
relational data to XML, but they do not migrate entire
relational schemas to XML.

In summary, flat translation is space-inefficient,
whereas query or model-based translations require user
input during the processing and are often complicated to
specify. None of the previous approaches developed a
cost metric to evaluate good XML schemas beyond
avoiding redundancy. Our algorithm is the only one
that allows the user to enter constraints on the final form
of the schema that are respected by the algorithm.
Although the CoT algorithm [12] is similar to ours as it
also uses dependency information, it does not allow for
user-specified constraints and does not allow user-
specified cost functions to guide the translation. Since
the CoT algorithm does not use a cost function, it only
generates some nesting based on inclusion dependencies
(not necessarily the lowest cost nesting).

This paper contributes by defining a fully automatic
relational to XML schema translation algorithm that
uses only foreign key dependencies extracted using
standard technologies to produce an optimal, space-
efficient XML schema. Unlike all previous approaches,
the algorithm has the ability to incorporate user
constraints on the form of the XML schema desired and
produce the optimal encoding given those constraints.
It can also be adapted to use any arbitrary cost function
as specified by the user.

part (p_partkey, p_name, …, p_retailprice)
supplier (s_suppkey, s_name, …, s_nationkey, s_acctbal)
partsupp (ps_partkey, ps_suppkey, …, ps_availqty)
customer (c_custkey,c_name, c_nationkey, …, c_comment)
orders (o_orderkey, o_custkey, …, o_orderdate, o_comment)
lineitem (l_orderkey, l_linenumber, l_partkey, l_suppkey,
 l_quantity, l_extendedprice, … , l_comment)
nation (n_nationkey, n_name, n_regionkey, n_comment)
region (r_regionkey, r_name, r_comment)
Figure 1. TPC-H Schema and Inclusion Dependencies
(Primary keys are in bold; foreign keys are in italics.)

4. NESTING AND EFFICIENCY
Exploiting nesting in XML has three major advantages:
• Improves readability by grouping related concepts.
• Improves space efficiency by avoiding the

repetition and encoding of foreign keys that can be
implicitly defined by the hierarchical structure.
• Improves query efficiency by clustering concepts

together and avoiding joins.

If nesting is used indiscriminately, it is possible to re-
introduce redundancy that was eliminated by

normalization. The focus of this work is only on
nesting that does not introduce redundancy, however,
such nesting introduces an interesting tradeoff between
query/update performance versus space efficiency.

4.1 Space Efficiency Metric
The metric chosen for this work is space efficiency.
The space savings of nesting results from the fact that
foreign keys originally necessary in the document to
link concepts, can now be omitted as their relationship
is encapsulated by the hierarchical nesting of elements.
For example, in TPC-H1 (the TPC-H schema is in
Figure 1), order information can be nested under
customer information, and the foreign key
orders.o_custkey no longer needs to be represented
explicitly:

<!ELEMENT customer (c_custkey, c_name, ..., orders*)>
<!ELEMENT orders (o_orderkey, o_orderdate, ...)>

One challenge with nesting is that the foreign key must
be non-nullable. In the previous example, if
orders.o_custkey could be null, then orders without a
customer would not be mapped into the final document.
This could be resolved by introducing a dummy
customer record with value of custkey = null, but that
is often not desirable. Initially, we will consider only
non-nullable foreign keys, and then in Section 5.1 we
will discuss how to handle null foreign keys.

It is possible to quantify space savings via nesting on
foreign keys. The space saved via nesting is directly
proportional to the size of the foreign key and the
number of tuples nested. Given two relations R and S,
we will define a function that returns the amount of
space saved by nesting R under S. Let FKR(S) denote
the attribute(s) in R that constitute the foreign key to the
primary key of S (PKS). Define the function nest(R,S,K)
as the nesting of relational schema R under S on the
foreign key K. Let |R| denote the number of tuples of R.
The space savings of nesting relational schema R under
S on key K is denoted by savings(R,S,K) and is
approximated by sizeOf(K)*|R|, where sizeOf(K) is the
maximum schema size of the foreign key K of R.

More precisely, the exact savings of nesting in XML
depends on the size of the data value of the foreign key,
the tag size for the foreign key, and the XML overhead
of tag specification. For attributes, the XML overhead
is 4 characters (2 for quotation marks, 1 for “=”, and 1
for the space separating the attribute tag name). For
elements, the XML overhead is 5 characters (2 for “<”,
2 for “>”, and 1 for “/”). The tag size we will assume to

1 http://www.tpc.org/tpch/spec/h130.pdf

be the length of the attribute name for the foreign key in
the database. For element encoding, the tag name is
used twice. Estimating the character size of a data item
is difficult. In the worst case, it is the maximum schema
size of the element. This leads to the following
estimates for attribute and element space savings of
nesting as given in Figure 2. K is the foreign key in R,
and len(K) is the length of the attribute name for K.

Encoding Type Space Savings
Attribute (1/2*sizeOf(K)*len(K)+4)*|R|
Element (1/2*sizeOf(K)+2*len(K)+5)*|R|

Figure 2. Space Savings Formulas for Nesting

In practice the difference between attribute and element
encoding is less important as the major savings is O(R),
and the rest of the formula is simply a constant factor.
Savings in terms of data values not in the XML
document (without worrying about their model
representation) is |R|*(# of foreign key attributes).

4.2 Nesting Graph
Using the savings function and extracting database
schema information on primary and foreign keys, it is
possible to build a graph representing the nesting
possibilities and their desirability. All information
necessary for calculating the savings function can be
automatically extracted from the schema and queries
counting the number of tuples in each relation.

A Nest-Graph G = (V,E) is a directed, weighted graph
consisting of a set of nodes V and a directed edge set E,
such that for each relation R in the database schema,
there exists a node VR ∈V, and for each non-nullable
foreign key FKR(S) there is an edge e=(VS,VR,w) ∈ E,
where w=savings(R,S,FKR(S)). The Nest-Graph for the
TPC-H schema is in Figure 3. All primary and foreign
keys occupy 4 characters of space, and the edge weights
are savings(R,S,K)=sizeOf(K)*|R|*(# of FK attributes).
Relation sizes are given in parentheses under their
respective nodes in the graph.

Figure 3. Nest-Graph for TPC-H Database Schema

5. XML MAPPING ALGORITHM
The mapping from the relational model to an XML
DTD or XMLSchema has these general steps:
• Extract relational schema information including

foreign keys and relation sizes from the database.
• Use the information to build a Nest-Graph G.
• Use the classical algorithm by Edmonds [6] to

calculate the maximum weight arborescence T of G.
• The maximum weight arborescence is a maximal

spanning tree (MST) T. Use T to generate the resulting
nesting in the output XML schema. Given an edge
e=(S,R,w) of T, the two corresponding relations are
S(A1,A2,...,Am) and R(B1,B2,...,Bn) respectively. Let
A1=PKS, B1=PKR, and Bk=FKR(S). For illustration, the
primary keys and foreign keys are encoded as XML
attributes, and all other relational attributes are encoded
as XML elements.

 For each edge e=(S,R,w) of T, we will nest R under
S (and omit Bk) in the XML DTD such as:

<!ELEMENT S (A_2, ..., A_m, R*>
 <!ATTLIST S A_1 ID>
<!ELEMENT R (B_2, B_3,..., B_k-1, B_k+1,...B_n>
 <!ATTLIST R B_1 ID>

 For each edge e=(S,R,w) of T where e ∈G and e ∉
T, this relationship will be captured using ID/IDREF.
Under the element R will be a IDREF attribute like:

<!ELEMENT R (B_2, B_3,..., B_k-1, B_k+1,..., B_n>
<!ATTLIST R B_k IDREF>

Edmonds’ algorithm [6] is used to calculate the
maximum weight arborescence T of a graph G. Note
that there is a more efficient algorithm by Gabow et al.
[9] for this problem that has cost O(|V|log|V|+|E|), where
|V| is the number of nodes and |E| is the number of
edges. Given a directed, weighted graph G the
algorithm will return the maximum spanning tree T of G
if one exists. For our problem, the algorithm will select
the nestings (edges) of maximum benefit. The tree
constructed mimics the hierarchical model construct
available in XML. Edmonds' algorithm cannot be
directly applied to a Nest-Graph as it only returns a
MST if one exists. A MST in a Nest-Graph will only
exist if there is only one node with no incoming edges,
and all other nodes are reachable from that node. Thus,
we introduce a new node r' to G, and a set of edges E'
where each e=(r',Vi,0) ∈ E' for all i=1..|V|. This new
node and edges connecting it to all others nodes with
zero weight will guarantee that a MST will always be
found, and the edges of zero weight will have no effect
on the calculation of the optimal nesting.

Application of Edmonds' algorithm to the Nest-Graph
for TPC-H produces the MST T given in Figure 4. By
summing up the edges in T, we can calculate the space
savings by introducing nesting in our XML schema.
For TPC-H at scale factor 1, the space savings is
57,849,820 characters or 14,462,455 data values.
Equivalently, the savings is 43.5% of all foreign keys or
12.4% of all data values. The DTD is given in Figure 5.

Figure 4. Maximum Spanning Tree for TPC-H

<!ELEMENT root (part*, region*)>
<!ELEMENT part (p_name, … , p_retailprice, partsupp*)>
 <!ATTLIST part p_partkey ID>
<!ELEMENT region (r_name, r_comment, nation*)>
 <!ATTLIST region r_regionkey ID>
<!ELEMENT partsupp (ps_availqty, … , lineitem*)>
 <!ATTLIST partsupp ps_suppkey IDREF>
<!ELEMENT nation (n_name, … , customer*, supplier*)>
 <!ATTLIST nation n_nationkey ID>
<!ELEMENT lineitem (l_linenumber, …, l_comment)>
 <!ATTLIST lineitem l_orderkey IDREF>
<!ELEMENT customer(c_name, … , c_comment, orders*)>
 <!ATTLIST customer c_custkey ID>
<!ELEMENT supplier (s_name, …, s_acctbal)>
 <!ATTLIST supplier s_suppkey ID>
<!ELEMENT orders (o_orderdate, … , o_comment)>
 <!ATTLIST orders o_orderkey ID>

Figure 5. Generated XML DTD for TPC-H Database

5.1 User-Directed Mapping
The presented algorithm determines the optimal nesting
of relational schemas into an XML schema given no
constraints. However, the optimal nesting in terms of
space efficiency is not always the optimal nesting in
terms of usability, readability, or other metrics. For this
reason, it is useful for the user to be able to specify
constraints on the XML schema that should be satisfied
without having to specify a total mapping to the system.
In this case, the system must construct the optimal,
space efficient XML schema that respects the user
constraints. Constraints can be incorporated into the
mapping algorithm by appropriate modifications to the
Nest-Graph. We examine four types of constraints:
1) Specification of non-nested nodes
2) Specification of edges (nestings) that must be

present in the XML schema

3) Specification of edges (nestings) that should not be
present in the XML schema

4) Handling nullable foreign keys

To specify such constraints, the user could potentially
manipulate a graphical view of the Nest-Graph, but how
the constraints are specified is not our focus.

The first constraint type is the specification of non-
nested nodes. The user can specify that any node Vi is a
non-nested node, even nodes that have incoming edges.
If Vi has incoming edges, then the incoming edges of Vi
are removed. This will cause Vi to be a non-nested node
when the Edmonds' algorithm is run, and Ri will not be
nested in the XML schema.

Constraints on edges are valuable because they allow
the user to control the nesting process at a fine degree
of precision. In many cases, the user is not interested in
all the nestings, but some nestings may be especially
important to be present or not to be present in the XML
schema. For example, although there is a minor savings
by nesting customer and supplier information
under nation and region in TPC-H, this savings
may not be enough to justify organizing the information
in this way. Another example is that it is almost always
more preferable for lineitem information to be
nested under the corresponding order, even though
more savings is achieved by nesting under partsupp.

Edges (nestings) that must be present in the XML
schema are guaranteed by setting the edge weights to ∞.
A nesting that must not be in the schema are insured by
removing the edges from the graph. The algorithm will
then determine the optimal mapping given the user
specified constraints. Thus, the major benefit of this
mapping method is that the user can specify as many or
as few constraints on the XML schema, and the system
will compute the optimal solution given the constraints.

Foreign keys that may be null can be handled by
giving the user an option on their encoding. The user
can select if nullable foreign keys should be always
encoded (edges are present in Nest-Graph) or not
encoded (edges are not present in Nest-Graph). If a
foreign key may be null and it is nested, then when
data translation is performed the system must insert a
dummy null record in the parent element.

Finally, the algorithm can be generalized to accept any
arbitrary cost function, including those that factor in
query performance as well as space efficiency.

6. EXPERIMENTAL RESULTS
A Java program that uses JDBC to extract schema
information including foreign keys was constructed to
test the conversion algorithm. The program connects to
a database using JDBC, extracts schema information,
gathers relation size statistics, then uses that information
to build a Nest-Graph. The Nest-Graph is transformed
into a form compatible with Edmonds' algorithm, and
the algorithm is run to find a MST. Then, the MST is
converted into an XML DTD. The savings with respect
to the number of data values not encoded are given in
Figure 6.2 Unlike the CoT algorithm [12], our algorithm
is always guaranteed to find the optimal nesting.

Figure 6. Percentage of Data Values Not Encoded

As can be seen in the results of encoding entire
databases in XML, a significant number (40-50%) of
foreign keys do not have to be encoded. When
migrating large database instances to XML, this results
in a significant savings. Elimination of all foreign keys
is only possible if the Nest-Graph is a tree. Even when
considering the total number of attributes, eliminating
between 10 to 30% of all attributes using nesting is
significant. The nesting has the added advantage of
improving the readability of the data and reducing the
number of joins required to connect related data.

7. FUTURE WORK AND CONCLUSIONS
Given the growing importance of representing data in
XML format and its common preexistence in relational
databases, it is important to have an efficient and user-
friendly tool for automating construction of XML
schemas from relational database schemas. This work
describes a mapping tool that uses a space efficiency
cost metric and user constraints to generate optimal
schemas. It is an improvement over current approaches
which either do not have formal methods for capturing
user constraints (CoT [12]) or require the user to

2 Northwind schema is from Microsoft Access. University schema
was used to evaluate CoT.

exactly specify the entire XML schema in the form of
an extraction query [8]. The space efficiency cost-
metric proposed is useful, although other metrics are
possible including those that factor in query costs as
well. The algorithm is the first mapping method to
incorporate both automatic cost-based translation and
user constraints.

Future work involves expanding the algorithm to
consider cost functions and nestings that introduce
redundancy to increase query performance at the
sacrifice of space efficiency. Also, a more detailed
investigation on the types of queries that can benefit
from nesting will be performed.

References
[1] Arenas, M. and Libkin, L., “A Normal Form for XML
Documents”, Proceedings of ACM PODS 2002, pages 85-96.
[2] Banerjee, S., Krishnamurthy, V., Krishaprasad M., and
Murthy, R., “Oracle 8i – The XML Enabled Data
Management System”, Proceedings of ICDE 2000.
[3] Bird, L., Goodchild, A., and Halpin, T., “Object Role
Modelling and XML-Schema”, Proceedings of ER 2000,
pages 309-322.
[4] Bohannon, P., Freire, J., Roy, P., and Simeon, J., “From
XML Schema to Relations: A Cost-Based Approach to XML
Storage”, Proceedings of ICDE 2002, pages 64-76.
[5] Du, W., Lee, M., and Ling, T., “XML Structures for
Relational Data”, Proceedings of WISE 2001, pages 151-160.
[6] Edmonds, J., “Optimum Branchings”,Journal of Research
of the National Bureau of Standards, 71B:233-240, 1967.
[7] Embley, D., and Mok, W., “Developing XML Documents
with Guaranteed ‘Good’ Properties”, Proceedings of ER
2001, pages 426-441.
[8] Fernandez, M., Kadiyska, Y., Suciu, D., Morishima, A.,
and Tan, W., “SilkRoute: A Framework for Publishing
Relational Data in XML”, ACM TODS, 27(4):438-493, 2002.
[9] Gabow, H., Galil, Z., Spence, T., and Tarjan, R.,
“Efficient Algorithms for finding minimum spanning trees in
undirected and directed graphs”, Combinatorica, 6(2):109-
122, 1986.
[10] IBM DB2 XML Extender, 2002,
http://www-3.ibm.com/software/data/db2/extenders/xmlext.
[11] Klettke, M., Schneider, L., and Heuer, A., “Metrics for
XML Document Collections”, EDBT 2002 Workshops, pages
15-28.
[12] Lee, D., Mani, M., Chiu, F., and Chu, W., “NeT & CoT:
Translating relational schemas to XML schemas using
semantic constraints”, Proc. of CIKM 2002, pages 282-291.
[13] Rys, M., “State-of-the-Art XML Support in RDMBS:
Microsoft SQL Server’s XML Features”, IEEE Data
Engineering Bulletin, 24(2):3-11, 2001.
[14] Shanmugasundaram, J., Shekita, E., Barr, R., Carey, M.,
Lindsay, B., Pirahesh, H., and Reinwald, B., “Efficiently
Publishing Relational Data as XML Documents”,
Proceedings of VLDB 2000, pages 65-76.
[15] Tolani, P. and Haritsa, J., “XGRIND: A query-friendly
XML compressor”, Proceedings of ICDE 2002.

