
Composing Mappings between Schemas using a
Reference Ontology

Eduard Dragut, Ramon Lawrence

IDEA Lab, Department of Computer Science, University of Iowa
Iowa City, IA, USA, 52242

{eduard-dragut, ramon-lawrence}@uiowa.edu
http://www.cs.uiowa.edu/∼rlawrenc/

Abstract. Large-scale database integration requires a significant cost
in developing a global schema and finding mappings between the global
and local schemas. Developing the global schema requires matching and
merging the concepts in the data sources and is a bottleneck in the pro-
cess. In this paper we propose a strategy for computing the mapping
between schemas by performing a composition of the mappings between
individual schemas and a reference ontology. Our premise is that many
organizations have standard ontologies that, although they may not be
suitable as a global schema, are useful in providing standard terminology
and naming conventions for concepts and relationships. It is valuable to
leverage these existing ontological resources to help automate the con-
struction of a global schema and mappings between schemas. Our sys-
tem semi-automates the matching between local schemas and a reference
ontology then automatically composes the matchings to build mappings
between schemas. Using these mappings, we use model management tech-
niques to compute a global schema. A major advantage of this approach
is that human intervention in validating matchings mostly occurs during
the matching between schema and ontology. A problem is that matching
schemas to ontologies is challenging because the ontology may only con-
tain a subset of the concepts in the schema or may be more general than
the schema. Further, the more complicated ontological graph structure
limits the effectiveness of some matchers. Our contribution is showing
how schema-to-ontology matchings can be used to compose mappings
between schemas with high accuracy by adapting the COMA schema
matching system to work with ontologies.

1 Introduction

Database integration is a challenging problem that has been extensively stud-
ied [1, 2] for many years. Automating integration has proven difficult because
schemas do not always capture the necessary semantics to identify related con-
cepts. Schema matching systems [3] are used to build mappings between schemas
that are then used to construct an integrated view. Although good accuracy has
been achieved by schema matching techniques, validating matches is difficult be-
cause a user must understand the semantics of both schemas. Further, if many



schemas are matched together, this validation must be performed for each pair-
wise matching. In an integration scenario, it is hard for a global integrator to
understand the semantics of each schema to be integrated in order to validate
matches. It is also difficult to define and maintain a global schema as it requires
identifying all concepts in all databases.

Many organizations, especially biomedical organizations such as the National
Cancer Institute (NCI) and National Institutes of Health (NIH), have been de-
veloping standard ontologies for their domains. These ontologies are not suitable
as global schemas because they are more general than the domain being mod-
eled or do not contain all the concepts required. However, they are useful in
the matching process as they can be used as a reference ontology. The idea is to
match each source to the domain ontology, and each schema-to-ontology match is
validated by the database administrator. The advantage of this approach is that
the administrator only needs to understand the semantics of their schema when
validating matches. Schema-to-ontology matches can be used to build mappings
to any schema that is also matched to the ontology by composing the schema-to-
ontology matchings. The goal of this work is to use these pre-existing ontologies
to automate schema matching and global view construction.

The challenge is that an existing ontology may not cover the domain exactly.
Schema concepts that are not in the ontology will not be discovered during
matching. The ontology may be more general and have many more concepts
which reduces the matching accuracy. The more complicated ontological struc-
ture reduces the effectiveness of some matchers, specifically those that use names
and paths. Our overall contribution is demonstrating how existing schema match-
ing systems can be adapted for discovering schema-to-ontology matchings useful
for ontology-based integration. The contributions of this work are:

– An algorithm for mapping ontologies into schema graphs for use with auto-
matic schema matching systems such as COMA [4].

– A method for composing schema-to-ontology matchings to produce mappings
between schemas.

– A model management [5] methodology for producing an integrated view
using schema-to-ontology matchings. The integrated view is a federated view
in the sense that it can be dynamically constructed from any number of
schemas and may be site specific.

– An experimental evaluation demonstrating that schema-to-ontology match-
ing can be achieved with good accuracy and that schema-to-schema map-
pings derived from these matchings can have similar accuracy to direct,
pair-wise schema matching.

This work is different than other ontology-based integration approaches [6–8]
as the schema-to-ontology matchings are generated semi-automatically. Gener-
ation of these matchings is a bottleneck to integration using ontologies. The
schema matching on ontologies is different than other schema matching systems
[3, 4, 9] that either perform schema-to-schema matching or ontology-to-ontology
matching. Ontological matching has distinctive features that have received less



attention in schema matching systems such as IS-A relationships, complex hier-
archies, limited or no data instances, and no explicit keys and identifiers. Thus,
schema-to-ontology matching deserves special attention as many existing match-
ers have poor performance in this environment.

The organization of this paper is as follows. Section 2 provides a brief dis-
cussion on related work on database integration and schema matching. The
problem domain and overall approach is covered in Section 3. In Section 4, we
describe how the COMA matching system [4] is used to match ontologies with
schemas. Once schemas are individually matched to an ontology, composition is
used to build mappings between schemas. Composing mappings from schema-to-
ontology matchings is discussed in Section 5. Constructing a global view using
model management techniques and schema-to-ontology matchings is covered in
Section 6. The approach allows each client to produce its own “global view”
by composing only the schema-to-ontology matchings for the sources required.
Detailed performance experiments on the accuracy of schema-to-ontology match-
ings and mapping composition are discussed in Section 7. The paper closes with
future work and conclusions.

2 Related Work

Ontologies have been used in various roles for database integration [1, 2]. An on-
tology may be used instead of a global schema such as in the Carnot project [7]
that used the Cyc ontology [10]. The Carnot system required administrators to
manually map their schema into the global ontology. Global queries were then
posed on the ontology. The MOMIS system [6] semi-automates the construc-
tion of the global view by extracting and manually annotating schema using
WordNet [11] as a shared lexical database. Using WordNet allows the system to
detect lexicon relationships as well as structural relationships in the schemas.
The challenge with using a large ontology like WordNet is that it is not specific
to the domain and does not model relationships between entities. For example,
although the concepts Order and Date will be in WordNet, the complex con-
cept OrderDate (representing that an order has a date) will not. This forces the
designer to map a schema element to many WordNet terms. There are other
systems that use ontologies for integration [12] including ONTOBROKER [13]
and OBSERVER [8]. OBSERVER performs integration using multiple existing
ontologies by translating vocabulary that conflicts in different ontologies. The
common challenge in these approaches is that the mappings must be manually
determined between ontology and schema. The deployment of ontology-based
integration approaches would be greatly aided by more automated mapping dis-
covery techniques as discussed in this paper.

Ontologies are also used to improve the accuracy of schema matching. Several
systems [4, 14] use WordNet or thesauri to detect synonym relationships and
related concepts. Xu and Embley [15] used custom constructed ontologies to
detect concepts by matching their data values to expected data values using
regular expressions. In these systems, the ontology serves a supporting role in



the matching, but is not directly involved in the process. There has also been
work on matching ontologies [9] using algorithms similar to matching schemas
[16]. Methods for merging ontologies given manual matchings [17] have also
been performed. The PROMPT system [18] semi-automatically guides a user
in merging ontologies. OntoBuilder [19] can merge ontologies extracted from
web search interfaces. Ontologies have been used in the SCROL project [20] to
detect semantic conflicts given manually specified mappings between the schemas
and federated schema. There has been limited work on matching schemas to
ontologies, where the reference ontology is an intermediary in the integration
process (without being the entire global view).

Model management [5, 21] and schema matching [3] have been proposed to
semi-automate database integration. The idea is to semi-automatically match
schemas and then use these mappings to manipulate schemas using higher-level
operators. A match is a correspondence between schema elements. A mapping
between two schema elements is an expression that relates the two elements.
A schema matching system will detect matchings between elements, but may
not determine the mapping expression between them. Schema matching systems
[4, 16, 14] use schema and instance level matchers to determine when elements
in different schemas represent the same concept. The matchers may use lin-
guistic information such as names and comments, schema information such as
paths and constraints, and data instances. Most systems combine matchers into
hybrid or composite matchers to improve the accuracy compared to individ-
ual matchers. Schema matchers that use data instances are not applicable for
schema-to-ontology matching as discussed in this paper as the reference schemas
are assumed to have no data instances. COMA [4] is a schema matching system
that contains many matchers and is a flexible system for adding and combining
matchers. COMA supports re-use of matches to improve matching accuracy.

Corpus-based matching [22] also re-uses matches and is similar in spirit to
our proposed approach. In corpus-based matching, previous matches are archived
into a Mapping Knowledge Base (MKB) that functions as a universal schema.
When a concept is matched, it is matched to an existing concept in the uni-
versal schema or added to the schema. When two schemas are to be matched,
each schema element is matched to the concepts in the MKB. If two elements
from different schemas, match to the same MKB concept, they are predicted to
match to each other. The MKB functions as an intermediary for the matching
and learns classifiers for each universal schema element. Our approach using a
reference ontology is similar as the ontology acts as a given (incomplete) uni-
versal schema of the domain. The difference is that the ontology is an accepted
reference ontology available to the user during matching. The MKB is a hidden
construct used by the system for matching. Our system allows the user control
over the schema-to-ontology matching process and is more suitable to environ-
ments where users map to shared ontologies.

Overall, ontology-based integration systems can benefit from semi-automatic
schema-to-ontology mapping algorithms and from an approach to build a global
view using a reference ontology that may not model the domain perfectly.



3 System Architecture

The goal is to use a pre-existing reference ontology to semi-automate the con-
struction of mappings between schemas. The reference ontology contains some
of the concepts in the schemas, but may be incomplete or more general than the
schemas. We assume that the ontology is more than a taxonomy as it should
contain containment and general relationships between concepts. The ontology
does not have instances, and thus should not be considered as a schema. Source
schemas have an overlapping set of concepts, but are not identical in their mod-
eling of the domain. Constructing a global view of these schemas is accomplished
in a three step process:

– Independent matching of each schema to the ontology.
– Composing schema-to-ontology matches to produce schema-to-schema map-

pings.
– Merging the schemas to build a global view using the mappings.

It is useful to consider how the approach would be performed manually be-
fore examining how to automate it. First, a database administrator would match
schema elements to ontological concepts. A schema element may not be in the
ontology or may not match perfectly if it is more general or more specific than
an ontological concept. Each schema element matches to zero or more ontolog-
ical concepts. Since the administrator understands the schema, producing and
validating matchings to the ontology is reasonable, although it does require the
administrator to understand the pre-existing reference ontology. Composing the
schema-to-ontology matchings produced independently by two administrators is
straightforward. It is assumed that two schema elements match if they both map
to the same ontological concept. Finally, given the schema mappings, applying
a Merge operator as defined in the model management approach can be used to
build the global view. Even with an entirely manual approach, matching to a
reference ontology has the benefit that administrators only have to understand
the semantics of their own schema and must only perform and validate one
matching. The manual matching approach has been used in previous ontology-
based integration systems where it is assumed that the ontology serves as an
all-encompassing global view. It is not common for an ontology to model all do-
main concepts in a form suitable for use as a global view, but it is very common
for pre-existing, shared, standard ontologies to be available for many domains.

Several complexities arise when automating the global view construction. It
is valuable to re-use existing schema matching algorithms (such as COMA [4]),
but this requires converting an ontology into a suitable form (Section 4). The
matching algorithms will be less accurate as the ontology does not completely
cover the domain and will model it in a different form. The composition to
produce schema-to-schema mappings (Section 5) may create false matches or
may miss matches when elements map to different ontological concepts or do
not have any correspondences within the ontology. Merging schemas, even with
mappings, is not fully automatic as the mappings are often imperfect and require
user intervention [21]. We discuss these issues in the following sections.



4 Ontological Matching

Given the reference ontology, the first step is to convert it into a form suitable for
schema matching. We use the COMA [4] schema matching system that models a
schema as a rooted directed acyclic graph. A schema consists of a set of elements,
such as relational tables and columns or XML elements and attributes. In COMA
schema elements are represented by graph nodes connected by directed links of
different types, such as containment and referential relationships.

We map ontologies that consist of collections of taxonomies and properties.
The native format of the ontologies are ASCII files containing the concept defini-
tions in OWL or DAML format. The translation into graphs is performed using
an import filter that understands the definitions of concepts and properties in
OWL or DAML specification. The ontology is converted to COMA graph format
using an import tool developed using the JENA ontology parser1. Schemas and
an ontology in the order domain are used as examples. The reference ontology
is in Figure 1.

During the import, each ontology concept (class) becomes a node in the
graph. For the properties (attributes) of each class, add a node to the graph
and connect it to its class. Each class property has associated information such
as a data type and cardinality that is stored as additional information with the
node. This information is used by many schema matching algorithms. Properties
that have both domain and range as concepts in the ontology (i.e. shipTo) are
represented as nodes in the graph. Each of these nodes has a parent node that
represents the class that is its domain and a child node that represents the class
that is its range. A directed edge from the parent (domain) node to the new
node is added to the graph as well as a directed edge from the new node to its
child (range) node. In the current implementation we do not support properties
that have a domain or range specified as intersection or union of concepts. IS A
relationships in the ontology are inserted as directed edges from the subclass node
to the superclass node. In Figure 2 is an example of converting the ontological
relationship shipTo between PurchaseOrder and Organization into a shipTo node
and two directed edges.

After all the relationships (edges) are in the graph, a graph traversal is per-
formed along IS A links to make IS A relationships explicit. COMA does not
handle IS A relationships, so these relationships are made explicit by having each
subclass contain the properties of its superclasses. In the final step, top nodes
are identified that are not contained in any other node. If there are multiple top
nodes, then a new root node is added and all top nodes become its children.
In Figure 3 is an example of making superclass properties (Phone, Email, Fax)
explicit in the subclasses Person and Organization.

Once the ontology is converted into a schema graph, the COMA system
will automatically match the schema to the ontology. The result is a schema-
to-ontology matching. We define two approaches to generating these schema-to-
ontology matchings and extend the COMA system to support them. The first

1 http://jena.sourceforge.net/



ha sAddress
Address

PurchaseOrder

ItemsCollection

h
a

s
Ite

m
s

PurchaseOrderDate

PurchasedItem

h
a

sIt e
m

ItemName Quantity Price

ShipmentDate

Person

OrganizationName

Phone

Amount

Discount

Organization

Supplier Shipper

State Street

City

Zip

Country

Personnel
contactPerson

shippedB y

Fax

suppl iedB
y

Email

PartNumber

HomePage

Currency

Agent

FirstName

LastName

shipTo

Position

Title

ItemDescriptionUPC

Comments

OrderDate

OrderNumber

bil lTo

I sA

IsA

Is
A

Is
A

IsA

Fig. 1. Order Ontology



Agent

Person
Organization

EmailPhone Fax

Lastname FirstName

OrganizationName

s
h

ip
T

o

OrderNumberPurchaseOrder

Agent

Person
Organization

EmailPhone Fax

Lastname FirstName

OrganizationName

OrderNumberPurchaseOrder

shipTo

Is
A Is

A Is
A

IsA

Fig. 2. Converting Relationships to Graph Format

Organization

OrganizationName

Email PhoneFax

shipTo

Agent

EmailPhone Fax

Person

LastnameFirstNameEmail Phone Fax

OrderNumber

POOntology

PurchaseOrder

Fig. 3. Making IS-A Relationships Explicit



approach called Max generates up to one match between a schema element and
its best matching ontological concept. A schema element may not have a match
if the similarity is below a threshold. This may occur if the schema element
concept is not in the ontology. The Max approach is good if the user will validate
and improve matchings as it will generate only one match per schema element.
Unfortunately, it will often miss matches where a schema element should map
to two or more ontological concepts (such as full name matching to first name
and last name) and may not always select the correct concept.

The second approach, called noMax, generates a variable number of matchings
for each schema element. The advantage of noMax is that it allows a schema
element to map to multiple ontological concepts and may allow mappings to be
discovered that would have been discarded using Max. The problem with noMax is
that it generates many incorrect mappings. An administrator seeking to create
a “perfect” schema-to-ontology mapping would then spend a fair amount of
time removing these invalid matches. If these invalid matches are left in the
schema-to-ontology matching, the composition must then filter them out for the
schema-to-schema mapping to be accurate.

The result after this stage is automatically constructed schema-to-ontology
matchings. This is an improvement over previous ontology-based integration sys-
tems that required manual matching with the ontology. Except for the instance
level matchers, we have used all the matchers included with COMA (e.g. Name,
DataType, and NamePath). More details on how COMA automatically con-
structs matchings can be found in [4]. Our modifications include the algorithm
to convert an ontology into a directed acyclic graph supported by COMA, and
the Max and noMax approaches to filter ontological matches.

5 Composing Mappings

Mapping composition has been used in schema matching systems to reuse previ-
ous match results. In COMA [4], the Compose operation is used to build matchers
that reuse previous match results. Re-using previous match results was shown
to significantly improve the matching accuracy. In our system, the Compose op-
eration is used to construct mappings between schemas by composing schema-
to-ontology matchings. Two schema elements are assumed to be identical if they
match the same ontological concept. Therefore we assume a transitive nature of
the similarity relation between elements of schemas and the referenced ontology,
i.e. if an element a of one schema is similar to an element o of the ontology and
o is similar to an element b of the other schema, then a is also similar to b. If the
schema-to-ontology matching is “perfect”, then the schema-to-schema mapping
will be very accurate. However, the schema-to-schema mapping will always miss
matchings where an element in a schema does not have a matching ontological
concept. The composition may also generate false matches if two or more schema
elements map to the same ontological concept, but are not identical concepts.

In this paper, mappings are binary relations over the sets of elements of
schemas and ontology, i.e. if map : S → O then map is a set of pairs < l, r >,



where l ∈ S and r ∈ O. This representation of mappings does not convey any
semantics. Given two mappings map1 that relates schema S1 and the refer-
enced ontology O and map2 between schema S2 and O, the Compose operation,
denoted by ∗, produces a mapping map between the two schemas, as follows:
map = map1 ∗ map−1

2 . That is given an element x of S1, (map1 ∗ map−1
2 )(x) =

(map1(map−1
2 ))(x) is an element in S2, where map−1

2 denotes the inverse of
map2. The operation also computes the transitive similarity of schema elements.
We adopt the COMA strategy of computing transitive similarity by taking the
average of the two similarity values. For example, if <postalCode, Zip, 0.8> and
<Zip, postCode, 0.7> Compose will produce <postalCode, postCode, 0.75>.

S2

Contact

FirstName

LastName

S1

CompanyName

O

Organization

OrganizationName

contactPerson

Contact

Email

Person

FirstName

LastName

Email

Name

Email

Legend: Element correspondence

Containment relationship

S1

CompanyName

Contact

Email

Name

S2

Contact

FirstName

LastName

Email

Position

Position
Position

Position

composition result

Fig. 4. Composition example

Figure 4 shows the general approach of deriving the match S1 ↔ S2 from
composing the two match results map1 : S1 ↔ O and map2 : S2 ↔ O.
Since match results are binary relationships with similarity values, the Com-
pose operator is defined as the natural join of two match results, yielding an-
other match. The composition inherently filters out some of the bad schema-to-
ontology matches. If the transitive similarity is below a threshold, the mapping
produced is discarded. Thus, the difference between Max and noMax schema-to-
ontology matching approaches is that the composition will discard fewer matches
in the Max approach.

The example in Figure 4 illustrates some of the common problems of the
Compose operation. Match composition may miss some correspondences, such
as between Position of S1 and S2, due to the absence of a match counterpart in
the ontology. In addition, composition may introduce unwanted correspondences
when elements of the referenced ontology are related to several elements of the
schemas. For example, in Figure 5, several contacts of schema S1 and S2 are
matched to a generic contact person in the ontology. The composition result is
six matches when only two are correct: S1.Billto.Contact=S2.InvoiceTo.Contact
and S1.DeliverTo.Contact=S2.ShipTo.Contact.



S1.BillTo.Contact

S1.DeliverTo.Contact

S1.Supplier.Contact

O.Organization.contactPerson
S2.ShipTo.Contact

S2.InvoiceTo.Contact

Fig. 5. Composition example with undesirable m:n matches

6 Global View Construction

In this section is an algorithm, called GlobalView, for computing the global view.
The goal is to create a schema that represents all of the information expressed
in n database schemas, Si, i = 1..n. The algorithm is formulated using model
management primitives and is initially described for two schemas and then gen-
eralized for n schemas. Model management is an approach to metadata-intensive
applications that proposes a higher level of abstraction than current techniques
[5]. Its main abstractions are models (e.g. schemas, interface definitions) and
mappings between models. It offers such operators as Match, Merge, Extract,
Delete, and Compose.

Consider a reference ontology O, two schemas S1 and S2, a mapping S1 O
between S1 and O, and a mapping S2 O between S2 and O. The global view
can be computed by:

1. Detecting similar objects in S1 and S2 using the Compose operator to com-
pute a mapping between S1 and S2, called S1 S2.

2. Given the mapping S1 S2 computed in the previous step, using Merge op-
erator to produce the integrated schema M and the mappings S1 M and
S2 M .

3. Using the Compose operator to compute a mapping between the newly cre-
ated schema M and reference ontology O.

On the left-hand side of Figure 6 is a schematic representation of the process,
where the rectangles denote schemas (e.g. the rectangles labeled S1, S2, M, and
O) and the arcs between rectangles represent mappings between the schemas
(e.g. the mapping between S1 and S2 is depicted as the labeled arc S1 S2). The
sequence of model management operations applied are:

operator GlobalView2(S1, S2, O, S1 O, S2 O)
1. S1 S2 = S1 O ∗ Invert(S2 O);
2. < M , S1 M , S2 M > = Merge(S1, S2, S1 S2);
3. M O = Invert(S1 M) ∗ S1 O + Invert(S2 M) ∗ S2 O;
4. return < M , M O >;

The merging of two schemas is driven by the mapping S1 S2 computed
using composition in Line 1. Observe that for the composition to be correct,



O

S1

S3

S2

S4Merge(Merge(S1,S2), S3)

Merge(Merge(Merge(S1, S2), S3), S4)

Merge(S1,S2)

O

S1

S1_O

S2

S2_O

S1_S2

M
_OS1_M

S2_M

M
S1

S2

Fig. 6. Constructing a Global View using Model Management Operations

S2 O needs to be inverted (i.e. the domain and range of the mapping has to
be swapped.) The global schema M is computed using the Merge operator that
also produces two mappings S1 M and S2 M that relate M to the two original
schemas. In Line 3, the mapping M O is computed so that GlobalView2 can
be used in further merge operations. The output of the algorithm consists of
pair < M , M O >, where M is the global schema over S1 and S2, and M O
is the mapping between new schema M and the referenced ontology O. The
steps above are encapsulated as a new operator, called GlobalView2, that is
re-used to compute the global view for N schemas. The general global schema
composition algorithm for N sources is given in Figure 7. The iterative process
of the computation of the global view using a reference ontology is depicted on
the right-hand side of Figure 6 for n = 4.

Note that the integrated view construction algorithm is not a fully automated
solution to the problem. Designer intervention may be required, especially when
the intermediate output of the operations is only an approximate one. For exam-
ple, with the current implementations of Compose operator it is very probable
that false matches are suggested and that not all the correct matches are out-
putted. Merging is a semi-automatic process that requires human intervention
and validation.

7 Experimental Study

We performed an experimental study to demonstrate the effectiveness of the ap-
proach. The five sample XML order schemas: CIDR, Excel, Noris, Paragon, and
Apertum from www.biztalk.org used to evaluate COMA [4] were tested. These
schemas are assigned numbers 1, 2, 3, 4, and 5 respectively. We constructed a
reference order ontology (Figure 1) that models the order domain. This ontology



GlobalView(ArraySchemas, ArrayMappings ,O, n)
// ArraySchemas = source schemas, ArrayMappings = schema-to-ontology mappings
// O = reference ontology, n = number of source schemas
1. if n ≤ 0 then return empty schema;
2. if n = 1 then return ArraySchemas[0];
3. S1 = ArraySchemas[0];
4. S2 = ArraySchemas[1];
5. map1 = ArrayMappings[0];
6. map2 = ArrayMappings[1];
7. < S, map > = GlobalView2(S1, S2, map1, map2, O);
8. for(i = 2; i ≤ n − 1; i++ )
9. S1 = S;
10. map1 = map;
11. S2 = ArraySchemas[i];
12. map2 = ArrayMappings[i];
13. < S, map > = GlobalView2(S1, S2, map1, map2, O);
14. end for;
15. return < S, map >;

Fig. 7. Global View Construction Algorithm

has different structure than the schemas. For instance, the ontology uses IS-A
whereas none of the sample schemas have IS-A relationships. The ontology does
not have all concepts used in the schemas such as unitOfMeasure, count, and
VAT information. Further, the ontology contains no ids or keys and does not
model the order amounts, tax issues, and street addresses in as much detail as
some schemas. We have used the correct mappings as given by COMA as ground-
truth. As always there are some mappings that are open to interpretation which
affect the results.

The first experiment is to determine the accuracy of the schema-to-ontology
matching using both Max and noMax. The results are in Figure 8. The accuracy
of schema-to-ontology matching is quite good. Max has precision of 75-80% and
recall around 60%. Recall is lower as it misses some matchings that are not
evaluated as the best. noMax has slightly better recall than Max but loses some
precision as it generates many matchings where only one is correct. The overall
is always positive for Max indicating that it saves effort over manual matching.
For noMax the matching with schema 5 results in a negative overall because
the schema contains the concept Buyer which is not in the ontology and gets
incorrectly matched to several higher-level concepts in the ontology such as Agent
and Person. Without the improvements such as expanding IS-A, the accuracy
is very bad. Fortunately, we are willing to accept less accuracy in this case
as the matching process will only be performed once and the administrator
has full understanding of the semantics of their schema to detect and resolve
mismatches. It is also important to note that perfect matching is not possible
since the ontology may not cover the schema concepts exactly. The fraction of



Fig. 8. Schema-to-Ontology Matching

schema elements that can be manually matched to the ontology is also shown in
Figure 8. This fraction represents the schema overlap with the ontology and is
the best possible match performance that can be achieved. A schema element is
considered to match to the ontology even if it is not a perfect match. The last
three schemas have relatively poor matching with the ontology (about 60% of the
concepts are present in the ontology in some form). For example, approximately
60% of the elements in schema 4 can be matched to the ontology. noMax has a
recall of 70%, so it finds ontological matches for 42% of all elements in schema 4.
The statistic Overall is defined as Recall ∗ (2− 1/Precision), and is a common
measure used to evaluate schema matching systems.

The schema-to-ontology matchings are composed to produce schema-to-schema
mappings and compared to the results generated by COMA. Even with average
accuracy of schema-to-ontology matchings, the results (Figure 9) are in many
cases comparable to direct schema matchings using COMA. The precision is
high for both approaches. The weakness, especially for the Max approach, is re-
call as it only selects the best matching and discards all others. For the noMax
case, the composition correctly filters out many mismatches. The overall statis-
tics are very good, and are often close to direct schema matchings performed
with COMA. The results are very good even when compared to perfect man-
ual schema-to-ontology matchings, which themselves do not result in perfect
schema-to-schema mappings as the ontology does not cover all concepts.

Many of the inaccuracies result from very simple modeling issues. For ex-
ample, when one database has 4 fields: Street1, Street2, Street3, Street4, do all
these fields map to an ontological concept of Street? If they all map to Street in
the ontology, then the composition will generate one correct and numerous in-



Fig. 9. Schema-to-Schema Mapping Statistics



correct matches with two schemas that represent street in this way as discussed
in Section 5. This is the reason for the poor performance between schemas 1
and 2. Matchings involving schemas 3, 4, and 5 have lower accuracy due to their
relative poor overlap with the ontology. However, the performance is still very
good and sometimes is as good or better than COMA. Mapping schemas 4 to
5 is poor because the concept of Buyer in schema 5 is not in the ontology and
gets incorrectly mapped to concepts in schema 4. This results in many false
matchings after composition.

The matching accuracy can be further improved by using the schema-to-
schema mappings generated as existing matches that are re-used when directly
matching the schemas. The matches missed during composition because the
concepts were not in the ontology can be correctly matched when the schemas
are matched directly. An experiment is performed that allows COMA to re-
use the schema-to-schema mappings found by composing schema-to-ontology
matchings when directly computing pair-wise schema matches. Results (Figure
10) were determined when the schema-to-ontology matchings were manually
specified, and when they were generated automatically using the Max and noMax
algorithms. In almost all cases, the overall performance is near or better than
using COMA alone to directly match schemas. This shows that there is benefit
to building these schema-to-ontology matchings for use in integration as they
are relatively easy to construct and validate and can be re-used across matching
tasks. Although manual mappings are better, automatically generated mappings
also add value. Re-using automatically generated mappings is not perfect because
false matches introduced through the composition (as in matching schemas 1 and
2) negatively affect the result.

Overall, these experiments demonstrate that schema-to-ontology matching
has additional challenges over schema-to-schema matching. Ontologies have more
complex structure that confuses matchers like NamePath, and existing match
algorithms are very sensitive to the degree of overlap and similar structure of
schemas. In all cases, the overall measure was positive indicating that manual
match effort is saved by using the approach. The good mapping accuracy allows
the global view construction algorithm to construct quality global schemas with
limited user input. This results in significant savings in designer effort in building
the global schema for integrated systems.

8 Future Work and Conclusions

In this work we have provided algorithms for automatically constructing global
views for integrated systems using schema-to-ontology matchings. These algo-
rithms are useful for previous ontology-based integration approaches that had
to manually generate such matchings and required the global ontology to com-
pletely model the entire domain. The experimental results demonstrate that the
ontology does not have to perfectly overlap the integration domain for it to be
useful in schema matching and global view construction. This allows pre-existing
ontologies to be used for integration. By using semi-automatic matching tech-



Fig. 10. Direct Schema-to-Schema Matching with Matching Re-use

niques developed for relational schemas, the overhead of manual matching to
the ontology is avoided. We have shown how ontologies can be converted into
a form suitable for use with existing relational matchers and demonstrated how
the approach achieves high accuracy in finding schema-to-schema mappings.

Future work involves improving the composition to handle mismatches due
to multiple matches to the same ontological concept or to different concepts in
a IS-A hierarchy. This may involve using more sophisticated matches such as
sub-concept and super-concept matches.

References

1. Batini, C., Lenzerini, M., Navathe, S.: A Comparative Analysis of Methodologies
for Database Schema Integration. ACM Computing Surveys 18 (1986) 323–364

2. Sheth, A., Larson, J.: Federated Database Systems for Managing Distributed,
Heterogenous and Autonomous Databases. ACM Computing Surveys 22 (1990)
183–236

3. Rahm, E., Bernstein, P.: A survey of approaches to automatic schema matching.
VLDB Journal 10 (2001) 334–350

4. Do, H.H., Rahm, E.: COMA - A System for Flexible Combination of Schema
Matching Approaches. In: VLDB. (2002) 610–621

5. Bernstein, P.: Applying Model Management to Classical Meta Data Problems. In:
CIDR. (2003)

6. Beneventano, D., Bergamaschi, S., Guerra, F., Vincini, M.: Synthesizing an Inte-
grated Ontology. IEEE Internet Computing 7 (2003) 42–51

7. Collet, C., Huhns, M., Shen, W.M.: Resource Integration Using a Large Knowledge
Base in Carnot. IEEE Computer 24 (1991) 55–62



8. Mena, E., Illarramendi, A., Kashyap, V., Sheth, A.: OBSERVER: An Approach for
Query Processing in Global Information Systems based on Interoperation across
Pre-existing Ontologies. Distributed and Parallel Databases 8 (2000) 223–271

9. Doan, A., Madhavan, J., Domingos, P., Halevy, A.: Learning to Map between On-
tologies on the Semantic Web. In: Proceedings of the 11th International Conference
on the World Wide Web. (2002) 662–673

10. Lenat, D., Guha, R., Pittman, K., Pratt, D., Shepherd, M.: Cyc: Towards programs
with common sense. Communications of the ACM 33 (1990) 30–49

11. Miller, G., Beckwith, R., Fellbaum, C., Gross, D., Miller, K.: Five Papers on Word-
Net. Technical Report CSL Report 43, Cognitive Systems Laboratory, Princeton
University (1990)

12. Tzitzikas, Y., Constantopoulos, P., Spyratos, N.: Mediators over Ontology-Based
Information Sources. In: WISE. (2001) 31–40

13. Decker, S., Erdmann, M., Studer, R.: ONTOBROKER: Ontology based access
to distributed and semi-structured information. In: Database Semantics - Seman-
tic Issues in Multimedia Systems. Volume 138 of IFIP Conference Proceedings.,
Kluwer (1998)

14. Madhavan, J., Bernstein, P., Rahm, E.: Generic Schema Matching with Cupid. In:
VLDB. (2001) 49–58

15. Xu, L., Embley, D.: Discovering Direct and Indirect Matches for Schema Elements.
In: DASFAA. (2003) 39–46

16. Doan, A., Domingos, P., Halevy, A.: Reconciling schemas of disparate data sources:
a machine-learning approach . In: Proceedings of the ACM SIGMOD Conference
on Management of Data. (2001) 509–520

17. Pottinger, R., Bernstein, P.: Merging Models Based on Given Correspondences.
In: VLDB. (2003) 826–873

18. Noy, N., Musen, M.: PROMPT: Algorithm and Tool for Automated Ontology
Merging and Alignment. In: AAAI/IAAI. (2000) 450–455

19. Gal, A., Modica, G., Jamil, H.: OntoBuilder: Fully Automatic Extraction and
Consolidation of Ontologies from Web Sources. In: ICDE. (2004) 853

20. Ram, S., Park, J.: Semantic Conflict Resolution Ontology (SCROL): An Ontology
for Detecting and Resolving Data and Schema-Level Semantic Conflicts. IEEE
Trans. Knowl. Data Eng. 16 (2004) 189–202

21. Melnik, S., Rahm, E., Bernstein, P.: Rondo: A Programming Platform for Generic
Model Management. In: SIGMOD. (2003) 193–204

22. Madhavan, J., Bernstein, P., Chen, K., Halvey, A., Shenoy, P.: Corpus-based
Schema Matching. In: Workshop on Information Integration on the Web (IJ-
CAI03). (2003)


