
Querying Relational Databases
without Explicit Joins�

Ramon Lawrence1 and Ken Barker2

1 University of Iowa, Iowa City, IA, USA
ramon-lawrence@uiowa.edu

2 University of Calgary, Calgary, Alberta, Canada
barker@cpsc.ucalgary.ca

Abstract. Despite its benefits and wide-spread acceptance, SQL [5] is
not a perfect query language. Although graphical tools for query con-
struction mask some of the complexity, complex database schema chal-
lenge even experienced database users during query formulation because
a user is responsible for mapping the semantics of their query to the
structure of the database. In this work, we propose a semantic query
language for graphically querying relational database systems that al-
lows a user to query the database by semantics instead of structure.
Database semantics are described using a global dictionary and seman-
tic specifications that are combined to form an integrated, context view.
Users query the semantic view by concept name, and the query processor
translates semantic queries to SQL. This translation involves automati-
cally determining attribute and relation mappings and join conditions.

1 Introduction

Despite changes in database size, complexity, and interoperability, SQL [5] has
remained fundamentally unchanged. Although the complexity of SQL generation
has been partially hidden by graphical design tools and more powerful program-
ming languages, a SQL user is responsible for understanding the structure of a
database schema, the names associated with schematic elements, and the seman-
tics of the data stored. Query formulation involves mapping query semantics into
the semantics of the database and then realizing those semantics by combining
the appropriate database structures.

To simplify querying, we have implemented a new semantic query system.
First, a database administrator semi-automatically produces a semantic view
for querying using a global dictionary and a semantic specification called an X-
Spec. A description of the capture process is in Section 2. Then, users graphically
browse the integrated view to formulate queries. The query environment guides
the user during query formulation allowing the user to unambiguously define
the semantics of their query without explicitly referencing database structures
or joins between relations. The query processor described in Section 3 is capable
� This research is sponsored by NSERC Research Grant (RGP-0105566) and TRLabs.

of automatically translating from the semantic context view to SQL queries
by determining correct attribute and relation mappings and appropriate join
conditions. The paper closes with related work and conclusions.

2 Semantic Capture Process

Before semantic querying can be performed on a relational database, the database
administrator must explicitly define its semantics in a specification document.
In this capture process, the database administrator (DBA) uses an automated
tool to extract database schema information (including structure, types, sizes,
names, and relationships) and saves the information into an XML [13] document
called an X-Spec. An X-Spec provides information for semantic querying.

An example order database (given in Figure 1) is used throughout the paper.
We denote attribute and relation names as attribute name or relation name, and
semantic names as semantic name.

Relations Attributes
Categories CategoryID, CategoryName

Customers CustomerID, CompanyName
Employees EmployeeID, LastName, FirstName, ReportsTo

OrderDetails OrderID, ProductID, UnitPrice, Quantity
Orders OrderID, CustomerID, EmployeeID, OrderDate, Shipvia
Products ProductID, ProductName, SupplierID, CategoryID
Shippers ShipperID, CompanyName

Suppliers SupplierID, CompanyName

Fig. 1. Order Database Schema

2.1 Global Dictionary Definition

The foundation of the query system is the definition of a global term dictionary
that provides terms to represent concept semantics. The dictionary is organized
as a hierarchy of concept terms. Concept terms are related using ’IS-A’ relation-
ships for modeling generalization and specialization and ’HAS-A’ relationships
to construct component relationships. Each concept term has a name, an unique
key, and an unique definition.

We have built a term dictionary starting from the top-level ontological cat-
egories proposed by Sowa [10], and evolve it using a set of rules. However, the
exact terms and their placement is irrelevant. The dictionary can be modified to
capture database semantics for a particular environment. The global dictionary
is not a complete English language dictionary such as WordNet [8], so its size
and complexity are reduced.

2.2 Semantic Names

A semantic name captures system-independent semantics of a relational schema
element including contextual information by combining one or more dictionary
terms. A semantic name is a context if it is associated with a relation and a
concept if it is associated with an attribute. A context contains no data itself
and is described using one or more concepts. Similar to an attribute in the
relational model, a concept represents atomic or lowest-level semantics.

A semantic name consists of a context and concept portion. The context
portion is one or more terms from the dictionary that describe the context of the
schema element. Adjacent context terms are related by either IS-A (represented
using a “,”) or HAS-A (represented using a “;”) relationships. The concept
portion is a single dictionary term called a concept name and is only present if
the semantic name is a concept (maps to an attribute). The formal specification
of a semantic name is as follows:

semantic name ::= [CT Term] | [CT Term] CN
CT Term ::= CT | CT ; CT Term | CT , CT Term
CT ::=< context term >, CN ::=< concept name >

A dictionary term is a single, unambiguous word or word phrase present in the
standard term dictionary. Each term represents a unique semantic connotation
of a given word phrase, so words with multiple definitions are represented as
multiple terms in the dictionary. A context term is a dictionary term used in a
semantic name that describes the context of the schema element associated with
the semantic name. A concept term is a single dictionary term used in a semantic
name that provides the lowest level semantic description of an attribute.
Definition. The context closure of a semantic name Si denoted S∗

i is the set
of semantic names produced by combining ordered subsets of the set of terms
T = {T1, T2, ...TN} of Si starting from T1.
Example If Si = [A; B; C]D, S∗

i = {[A], [A; B], [A; B; C], [A; B; C]D}.
Overall, a semantic name is a combination of dictionary terms constructed

by the DBA to represent schema element semantics. By combining terms, more
complex semantics can be defined as compared to using terms in isolation.

2.3 X-Specs

The X-Spec is a database schema encoded in XML format and is organized
in relational form with relations and attributes as basic elements. An X-Spec
stores a relational database schema including keys, relationships, joins, and field
semantics. Further, each relation and attribute in the X-Spec has an associated
semantic name built using dictionary terms. Information on joins including their
cardinality, join fields, and connecting tables is stored so that the query processor
may identify which joins to apply during query formulation.

An X-Spec is constructed using a specification editor tool [6] during the cap-
ture process, where the semantics of schema elements are mapped to semantic
names. X-Specs are constructed using XML because XML is an emerging seman-
tic exchange standard. However, X-Specs may also be represented as formatted
text files or structured binary files.

Type Semantic Name System Name
Relation [Category] Categories
Attribute [Category] Id CategoryID
Attribute [Category] Name CategoryName
Relation [Customer] Customers
Attribute [Customer] Id CustomerID
Attribute [Customer] Name CompanyName
Relation [Employee] Employees
Attribute [Employee] Id EmployeeID
Attribute [Employee;Name] First Name FirstName
Attribute [Employee;Name] Last Name LastName
Attribute [Employee;Supervisor] Id ReportsTo
Relation [Order;Product] OrderDetails
Attribute [Order] Id OrderID
Attribute [Order;Product] Id ProductID
Attribute [Order;Product] Price UnitPrice
Attribute [Order;Product] Quantity Quantity
Relation [Order] Orders
Attribute [Order] Id OrderID
Attribute [Order;Customer] Id CustomerID
Attribute [Order;Employee] Id EmployeeID
Attribute [Order] Date OrderDate
Attribute [Order;Shipper] Id Shipvia
Relation [Product] Products
Attribute [Product] Id ProductID
Attribute [Product] Name ProductName
Attribute [Product;Supplier] Id SupplierID
Attribute [Product;Category] Id CategoryID
Relation [Shipper] Shippers
Attribute [Shipper] Id ShipperID
Attribute [Shipper] Name ShipperName
Relation [Supplier] Suppliers
Attribute [Supplier] Id SupplierID
Attribute [Supplier] Name SupplierName

Fig. 2. Order Database Semantic Name Mappings

X-Spec information at the relation level stored in XT = (TSN , TQ, TK, TJ)
records consists of the relation semantic name TSN , the SQL query TQ used to
produce the relation/view, TK the set of keys for the relation, and TJ the set of
joins for the relation. For a view TQ is the SQL query executed to produce the
view, or TQ is the relation name for physical relations.

Attribute level information in XF = (FSN , FQ, FT , FS) stores the attribute
semantic name FSN , the SQL query used to produce the attribute FQ, the
attribute type (integer, string, etc.) FT , and the attribute size in bytes FS. FQ

is the system name for a physical attribute (e.g. [OrderDetails].OrderID) or
a SQL statement used to construct a derived or calculated attribute.

The primary difference between an X-Spec and a relational schema is that
each relation and attribute are assigned meaningful semantic names. Further,
the model allows virtual constructs such as views and calculated attributes to be
assigned semantic names. This allows a DBA to build more complex integrated
views that consist of physical and virtually-derived constructs.

2.4 Semantic View Construction

An integration process formats the database X-Spec information into an inte-
grated view of concepts by matching semantic names. Since a semantic name
is itself a hierarchy of terms, the resulting integrated context view (CV) is a
merger of all concepts across all attributes and relations in the database.

Definition. Define a context view (CV) as follows:

– If a semantic name Si is in CV , then for any Sj in S∗
i , Sj is also in CV .

– For each semantic name Si in CV , there exists a set of zero or more mappings
that associate a schema element with Si.

– A semantic name Si can only occur in the CV once.

The integration process builds CV = (CVSN , CVQ), where CVSN ∈ {TSN ∪
FSN}∗ and CVQ ∈ {TQ ∪ FQ}. That is, the CV is the union of the semantic
names for all relations and attributes along with their associated mappings. The
CV is a structurally-neutral, hierarchical representation of database concepts.
The integrated view for the order database1 is in Figure 3.

3 Query Processing

Users formulate queries by manipulating elements in the context view in a pro-
cess called querying by context. The context view provides physical and logical
access transparency. The user is not responsible for determining schema element
mappings or joins between relations in the database.

A semantic query Q = (QSN , QR, QO, QG, QC) where QSN is the set of
semantic names selected in the query, QR is the set of relationship conditions
between semantic names, QO is the set of ordering criteria for the row results, QG

is the set of grouping criteria, and QC is the set of selection criteria. Ordering
and selection criteria are specified using semantic names rather than system
names. Thus, for a given Q, a translation is required to a SQL query of the form
SQ = (SQT , SQF , SQJ , SQO , SQG, SQC), that contains the required relation
set (SQT), attribute set (SQF), joins (SQJ), ordering criteria (SQO), grouping
criteria (SQG), and selection criteria (SQC).

The query processor performs this translation during dymanic view cre-
ation that extracts relevant data from the database and requires the system:

– Enumerate Semantic Names - required by the user.
– Determine Relevant Attributes and Relations - for each semantic

name mapping.
– Determine Join Conditions - to connect the relations.
– Generate and Execute SQL Queries - created in the previous steps.

1 For simplicity, only the term at a given level is displayed. For example, the term in
bold has full semantic name [Order;Product] Id as Id is under the [Product] and
[Order] contexts.

Integrated View Term Data Source Mappings (not visible to user)
V (view root) N/A
- [Category] Categories
- Id Categories.CategoryID
- Name Categories.CategoryName

- [Customer] Customers
- Id Customers.CustomerID
- Name Customers.CompanyName

- [Employee] Employees
- Id Employees.EmployeeID
- [Name]
- First Name Employees.FirstName
- Last Name Employees.LastName

- [Supervisor]
- Id Employees.ReportsTo

- [Order] Orders
- Id Orders.OrderID, OrderDetails.OrderID
- Date Orders.OrderDate
- [Customer]
- Id Orders.CustomerID

- [Employee]
- Id Orders.EmployeeID

- [Product] OrderDetails
- Id OrderDetails.ProductID
- Price OrderDetails.UnitPrice
- Quantity OrderDetails.Quantity

- [Shipper]
- Id Orders.Shipvia

- [Product] Products
- Id Products.ProductID
- Name Products.ProductName
- [Supplier]
- Id Products.SupplierID

- [Category]
- Id Products.CategoryID

- [Shipper] Shippers
- Id Shippers.ShipperID
- Name Shippers.ShipperName

- [Supplier] Suppliers
- Id Suppliers.SupplierID
- Name Suppliers.SupplierName

Fig. 3. Integrated View of Order Database

3.1 Enumerating Semantic Names

Semantic names are selected by the user for display in the final result (pro-
jection) or for specifying selection criteria. In some cases, a real-world concept
may be represented multiple times in the database and possibly with different
semantic names. The first task for the user is to determine the correct semantic
name for querying. For example, in the example database there are two seman-
tic names that map to the concept of a “Shipper ID”: ShipperID ([Shipper]
Id) in Shippers and Shipvia ([Order;Shipper] Id) in Orders. The choice of se-
mantic name depends on the query requirements. Selecting [Shipper] Id will
select all shipper ids whether or not they have transported an order, whereas
[Order;Shipper] Id only returns shippers who have sent orders.

The user selects the concepts out of the integrated view they are interested in
for their query, and may specify selection criteria, grouping criteria, and ordering

criteria using semantic names. The user also has control over the final display
characteristics of each concept selected. Since the integrated view is organized
hierarchically by concept, knowledge discovery is considerably simplified when
browsing the integrated view.

3.2 Attribute and Relation Selection

The query system determines which relations and attributes to access in the
data source based on the semantic names chosen by the user. In most cases,
a semantic name in the integrated view has only one mapping to a physical
attribute. However, in special cases, especially when considering key attributes,
a semantic name may map to several attributes. The choice of attribute (and
its corresponding relation) may affect the semantics of the query. An overview
of the attribute and relation selection algorithm is:

1. For each semantic name FSN with only one mapping, add attribute to SQF

and corresponding table to SQT .
2. For each semantic name FSN with multiple mappings all in one relation2,

add each attribute mapping to SQF and the corresponding table to SQT .
3. For any semantic names remaining with ambiguous mappings, select an at-

tribute mapping to SQF for the semantic name if its corresponding table is
already in SQT .

4. For any remaining semantic names with ambiguous mappings, select the
mapping based on shortest join paths to current relations in SQT (or other
heuristics). This new mapping adds a new relation to SQT , so goto step 3.

In practice, the attribute mapping algorithm rarely uses the heuristics on join
cost calculations in Step 4 because typically only key attributes will have mul-
tiple semantic name mappings that result from database normalization. When
the user selects any attributes with unique mappings, the attribute selection
algorithm has a starting set of relations to build a query from and determine
which key mapping instance(s) to select based on the general heuristic of not
introducing new joins into the query.

After completion of the attribute selection algorithm, the set of semantic
names QSN in Q has been translated to the set of attributes SQF and relations
SQT for the SQL query. Further, the system can replace the semantic names
present in QO, QG, and QC for ordering, grouping, and selection criteria with
system attribute and relation names for SQO , SQG, and SQC based on the
discovered mappings.

3.3 Determining Join Conditions

Given a set of attributes and relations to access in the query, the query system
must determine a set of join conditions between the relations. It is important
2 This may occur when the database is not normalized. The system queries non-

normalized records and normalizes the data when it is presented to the user.

to isolate the user from join construction while choosing appropriate joins to
preserve the query semantics.

There is no concept of a “join” in the integrated view because it does not
specify a structure for data representation. However, an equivalent operation is a
context merger. A context merger is the combination of two contexts by applying
a relationship condition. A relationship condition may be a join between relations
if a join exists between the contexts or a cross-product if it does not.

In most cases3, the user never directly specifies the relationship condition
between two contexts in the integrated view, so the system must determine how
to relate the two contexts. Since the user is able to query on any semantic name
in the integrated view, the semantic concepts chosen may be related by being in
the same relation, by joins between relations, or not related at all.

The system determines the joins to apply using join graphs. Define a join
graph as an undirected graph where each node corresponds to a relation in the
database, and there is a link from node Ni to node Nj if there is a join between
the corresponding two relations. A join path is a sequence of one or more joins
interconnecting two nodes (relations), and a join tree is a set of one or more joins
interconnecting two or more nodes. Assume without loss of generality4 that the
join graph is connected. The join graph for the order database is in Figure 4.

Suppliers Products Categories

OrderDetails

OrdersShippers Employees

1 N N 1

N

1

1

N

1 N 1N

1

N

Customers

Fig. 4. Join Graph for Order Database

Lemma 1. If a join graph is acyclic, there exists only one join path between any
two nodes.
Lemma 2. If a join graph is acyclic, there exists only one join tree for any node
subset.

3 A user can override default system relationship conditions if the database contains
multiple, ambiguous joins.

4 Otherwise, we apply the algorithm to each connected subset and connect them using
a cross-product.

Lemmas 1 and 2 follow directly from the properties of acyclic graphs. Impor-
tantly, if the join graph for a database is acyclic, there exists only one possible
join tree for any of its relations. This implies that the query system does not
have any decisions involving which joins to apply, as it must only identify which
joins are required to connect the required tables by constructing the join tree.

From this result, it is possible to construct an algorithm that builds a matrix
M where entry M [Ni, Nj] is the shortest join path between any pair of nodes
Ni and Nj . By combining join paths, the query system can identify all the joins
required to combine relations by constructing the only possible join tree.
Theorem 1. Given a matrix M , which stores shortest join paths for an acyclic
join graph, and a set of relations T to join, a join tree can be constructed by
choosing any relation Ti from T and combining the join paths in M [Ni, N1],
M [Ni, N2], ..., M [Ni, Nn] where N1, N2, ..., Nn are the nodes corresponding to the
set of relations T .
Proof. Proof by contradiction. Since the graph is connected, the matrix entries
M [Ni, N1], M [Ni, N2], ..., M [Ni, Nn] represent join paths from Ni to all other
nodes in the subset. Assume a join tree is not constructed. Thus, there is no
path between some two nodes Nj and Nk where j �= k. However, there is a path
from node Ni to Nj and from node Ni to Nk. Combining these paths results in
a path from Nj to Nk. Thus all nodes are connected with the join tree, and it is
the only possible join tree as per Lemma 2.

For the general case of a cyclic join graph, we define a depth-first search
based algorithm that constructs a matrix M containing all join paths with no
repeated links ranked by desirability. Join ranking is based on join properties
such as cardinality, participation, and if they are lossy joins. Although the al-
gorithm ranks join paths, in practice, only acyclic graphs can have their joins
automatically determined without further user input by applying Theorem 1.
For a cyclic graph, there will be multiple possible join trees each of which are
semantically valid depending on the query semantics. The system cannot select
a join tree without more knowledge about the intended query, although it is
able to propose the “best” join tree based on the ranking performed. Thus, we
define a graphical interface to the query model that allows the user to browse the
integrated view, discover concept interrelationships, and more precisely define
their query semantics which allows the system to uniquely determine the join
tree required.

3.4 Graphically Guiding the User During Query Generation

The query system currently described is unable to determine join trees with-
out further user input for cyclic join graphs. The challenge is to extract the
required information from the user while still maintaining physical and logical
query transparency as much as possible. The system allows the user to browse
the context view to discover interrelationships between concepts. Some concepts
are already inherently related by virtue of their hierarchical relationship. For
example, the [Order;Product] Id is part of [Order] information. This rela-
tionship is explicitly captured in the integrated view by virtue of the product

information being nested under the order information in the hierarchy. However,
other interrelationships cannot be captured using the strict hierarchy implicit
in the semantic names. For instance, the join conditions relating the individual
concepts are largely hidden to the user, even though these join conditions are au-
tomatically inserted by the query system during query execution. To make these
interrelationships more apparent, the system automatically displays them. If a
given semantic name (node) in the integrated view is actually a foreign key to
another context (table) then when the user clicks on this concept, the attributes
of the linked context are displayed.

For example, the field EmployeeID ([Order;Employee] Id) in Orders is a
foreign key from Orders to Employees. When the user clicks on this semantic
name, the system performs the join to the Employees table and displays the
semantic names of the fields of Employees which can be added to the query.5

This approach has several benefits. First, it reduces the semantic burden on
the user by automatically displaying concept interrelationships. Further, it re-
duces the query generation complexity for the system. By explicitly displaying
the join information and associated attributes, the system now has an unam-
biguous reference from the user on which attributes to use, from what relations,
and the corresponding join condition (attribute) to use to relate the two different
contexts. Further, by allowing this virtual linking of concepts, the user is now
able to express recursive relationships and queries on the integrated view.

To formalize the discussion, define a context tree as a tree of nodes where each
node is a single semantic name, and at every node we have a list of attributes
accessed from that context. The root node of the tree is V , the view root. There
is a link from a parent node (context) in the tree to a child node, if the child
node is a subcontext of the parent.

For example, let OrderDetails also have a foreign key EmployeeID to Employ-
ees. This produces a cycle in the join graph. Now, consider the query requiring
the [Employee] Name, [Order] Id, and [Order;Product] Amount. The con-
text tree for this query is given in Figure 5a. In the cyclic join graph, there are
multiple possible join trees to connect these contexts. In general, if there is more
than one child node of V and the graph is cyclic, there will be multiple join trees
that relate the contexts.

A different query can be derived by the user explicitly following the link to
employee information through [Order;Employee] Id (Figure 5b). The user can
specify another distinct join by selecting [Employee] Name after traversing the
foreign key in OrderDetails to Employee. In this way, the user uniquely identifies
the joins required by the system by graphically browsing the context view.6

Linking of contexts allows the system to handle recursive queries. Employees
has a foreign key ReportsTo that links to Employees on EmployeeId in order to
model that an employee can have a supervisor. The system can answer a query

5 If multiple joins are possible on a given foreign key, the system allows the user to
select which context (relation) they are interested in connecting to.

6 Advanced queries involving right or left joins can be directly specified by the user
by displaying the current context tree and allowing users to manipulate it.

amount
[Product]
id

[Order]

[Employee]
name

id
[Employee]

[Employee]

[Product]

[Order]

V

[Order]

V

[Employee] [Product]

[Employee] [Order]

[Product]

V

(c)(b)(a)

amount
[Product]
id

[Order]
name

[Employee] [Order]
id
[Product]

amount

(1)

name
[Employee]

id
[Employee]

Link to Employees on Orders(1) (2) Link to Employees on OrderDetails

(2)

Fig. 5. Example Queries

[Employee]

[Supervisor]

[Employee]

[Supervisor]

[Employee]

V

Link to Employees table on SupervisorId

(*)

(*)

(*)

name
id

[Employee]
id

id
[Employee]

[Supervisor]

id
[Supervisor]
id

[Employee]

Fig. 6. Recursive Supervisor Query

like: “who is an employee’s supervisor’s supervisor?” by allowing the user to
graphically traverse the context view (see Figure 6).

3.5 Generation and Execution of SQL Queries

Given the set of database attributes and relations to access and a set of joins to
apply, it is straightforward to construct a SQL select-project-join query. After
building a SQL query string, the query is transmitted to the database man-
agement system for execution. Although there are multiple open standards and
proprietary protocols for each database and environment, the architecture is de-
signed to utilize the ubiquity of the ODBC standard to access all major database
systems. Results returned from each ODBC query are then processed by the
client to perform global level formatting. Two example queries and their associ-
ated SQL mappings are below.
Example 1 a) The user requires all customer names ([Customer] Name).
b) The user requires all customer names with orders ([Order;Customer] Name).

(a) (b)
Select CompanyName Select CompanyName
From Customers From Customers, Orders

Where Customers.CustomerID = Orders.CustomerID

Execution 1 a) Retrieves customers whether or not they have an order. No
context merging is required. b) The customer name is retrieved from the Cus-
tomers relation. The query processor performs a context merger by combining

the [Order] context with the [Customer] context. A join is required between
Orders and Customers to merge the two contexts.

4 Related Work

SQL provides an efficient and structured way for accessing relational data.
However, specifying complex SQL queries with numerous join conditions and
subqueries is too complex for most users [1]. Further, developing SQL queries
requires knowledge of both the structure and semantics of the database. Un-
fortunately, database semantics are not always immediately apparent from the
database schema, and mapping the required query semantics into a SQL query
on database structure is often complex. There are graphical query tools [2, 11]
to aid in the formulation of SQL queries and proposed extensions to the SQL
language exist [12]. Many commercial databases use similar tools to aid the user
in query construction. However, at the lowest level, a user is still responsible for
mapping the semantics of their query into a structural representation suitable
for the database.

Query by example or QBE [14] was proposed to reduce this semantic burden
on users. By providing a table-based query environment and a simple query syn-
tax, QBE demonstrated that some of the burden of accessing relational databases
can be mitigated by using advanced user interfaces that capture the semantics of
a user’s query, and automatically translate them to relational queries. Query by
context (QBC) differs from query by example as QBC does not have a structural
basis for the query. QBE’s foundation rests on a table structure. Although QBE
is effective at hiding much of the query complexity, QBC is a further advance-
ment by hiding the structure as well. Further, this structural neutrality allows
queries to be unaffected by database structural changes as long as the same
semantic concepts are present, and will allow QBC to be extended to object-
oriented databases and multidatabases.

Another methodology for simplifying query complexity is to hide the struc-
ture of the database by allowing some form of querying by natural language.
Systems [4, 9] have been developed that allow users to query by word phrases,
but these systems are limited if they do not allow the user to precisely define
the exact data returned. Unlike a SQL query which is deterministic and precise,
query by word systems that simplify query formulation by ignoring structure,
sacrifice query precision.

In a general environment, a query system must isolate the user from struc-
ture and system details while at the same time provide a query language power-
ful enough to produce precise, formatted results. SemQL [7] provides semantic
querying using semantic networks and synonym sets from WordNet [8]. Although
their approach is similar to ours, using a large online dictionary such as WordNet
increases the complexity of matching word semantics. Also, since no integrated
view is produced, it is not clear to the user which concepts are present in the
databases to be queried. Our approach improves on SemQL by providing a con-

densed term dictionary, an integrated view to convey database semantics to the
user, and a systematic method for SQL generation.

A different approach to relational querying involves using an intelligent query
processor that directs the user during query formulation. Kaleidoscope [3] pro-
vides a logic-based interface that allows a user to formulate queries using a
restricted natural language syntax. As the user builds a query, Kaleidoscope
uses rule-based and constraint knowledge to ensure a well-formed query, thus
minimizing the chances for errors and easing the cognitive burden on the user.

A decent measure of user query performance is a count of the number of
symbols or constructs required to formulate a query. Querying by context re-
quires limited user input and interaction to formulate a query. For all systems, a
user must select the concepts they are interested in. This process is performed in
querying by context by allowing a user to graphically browse the context view.
By organizing concepts by semantics instead of structure and using meaningful
semantic names, the burden of concept selection and discovery is significantly
reduced. Further, QBC attempts to minimize the user’s specification of concept
interrelationships. Concept interrelationships are automatically determined if
possible, or can be easily specified by the user by traversing the integrated view.
The concept of linking contexts by traversing the integrated view is similar to
links connecting HTML pages. Even when the user must specify interrelation-
ships, this is a simpler task than determining joins to connect physical relations
as there will often be fewer of them. Overall, user query generation complexity is
reduced by organizing and naming contexts and concepts semantically, isolating
the user from database structures and naming (and the associated semantic to
structural translation), and by providing a graphical query environment that
allows the user to build queries by manipulating the simple semantic notions of
concepts, contexts, and relationships between contexts.

5 Future Work and Conclusions

In this paper, we have demonstrated that by utilizing a global dictionary and
semantic specifications an integrated, context view of a database can be con-
structed. This semantic view is easier for the user to query, as they are isolated
from structural and naming considerations. We have discussed an automatic
system that maps semantic queries to SQL and presents the results to the user.
The query system is capable of handling complex join constructs and choosing
the appropriate attributes, relations, and join conditions to preserve user query
semantics. A graphical query environment is developed to allow the user to more
formally define the semantics of their query without explicit knowledge of the
structure and interrelationships of database attributes and relations. The query
system described has been implemented in a software package called Unity [6].

Future work involves expanding the query processor to handle updates, and
experimental comparisons of query by context with SQL, natural language query-
ing systems, and other graphical query systems.

References

1. J. Bell and L. Rowe. Human Factors Evaluation of a Textual, Graphical, and
Natural Language Query Interfaces. Technical Report ERL-90-12, University of
California, Berkeley, February, 1990.

2. T. Catarci and G. Santucci. Query by Diagram: A Graphical Environment for
Querying Databases. SIGMOD Record, 23(2):515–515, June 1994.

3. S. Cha and G. Wiederhold. Kaleidoscope Data Model for An English-like Query
Language. In 17th International Conference on Very Large Data Bases, pages
351–361. Morgan Kaufmann, 1991.

4. W. Cohen. Integration of Heterogeneous Databases Without Common Domains
Using Queries Based on Textual Similarity. SIGMOD Record, 27(2):201–212, 1998.

5. C. Date. The SQL standard. Addison Wesley, Reading, US, third edition, 1994.
6. R. Lawrence and K. Barker. Unity - A Database Integration Tool. Technical

Report 2000-664-16, Dept. of Computer Science, University of Calgary, July 2000.
7. J. Lee and D. Baik. SemQL: A Semantic Query Language for Multidatabase Sys-

tems. In Proceedings of the 8th International Conference on Information Knowledge
Management (CIKM’99), pages 259–266, Kansas City, MO, November 1999.

8. G. Miller, R. Beckwith, C. Fellbaum, D. Gross, and K. Miller. Five Papers on
WordNet. Technical Report CSL Report 43, Princeton University, 1990.

9. W. Ogden and S. Brooks. Query Languages for the Casual User: Exploring the
ground between Formal and Natural Languages. In Proceedings of the Annual
Meeting of the Computer Human Interaction of the ACM, pages 161–165, 1983.

10. J. Sowa. Top-level ontological categories. International Journal of Human-
Computer Studies, 43(5):669–685, 1995.

11. M. Stonebraker, J. Chen, N. Nathan, C. Parson, A. Su, and J. Wu. Tioga: A
Database-Oriented Visualization Tool. In Proceedings of the Visualization ’93 Con-
ference, pages 86–93. IEEE Computer Society Press, October 1993.

12. G. Vossen and J. Yacabucci. An extension of the database language SQL to capture
more relational concepts. SIGMOD Record, 17(4):70–78, December 1988.

13. W3C. Extensible Markup Langauge (XML) 1.0. Technical Report
http://www.w3.org/XML/, February 1998.

14. M. Zloof. Query-by-Example: a data base language. IBM Systems Journal,
16(4):324–343, 1977.

