
Write Improvement Strategies for Serial NOR
Dataflash Memory

Scott Fazackerley
Department of Computer Science
University of British Columbia

Email: scott.fazackerley@alumni.ubc.ca

Wade Penson
Department of Computer Science
University of British Columbia
Email: wpenson@alumni.ubc.ca

Ramon Lawrence
Department of Computer Science
University of British Columbia
Email: ramon.lawrence@ubc.ca

Abstract—Embedded systems are ubiquitous and perform
tasks such as data logging and monitoring. For these devices,
lifetime, power use, and data consistency are critical. Systems
require robust and energy efficient storage strategies. Serial
NOR Dataflash is commonly used, but suffers from high write
and erase times as well as limited lifetime. This work proposes
write strategies for serial NOR Dataflash that improves efficiency
and power use, and decreases write times. Experimental results
demonstrate that using masked overwriting strategies can improve
write times by an order of magnitude and reduce the number
of required page erases, reduce energy consumed by writing and
reduce data transfers by up to 90% for specific applications.

I. INTRODUCTION

This work examines how write strategies optimized for
serial NOR Dataflash can significantly improve device perfor-
mance including fewer page erases, faster write operations,
and less energy consumed. The technique applies to many
applications and devices. In this work, the target devices are
8-bit processors which are commonly used due to low cost
and complexity [1] and are well-suited for data collection and
logging applications.

Embedded devices have limited SRAM and use either
NAND or serial NOR flash for persistent storage. NAND
flash has faster performance and larger capacity than NOR
flash but requires a higher pin count and more complex data
management strategies. NOR flash has simpler management
requirements and would be a more useful technology if its
write performance was more comparable to NAND flash.

This work presents serial NOR Dataflash optimized writing
strategies that greatly improve its performance and usability for
embedded devices. The contributions of this work are:

• A technique for reducing the time and energy required
for writing to serial NOR Dataflash using masked
overwriting to an existing page.

• A performance analysis and experimental evaluation
of how overwriting and write masking techniques
improve write performance.

• A use case analysis demonstrating performance ad-
vantages in common scenarios.

Corresponding Author: scott.fazackerley@alumni.ubc.ca. The authors grate-
fully acknowledge the support of the Natural Sciences and Engineering
Research Council of Canada.

The organization of this paper is as follows. Section II
presents background information on flash memory technolo-
gies. Section III provides an overview and analysis of write
strategies for serial NOR Dataflash with experimental results
discussed in Section IV. Section V presents use cases demon-
strating the real-world impact of the performance improve-
ments. The paper closes with future work and conclusions.

II. BACKGROUND

Embedded devices need to be able to store and process
data. The Internet of Things (IOT) involves devices such as
wireless sensor networks and mobile computing platforms
interacting with each other [2]. It is anticipated that by the
end of this decade there will be between 30 and 50 billion
devices participating in the IOT [3].

IOT vendors such as Cisco anticipate the direct sharing
of data between devices driving the need for local storage
and processing [4]. Devices such as the Telos, Btnode, Mi-
caZ [5] platforms have been previously used as research and
development platforms. Recently, the Arduino [6] family of
devices has driven low cost development and exploration.
These devices are typically small 8-bit devices [7] with power
and persistent storage constraints as well as minimal memory
(often less than 4KB SRAM) [8].

With the increased availability of low cost flash ($0.003
per Kbyte) [9], devices can now store large quantities of data.
Considering the computation vs. communication trade-off [10],
edge devices now maintain the ability to aggregate and analyze
data locally and only transmit data on demand. This results in
significant energy savings for devices [11], [12].

Flash is used for persistent storage and is available in two
distinct types: NOR and NAND. While both share common
attributes, the physical implementation of each type offers
different performance characteristics.

NAND flash is the most commonly found format in general
purpose devices [13], and is characterized by fast access times
for sequential byte access, high density and low cost. Data is
only accessible in a page format [12], [14] which limits the
types of read and write operations. NAND flash is typically
accessed in a parallel fashion, requiring a high pin count
commitment from the host processor which makes it unsuitable
for small, low pin count devices.

NOR flash was first commercialized by Intel in 1988 [15]
and initially offered read and write units of one byte. The

2016 IEEE Canadian Conference on Electrical and Computer Engineering (CCECE)

978-1-4673-8721-7/16/$31.00 ©2016 IEEE

Fig. 1: Organization of Serial NOR Dataflash

cell size for NOR flash is 2.5x larger than NAND [16] due to
additional circuitry required for reading the state of cells.While
NOR flash is typically less dense and less energy efficient than
NAND flash, it is available in both parallel or serial access
formats [12], which increases its desirability for resource
constrained systems.

While NOR flash has previously been discounted as a
suitable candidate for read/write storage for general purpose
computing [17], current trends have seen the evolution of NOR
flash as a suitable storage candidate for embedded systems
due to increased robustness and usabilty compared to NAND
flash. NOR flash is the most popular format for embedded
devices [18], being found in millions of embedded devices. It
is available with a serial interface that makes it desirable for pin
limited systems. Unlike NAND flash, NOR memory devices
are also available with internal SRAM page buffers, which
can be used to buffer page data, limiting the amount of data
that is required to be transferred between a host processor and
memory device. Figure 1 shows the organization of an Adesto
serial NOR Dataflash device with two SRAM I/O buffers [19].

A challenge with flash memory is its asymmetric read
and write costs in both time and energy. Devices have bytes
organized into read, write and erase units. Read and write units
are organized as pages that must generally be written or read
as an atomic unit. Flash memory is also divided into erase
blocks which may contain a single or multiple pages. With
flash memory, a single memory location cannot be erased; all
pages in the erase block must be erased together. Compared
to other memory technologies, flash memory has a limited
lifetime which is directly linked to erase and write operations.
Depending on the type of flash, page lifetime is limited to
between 10,000 to 100,000 erase/write cycles. This presents
challenges in data management using flash memory.

Flash memory has the limitation that a page must be erased
before data can be written or rewritten to the same physical
location. In order to change the contents of a single page, the
page must be first copied out along with all other data in the
same block to a buffer. Once all pages within the erase block
have been moved, the erase can proceed at which point data
can be written back.

Two approaches had been suggested to deal with these
challenges [15], [20]. The first approach is to use a flash-
aware file system that is specifically designed to accom-
modate flash devices, but such systems are not suitable for

resource constrained devices. The second approach is to use
a translation layer [15] to act as an intermediary between the
physical device and the application requiring the storage. This
address translation is referred to as a Flash Translation Layer
(FTL) [20], and is responsible for swizzling data addresses
as it is physically relocated. Regardless of the strategy used,
flash-based memory technologies require an address translation
scheme and write normalisation strategy to be considered
functionally useful [21], but both are generally not available
for small embedded systems.

For the simplest of devices, direct mapping can be used
but this leads to accelerated wear as data is copied out of the
page to be mutated, the page erased and then the changed data
written back to the same physical location. Due to architecture
limitations of flash memory, a block of pages may be required
to be moved to SRAM before the erase operation can proceed
which further complicated operations for resource constrained
systems. In the most constrained devices, this is not feasible.

None of these approaches truly solve the fundamental erase
constraint; they just try to minimize the erases performed.
This work analyzes the fundamental engineering of NOR flash
and demonstrates write techniques that use page overwrites to
minimize the need for costly page erases.

III. WRITE STRATEGIES FOR IMPROVED PERFORMANCE
WITH SERIAL NOR DATAFLASH

Understanding NOR flash memory technology allows for
write optimizations. Flash memory technology is based on the
floating gate MOSFET which has a similar architecture to the
MOSFET used in SRAM. The floating gate MOSFET [22] can
encode a persistent state for a long period of time without the
requirement that it be continually powered.

The floating gate is located between the control gate and
the channel substrate in the MOSFET. It is electrically isolated
from all other parts of the circuit, acts as a barrier between
the control gate and the channel substrate, and can hold charge
for long periods of time (years to 10’s of years) [23]. It will
overtime dissipate charge and loose the data encoded in the
device [16].

In the electronic design of flash memory, an erased cell
will have the state of a logical “1”. When programmed, the
cell value will be set to a logical “0” [24, p.29]. The cells
are connected together in a matrix using the word line for
addressing and the bit line for sensing. The most significant
difference between the architecture of NOR and NAND flash
is how the state of a cell is determined [23] and physical
interconnect as shown in Figure 2.

When a charge is present on the floating gate, it will block
the electric field from the control gate which is normally
capacitively coupled to the channel substrate preventing the
formation of the conduction channel [23]. It is not a binary
effect; the charge level present on the floating gate modifies
the threshold voltage needed to be induced on the control gate
in order to form a conduction channel. If charge is present
in the floating gate when the word line is activated to read
from the cell, the bit line will not see a current flow which is
interpreted as a logical “0”. The electric field from the control
gate to the channel substrate is shielded by the floating gate. If

(a) NOR Flash (b) NAND Flash

Fig. 2: Memory Cell alignment for NOR and NAND Flash

no charge is present when a voltage is induced at the control
gate, a conduction channel will be formed allowing for current
to flow which is interpreted as a logical “1”.

With the NOR architecture (Figure 2a) each element in the
matrix has its control gate connected to a word line and bit line
connected to the drain [23]. This allows the matrix to address
a single element in the memory array without disturbing any
other element. NAND flash shares a similar configuration in
terms of the word line which is used to activate the control
gate of the element or elements being read. The single largest
difference in the architecture difference between NAND and
NOR is how the bit line is connected. Unlike in NOR memory,
the source and drains of the memory cells in NAND flash are
linked together (Figure 2b) in a daisy chain fashion [23] which
can lead to disruption of neighboring cells.

NAND flash using Fowler Nordheim (FN) tunneling for
both erase and write operations whereas NOR only using FN
tunneling for erase operations. For write operations, channel
hot election (CHE) injection is used to inject electronics into
the floating gate. This operation is self limiting in such that
the injection operation will stop when sufficient charge has
built up proportional to the strength of the electric field being
applied.

The floating gate of an erased NOR memory cell has a
deficit of electrons. When being read, a voltage is applied
to the control gate via the word line. A conduction channel
will be formed between the source and drain, allowing for the
flow of current. When the device is programmed, electrons are
injected into the floating gate which will prevent the formation
on an electric field when being read. This leads to a lack of
conduction channel being formed which prevents current flow.

This observation leads to a unique opportunity with NOR
flash that is not possible with NAND flash. When a page is
erased, each cell will encode a logical 1 (lack of charge). When
the cell is written (set to logical 0), charge is allowed to accu-
mulated in the floating gate via CHE injection. If an attempt is
made to write a logical 0 to the cell again, the existing build of
charge will prevent any additional charge entering the floating
gate due to the self limiting properties of CHE injection. It
is hypothesized that this unique observation allows for the re-
writing of memory cells under specific conditions which can
be exploited to increase device performance.

It is conjectured that a NOR cell may be re-written as long
as the transition is from logical 1 to logical 0 without dis-
turbing neighboring cells due to the internal structure of NOR
flash (Figure 2a) for page accessible serial NOR Dataflash.

(a) Overwritting

(b) Masked Overwritting

Fig. 3: Overwritting strategies for data movement from SRAM
buffer to flash page for Serial NOR Dataflash

Under normal operation, data is loaded in to the SRAM
buffer and then written to a previously erased page. In the
case of append type operations, data is held in the SRAM
buffer, new data appended, the target page erased and then
rewritten. In this type of operation where new data is being
written to previously erased locations with existing data being
unchanged, it is hypothesized that the buffer can be rewritten
back to the same pages without having to occur an addition
erase operation. Figure 3a demonstrates this overwriting oper-
ation for a simplified example where the page and buffer size
are 8 bytes. In this example, locations 0 and 1 have previously
been written by the buffer to flash. In overwriting, new data
is appended to location 2 (indicated by dashed outline) and
then the buffer is written back to the same flash page. As the
contents of the previously written locations are unchanged,
only new locations will be modified.

A limiting factor in the overwriting operation is that a write
to a previously written location will still induce CHE oxide
degradation. It is hypothesized that this can be minimized by
changing write patterns to previously written cells. When a
logical 1 is transitioned to logical 0, charge is injected into the
floating gate. In the case where the cell is already a logical
0 and a logical 1 write is attempted, no CHE injection will
occur leaving the cell in its previous state. This transition can
only physically occur with FN tunneling that is developed
during an erase cycle. Figure 3b demonstrates this masked
overwriting operation for a simplified example where the page
and buffer size are 8 bytes. In this example, locations 0 and 1
have previously been written by the buffer to flash. In masked
overwriting, new data is appended to location 2 (indicated by
dashed outline) and previous written location in the buffer are
masked to 0xFF (indicated in bold). The buffer is written back

to the same flash page. The contents of the previously written
locations are unchanged due to the forbidden 0 to 1 transition
described, modifying only the unmasked, unwritten area.

For data storage operations this is a desirable operation as
it allows new data to be appended to a page without having to
occur additional erase/write cycles as the page can be rewritten
in place. This presents significant improvements for specific
classes of operations. It is estimated that the saving in terms of
page erases and energy consumption is significant compared
to write operations that are written to fresh pages for every
commit. This will offer record level consistency without having
to occur high levels of erase operations.

Given this understanding of the fundamental NOR flash
architecture, the following hypotheses are tested:

Hypothesis 1: A serial NOR Dataflash page can be over-
written in place with no data loss as long as the only bit
transitions are from 1 to 0 or 0 to 0.

Hypothesis 2: The page write time in serial NOR Dataflash
is proportional to the number of bit transitions from 1 to 0
written.

Hypothesis 3: When overwriting a serial NOR Dataflash
page, utilizing a bit mask (masked overwriting) of ones for all
bits applied to previously written data in a page will improve
performance while maintaining data correctness.

IV. EXPERIMENTAL RESULTS

The experiments were run on a serial NOR Dataflash mem-
ory device (AT45DB161E from Adesto Technologies [19]).

To validate Hypothesis 1, memory pages were continually
re-written with page data that contained an increasing number
of zero bit values. The first write had zero zeros, the second
had one (in the first bit), the third write had zeros in the first
two bits, and so on. Each page consists of 512 bytes (4096
bits). Each page on the device was written 4096 consecutive
times with each operation increasing the number of zero bits
actively written. This was repeated for each device page for
a total memory device writes of 16 777 216 times without a
single bit error.

These results validate Hypothesis 1, supporting that it is
possible to overwrite a NOR flash page without data loss with
the constraint that all bit transitions are from 1 to 0 or 0 to 0.

The second hypothesis examines the correlation between
write patterns and write times. It suggests that there is a
correlation between the number of bit transitions (1 to 0) in
a write operation and the amount of time to complete the
buffer write to the main flash page. In this experiment, the
number of 0’s in the SRAM was increased after each write to
the same page in memory. Two test conditions were used to
examine if specific patterns impacted write times: A baseline
where the target page was erased before each write and a
test using overwriting (Figure 3a). The test conditions were
evaluated with an increasing number of zeros starting with
byte zero incrementally written to a flash page. Two SRAM
buffers were used on the serial NOR Dataflash. One buffer
was used for the masking test condition and the second buffer
was used to maintain a mirrored state of data in the flash
page for validation of contents. The test was repeated across

Byte Count

T
im

e
(m

s)

0 64 128 192 256 320 384 448 512

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Erased Before Write Overwrite with Mask Overwrite without Mask

Fig. 4: A timing comparison of overwriting techniques for
serial NOR Dataflash.

multiple device pages. Least squares analysis was performed
on each test condition. The results and number of observations
are presented in Table I.

Figure 4 shows the time is milliseconds to complete writing
the nth byte under a given test. For the baseline test (Figure 4:
Erase Before Write), the flash page was erased before each
write. The graph shows that the time of the device to complete
the write of the buffer to the target page in flash memory is
directly related to the number of 0 values being written. This is
supported by the high degree of correlation (Table I) between
1 to 0 transitions per page and write times.

For the overwriting test (Figure 4: Overwrite without
Mask), the flash page was only erased before the initial
write. Each subsequent write to the page in flash used the
overwriting technique (Figure 3a) where the SRAM buffer
maintains consistency with the values written to flash and
updates a single byte in a previously unwritten area of the
target flash page. The results demonstrate a similar linear
relationship and high degree of correlation (Table I), but faster
write times were observed. This is due to faster equalization
times for CHE injection when writing to previously written
location as cells already contain excess electrons.

From the high degree of correlation observed, it is the act
of attempting to modify the floating gate memory cell that is
the dominate factor in writing, but the initial state of the cell
in memory and buffer will impact write times.

Hypothesis 3 was that single byte write times could be
increased through strategic management of previously written
data in the buffer (Figure 4: Overwrite with Mask). Data within
a page that is not actively being written is masked with a high
logic state (Figure 3b). From Hypothesis 2, the write time
is linearly related to the total number of 0 bits in the buffer
being written. Thus, when writing a page to the device, it may
be valuable to have all bits in high logic state (1) except for
the bits being written (Figure 3b). This not only decreases
page write times but will not degrade existing cells through
additional CHE injection.

TABLE I: Least Squares Coefficients for Different Writing
Methods

Write
Strategies

Erase Before Write Overwrite Mask Overwrite

Slope 4.099×10−3∗∗∗ 1.201×10−3∗∗∗ 2.016×10−7∗∗∗

(3.793×10−7) (5.647×10−7) (3.459e-8)

Intercept 3.287×10−1∗∗∗ 3.311×10−1∗∗∗ 3.308×10−1∗∗∗

(1.122×10−4) (1.670×10−4) (1.023e×10−5)
Observations 2 097 152 2 097 152 2 097 152
Standard errors in parentheses.
(***) indicates significance at the p=0.01 level.
Each column contains regression coefficients for the linear model for a given write
strategy.

As in the previous test, one serial NOR Dataflash SRAM
buffer was used for consistency and validation checking of
the flash page being written. It maintained the true state of
what should appear in the flash page after each write to check
the correctness of the masked overwrite. The second buffer
implemented the overwriting technique (Figure 3b). The same
test operations were used as in the previous test, except during
each write, the location of the byte being written was unmasked
and updated in the second buffer, written to the flash page
and then re-masked. Least squares analysis was performed on
each test condition. The results of each test and number of
observations are presented in Table I.

In examining the results (Figure 4: Overwrite with Mask),
it was found that the write times are not proportional to the
actual number of 0’s in the main flash page but to the number
of 0’s in the buffer being written. Unlike the baseline condition
or overwriting condition, the page write times using masking
were constant for each append operation as it prevented
additional 0 to 0 writes due to previously written values. This
suggests that strategic use of write patterns by way of masked
overwriting when modifying a previously unwritten field in a
page can lead to significant write time improvements for small
data writes over other techniques.

V. USE CASES

For embedded applications, utilizing the ability to append
or modify existing data without having to incur erases sig-
nificantly extends the life of the device as well as simplifies
data management for common applications. The following
use cases show how masked overwriting can offer significant
performance improvements in both time and lifetime.

A. Data Logging

Data logging applications [25] often use serial NOR
Dataflash, and energy consumption and lifetime is paramount
with the goal of minimizing service and maximizing field life.
With data logging, the system is configured to take a series
of defined measurements at regular periodic intervals. Devices
such as the Arduino have found significant inroads in these
applications [25] due to the low cost and ease of use. Common
applications use a 12-bit analog-to-digital converter to record
values every 1 minute and store the data to persistent storage.

An application logging a 2-byte record every minute writes
to the same logical page 256 times (512 byte page size).
Without overwriting, each record stored causes a full page
write to a newly erased flash page. In comparison, using

Memory
Device

Record
Size

(bytes)

Data
Transfer

Size
(bytes)

Data
Overhead
per write

Time
(ms)

Data
Logging

SD Card 2 512 510 2.61
SNDF

with masked
overwriting

2 4 2 0.40

Bit
Vector

SD Card 1 1024 1023 4.57
SNDF

with masked
overwriting

1 2 1 0.33

TABLE II: Comparison between raw SD storage and serial
NOR Dataflash (SNDF) using masked overwrite strategy.

masked overwriting allows the application to write to the
same page 256 times (appending a new record after each
write). Using masked overwriting is significantly faster for
page writes and reduces page erases by 256 times. For each
write operation, 2 bytes of data and 2 bytes of mask are
transferred between the host and memory for a total of 4 bytes
per write. Overwriting improves write performance, extends
lifetime, and reduces energy requirements by reducing the ratio
of writes to erases while being able to maintain record level
consistency.

Utilizing overwriting with serial NOR Dataflash makes it
competitive with storing data on NAND flash technologies
such as SD cards. Although NAND flash has inherent speed
advantages over NOR flash, NAND flash must always read
and write complete pages. SD cards do not maintain internal
buffers, so a complete page must be transferred to the host,
modified and then written back to the SD card. With masked
overwriting and serial NOR Dataflash, only the new record is
transferred to the device as it is able to buffer pages internally
using the SRAM buffers and a new page is not needed for
each write.

Table II presents actual device measurements using these
two strategies. For a single record write, serial NOR Dataflash
with masked overwriting significantly outperforms the SD
card. In the course of one day, this translates to 1440 records.
For the SD card this results in 737 280 bytes transferred
versus 5 760 bytes resulting in a savings of approximately
99%. Additionally, the erase operations have been reduced by
a factor of 256 which directly translates to significant energy
savings and increased device lifetime without having to use a
complex page remapping strategy.

B. Bit Vectors

Bit vectors [26] allow for compact storage of data. Bit
vectors are not as efficient in persistent flash memory as data
must be read and written at the page level. Consequently,
updating a single bit in a bit vector in flash requires a whole
page to be written.

Overwriting with serial NOR Dataflash offers a significant
advantage when using bit vectors. Not only can the amount
of data be reduced, but using the masked overwrite strategy,
extra page copies and erases can be minimized. To accomplish
this, a write mask is brought into one of the SRAM buffers
on the memory device. As demonstrated, the mask can be

written over live data without impacting the state of the data.
Taking advantage of the proposed strategy, the host can then
update the location of the bit vector and overwrite the data
in memory assuming it is an allowed transition (1 to 0).
Since only one field has changed in the buffer, it can be
written back to its original page leaving the original data
intact. Compared to utilizing a bit vector strategy for record
management with SD cards, this strategy significantly reduces
data transfers and writes as well as minimizing data movement
and erases on the serial NOR Dataflash. Table II presents actual
device measurements using these two strategies with masked
overwriting offering a significant performance improvement.

VI. CONCLUSIONS

This work presents a low energy write optimization strategy
called masked overwriting to increase serial NOR Dataflash
lifetime, decrease energy consumption per operation and re-
duce average time per write operation. The result of this
work supports the ability to do in-place append operations or
bit manipulations for serial NOR Dataflash and provides an
analysis of device performance based on write patterns.

This strategy reduces the complexity of data management
as well as reducing energy costs and extending serial NOR
Dataflash field life through lower write cost and a lower
ratio of erase to writes on device. Use cases are presented,
demonstrating the significant advantages of this strategy.

Future work will examine the use of this strategy for
devices using serial NOR Dataflash to improve the operation
of data structures and storage of data.

REFERENCES

[1] C. J. Murray, “Why 8-bit MCUs Refuse to Go Away: New
Peripherals are Paving the Way for the Continued Success of the 8-bit
Microcontroller,” Design News, vol. 70, no. 9, p. 30, 2015. [Online].
Available: http://www.designnews.com/author.asp?doc id=278431

[2] D. Giusto, A. Iera, G. Morabito, and L. Atzori, Eds., The Internet
of Things: 20th Tyrrhenian Workshop on Digital Communications.
Springer, 2010.

[3] C. Witchalls, “The Internet of Things Business Index: A Quiet Revo-
lution Gathers Pace,” The Economist Intelligence Unit Limited, Tech.
Rep., 2013.

[4] D. Evans, “The Internet of Things: How the Next Evolution of the
Internet Is Changing Everything,” Cisco Internet Business Solutions
Group, Tech. Rep., 2001.

[5] P. Baronti, P. Pillai, V. W. C. Chook, S. Chessa, A. Gotta,
and Y. F. Hu, “Wireless Sensor Networks: A Survey on the
State of the Art and the 802.15.4 and ZigBee Standards,”
Computer Communications, vol. 30, no. 7, pp. 1655–1695,
2007. [Online]. Available: http://www.sciencedirect.com/science/article/
B6TYP-4MP569D-2/2/2cb7b0fa0bd9d0dec76e4702a4d76937

[6] C. Severance, “Massimo Banzi: Building Arduino,” Computer, vol. 47,
no. 1, pp. 11–12, Jan. 2014.

[7] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and
E. Cayirci, “Wireless Sensor Networks: A Survey,” Com-
puter Networks, vol. 38, no. 4, pp. 393–422, 2002.
[Online]. Available: http://www.sciencedirect.com/science/article/
B6VRG-44W46D4-1/2/f18cba34a1b0407e24e97fa7918cdfdc

[8] H. Dai, M. Neufeld, and R. Han, “ELF: An Efficient Log-structured
Flash File System for Micro Sensor Nodes,” in Proceedings of the 2nd
International Conference on Embedded Networked Sensor Systems.
New York, NY, USA: ACM, 2004, pp. 176–187. [Online]. Available:
http://doi.acm.org/10.1145/1031495.1031516

[9] S. Fazackerley and R. Lawrence, “A Flash Resident File System for
Embedded Sensor Networks,” in Electrical and Computer Engineering
(CCECE), 2011 24th Canadian Conference on, May 2011, pp. 001 400–
001 405.

[10] G. J. Pottie and W. J. Kaiser, “Wireless Integrated Network Sensors,”
Commun. ACM, vol. 43, no. 5, pp. 51–58, May 2000. [Online].
Available: http://doi.acm.org/10.1145/332833.332838

[11] J. Hill, R. Szewczyk, A. Woo, S. Hollar, D. Culler, and K. Pister,
“System Architecture Directions for Networked Sensors,” SIGPLAN
Not., vol. 35, pp. 93–104, Nov. 2000. [Online]. Available: http:
//doi.acm.org/10.1145/356989.356998

[12] G. Mathur, P. Desnoyers, D. Ganesan, and P. Shenoy, “Ultra-low
Power Data Storage for Sensor Networks,” in Proceedings of the
5th International Conference on Information Processing in Sensor
Networks, ser. IPSN ’06. New York, NY, USA: ACM, 2006, pp. 374–
381. [Online]. Available: http://doi.acm.org/10.1145/1127777.1127833

[13] A. Zuck, O. Barzilay, and S. Toledo, “NANDFS: A Flexible Flash File
System for RAM-constrained Systems,” in Proceedings of the Seventh
ACM International Conference on Embedded Software, ser. EMSOFT
’09. New York, NY, USA: ACM, 2009, pp. 285–294. [Online].
Available: http://doi.acm.org/10.1145/1629335.1629374

[14] D. Zeinalipour-Yazti, S. Lin, V. Kalogeraki, D. Gunopulos, and W. A.
Najjar, “Microhash: An Efficient Index Structure for Flash-based
Sensor Devices,” in Proceedings of the 4th Conference on USENIX
Conference on File and Storage Technologies - Volume 4. Berkeley,
CA, USA: USENIX Association, 2005, pp. 3–3. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1251028.1251031

[15] S. J. Kwon, A. Ranjitkar, Y.-B. Ko, and T.-S. Chung, FTL
Algorithms for NAND-Type Flash Memories. Springer Berlin
- Heidelberg, Mar. 2011, vol. 15. [Online]. Available: http:
//www.springerlink.com/index/10.1007/s10617-011-9071-9

[16] M. Sanvido, F. R. Chu, A. Kulkarni, and R. Selinger, “NAND Flash
Memory and Its Role in Storage Architectures,” in Proceedings of
the IEEE, vol. 96-11. IEEE, 2008, p. 18641874. [Online]. Available:
http://ieeexplore.ieee.org/xpls/abs all.jsp?arnumber=4694025

[17] Y. Deng and J. Zhou, “Architectures and Optimization Methods
of Flash Memory Based Storage Systems,” J. Syst. Archit.,
vol. 57, no. 2, pp. 214–227, Feb. 2011. [Online]. Available:
http://dx.doi.org/10.1016/j.sysarc.2010.12.003

[18] C. S. I. Zitlaw, “The Future of NOR Flash Memory,”
2011. [Online]. Available: http://eetimes.com/design/memory-design/
4215634/The-Future-of-NOR-flash-memory

[19] Adesto Technologies. (2015, july) 16-mbit dataflash (with extra
512-kbits), 2.3v or 2.5v minimum spi serial flash memory. [Online].
Available: http://www.adestotech.com/wp-content/uploads/doc8782.pdf

[20] T.-S. Chung, D.-J. Park, S. Park, D.-H. Lee, S.-W. Lee, and H.-J.
Song, “A Survey of Flash Translation Layer,” J. Syst. Archit.,
vol. 55, no. 5-6, pp. 332–343, May 2009. [Online]. Available:
http://dx.doi.org/10.1016/j.sysarc.2009.03.005

[21] D. Ma, J. Feng, and G. Li, “LazyFTL: A Page-Level Flash Translation
Layer Optimized for NAND Flash Memory,” in Proceedings of the
2011 International Conference on Management of Data, ser. SIGMOD
’11. New York, NY, USA: ACM, 2011, pp. 1–12. [Online]. Available:
http://doi.acm.org/10.1145/1989323.1989325

[22] K. Kahng and S. M. Sze, “A Floating Gate and its Application to
Memory Devices,” Electron Devices, IEEE Transactions on, vol. 14,
no. 9, pp. 629–629, 1967.

[23] R. Bez, E. Camerlenghi, A. Modelli, and A. Visconti, “Introduction to
Flash Memory,” Proceedings of the IEEE, vol. 91, pp. 489–502, Apr.
2003.

[24] R. Micheloni, G. Campardo, and P. Olivo, Memories in Wireless
Systems, 1st ed. Springer Publishing Company, Incorporated, 2008.

[25] D. K. Fisher and P. J. Gould, “Open-Source Hardware Is a Low-
Cost Alternative for Scientific Instrumentation and Research,” Modern
Instrumentation, vol. 1, no. 2, pp. 8–20, 2012.

[26] D. Rotem, K. Stockinger, and K. Wu, “Optimizing I/O Costs of
Multi-dimensional Queries Using Bitmap Indices,” in Database and
Expert Systems Applications, ser. Lecture Notes in Computer Science,
K. Andersen, J. Debenham, and R. Wagner, Eds. Springer Berlin
Heidelberg, 2005, vol. 3588, pp. 220–229.

