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ABSTRACT

Many embedded devices, especially those designed for en-
vironmental sensor logging, have extremely limited RAM,
often less than several kilobytes. Logged data is stored on
flash memory and needs to be easily managed at low energy
cost. A file system is required to efficiently manage the de-
vice, specifically dealing with wear leveling of the flash mem-
ory. Previous flash file systems, even those designed for small
memory devices, still consume a reasonable amount of RAM
(1K or more). In this paper, we present a flash file system that
supports record level consistency with the entire file system
and address mapping functionality stored on flash memory.
Although this results in a marginally higher read cost, RAM
utilization is less than 150 bytes and the read cost in terms
of energy usage is less. The key idea is that NOR flash used
on these devices supports direct byte reads not supported by
NAND memory which allows page translation and data stor-
age to require less memory and consume less energy.

Index Terms— wireless sensor network, flash memory,
file system, microprocessor

1. INTRODUCTION

Wireless sensor networks are an efficient way to gather sensed
data from a large physical area without the need for hard
wired infrastructure. Wireless sensor networks consist of a
series of wireless sensing devices that have the ability to mea-
sure parameters regarding their physical environment. De-
vices are typically small 8-bit devices [1] that are constrained
in terms of power, persistent storage and runtime memory [2].
Numerous hardware platform choices are available with the
majority of research being conducted on the Telos, Btnode
and MicaZ platforms [3]. Devices intercommunicate using a
wireless link [1]. Although there are many different commu-
nication paradigms, IEEE 802.15.4 [3, 4] has emerged as the
dominate choice. It allows for low data rate, low power ad
hoc communications between devices.

The management of data sampling and transmission in a
sensor network can be handled by a custom application or by
one of the over 37 different operating systems available for
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wireless sensing devices [5]. In the majority of existing sys-
tems local data storage has not been a focus. Sensed data
are pushed unprocessed back to the sink or collection point
for analysis. With the increased availability of low cost flash
($0.003 per kbyte) as well as the computation vs. communi-
cations trade off [6], it is now possible for nodes to maintain
results locally. Significant savings in energy can be realized
by storing results locally for processing and aggregation in
contrast to sending all data across the network [7][8].

Recent work has investigated how to efficiently store data
in flash memory [9] on low power, memory constrained de-
vices. Researchers have investigated using flash specific op-
erating systems to abstract the physical storage away from the
application while taking advantage of the architecture of flash
memory [2][10][11]. Utilization of flash memory without the
use of wear leveling or other erase/write normalization strate-
gies can accelerate device failure.

While these file systems present novel and efficient meth-
ods for storing the data, they all rely on extensive sensor pro-
cessor resources in terms of RAM or EEPROM. Some have
trouble scaling to large flash memories or many files. To ad-
dress these challenges we propose FlaReFS, a Flash Resident
File System. FlaReFS has minimal RAM usage and all file
system data structures are maintained in flash memory. It
uses direct reads on NOR flash and on-chip buffers to reduce
energy costs and improve performance. This strategy allows
FlaReFS to be used even with the smallest embedded devices.

The contributions of this paper are:

• A novel flash resident file system with a minimal RAM
footprint for direct read, dual buffered NOR flash

• A time and energy analysis of direct memory read ver-
sus buffered page read

• A dynamic wear leveling algorithm for flash memory

The paper outline is as follows. In Section 2, we overview
previous flash file system approaches and discuss the layout
and limitations of flash memory devices. An energy analysis
is conducted in Section 3 comparing direct versus buffered
page reads. Our file system is presented in Section 4. Simula-
tion results are presented in Section 5. The paper closes with
future work and conclusions.



2. BACKGROUND

With the use of flash memory in wireless sensor networks,
work has focused on developing file systems that can accom-
modate its different performance characteristics. With the in-
ability of flash to re-write data without first erasing a page,
research has examined the use of the log based file systems
[12][13]. While suitable for complex processors, a direct im-
plementation of these systems on a microprocessor is infea-
sible due to lack of system resources [2]. Custom designed
file systems such as JFFS, JFFS2 [14] and YAFFs [15] are not
suitable for use in resource constrained systems, as they main-
tain data structures in RAM for file system control. These
flash file systems are designed to work on systems with large
amounts of RAM and processing power.

Smaller systems have evolved from these that are more
suitable for wireless sensor platforms that are constrained in
terms of power and resources. Matchbox [16], a byte struc-
tured file system implemented in TinyOS, supports basic wear
leveling as well as multiple files. It is designed for logging ap-
plications but supports only append operations. Modification
of existing files is not possible. Additionally, its RAM foot-
print will grow with the number of files in the system [2].

In [2], the authors present ELF which is a log based file
system. It relies on the host microprocessor EEPROM to
store the directory structure for the system. Unlike traditional
log based file systems, it caches multiple writes to reduce the
write overhead. It maintains log entries on separate pages to
improve fault tolerance. It also maintains a garbage collector
to reclaim pages and relies on a page write counter stored in
the metadata of each page. Garbage collection is only trig-
gered when the number of free pages drops below a given
threshold which is stored as a bitmap in RAM.

Microhash [17] provides a primitive framework for stor-
ing and indexing temporal data based on page chaining. It
maintains numerous data structures in RAM and utilizes a
naive garbage collection strategy. In practice, the runtime
RAM requirements make it infeasible for small sensor de-
vices [11].

Capsule is a cross device file system that uses object ab-
stractions [11] to store data. If offers a wide selection of data
objects such as stacks, streams and queues to store data but re-
quires a large RAM footprint. It relies on per object buffering
in microprocessor RAM and is based on a logging file sys-
tem. Similar to other systems, it supports a garbage collector
which is triggered when the amount of available space in the
system falls below a certain threshold. It also supports check
pointing and rollback of objects.

2.1. Flash Memory

Flash memory offers advantages over other types of solid state
devices in terms of increased capacity, speed and energy us-
age [8][17] which makes it particularly attractive for energy

constrained devices such as wireless sensor nodes. Flash is
available in two different formats. NAND flash is the most
commonly found format [18], and is characterized by fast ac-
cess for sequential byte access, high density and durability,
but it exhibits high latency in startup and can be prone to bit
errors. Data is only accessible in a page format [8][17] which
limits the types of read and write actions. NAND flash is
typically accessed in a parallel fashion, requiring a high pin
count commitment from the host processor which may make
it unsuitable for small, low pin count devices.

NOR flash is typically less dense and less energy efficient
but is available in either a parallel or serial access format [8].
It offers other advantages in terms of device organization as it
may be either word or page orientated. One common charac-
teristic in all flash devices is that data cannot be overwritten
without first being erased. Erase operations are slower than
other operations on the device and typically must occur in
physical blocks or sectors, which can pose a memory manage-
ment problem for small microprocessors. Each page in the de-
vice has a limited number of erase cycles (typically 100,000)
before the device starts to fail. A leveling algorithm [19] can
be used to amortize the cost of the write/erase cycle across all
pages to extend the effective life of the device.

For our application, we are using the Atmel ATD45DB161
dataflash device (www.atmel.com) with two on board SRAM
buffers, which is a larger capacity version of the device found
on the Mica motes [8]. This is a unique NOR flash device
that has a page orientated design with a high speed serial in-
terface. Data can be accessed both in a page-wise fashion
through buffers or read directly in a byte-wise fashion by-
passing all buffers similar to serial EEPROM, through a four
wire SPI interface. The device consists of 4096 x 528 byte
pages organized into eight page erase blocks. Blocks are or-
ganized into 32 sectors. The device also supports individual
page erase (at a higher energy cost) as well as sector and chip
erase functionality.

3. ENERGY COSTS FOR DIRECT READS

The following energy cost calculations are for the AT45DB161
family of flash memory and demonstrate the significant ad-
vantage of using direct reads over buffered page reads. Al-
gorithms using these chips should adapt their operation ac-
cordingly. This device supports different direct memory read
methods which allows the data to bypass internal buffers, leav-
ing buffered data unchanged. The Low Frequency Contin-
uous Array read, which support bus speeds up to 33 Mhz,
requires four setup bytes followed by one byte for each se-
quential data to be clocked onto the SPI bus. In this analy-
sis we exclude edge transition times as they are considerably
smaller than device setup times. The manufacturers nominal
values are used for timing and power analysis. The byte cost



for accessing is

bytestotal = 4 setup bytes + n data bytes (1)

where n is the number of sequential bytes to be read from a
page. It then follows that the total time to transfer n bytes of
data off the flash device on an SPI bus is

tDR =
bytestotal
SPIclk/8

=
4 + n bytes
SPIclk/8

(2)

where SPIclk is the SPI clock rate in Mhz, and tDR is the
time in seconds to read n sequential bytes. The total energy
per byte for a direct read can be expressed as

EDR = IRead ∗ V ∗ tDR (3)

where IRead is the current draw for the flash memory device
for a read operation, V is the operating voltage, and EDR is
the energy cost per byte in Joules.

For a series of bytes to be read from the device using a
buffered read, the page containing the bytes of interest must
be first read into one of the two SRAM buffers and then trans-
fered across the SPI bus. Similar to the direct read, there is
a four byte setup cost to initiate the page transfer to buffer
in addition to a 200 mircosecond delay while the page is be-
ing transfered to the buffer. Once the page is loaded into the
buffer the data can then be read requiring five setup bytes and
then one clock byte for each data byte required. The total time
for a buffered read is

tBR =
4 setup bytes
SPIclk/8

+ 200µs+

5 setup bytes + n data bytes
SPICLK/8

=
9 + n bytes
SPIclk/8

+ 200µs (4)

where n is the number of sequential bytes to be read from
a page, SPIclk is the SPI bus speed in Mhz and tBR is the
byte time is seconds for a buffered read. It then follows from
Equation (4) that the energy to read n bytes with a buffered
page read is

EBR = IRead ∗ V ∗ tBR (5)

where EBR is the energy cost per byte in Joules.
Consider the following example for accessing a one byte

value from the flash memory using direct read where the oper-
ating voltage V =3 volts, the nominal read current IRead=0.007
amp, and the SPI bus speed is 4 Mhz. From Equation (2) the
total access time is 10µs. The total energy cost for a byte read
from Equation (3) is 0.21µJ .

With a buffered page read where the operating voltage
V =3 volts, the dataflash nominal read current IRead= 0.007

amp, and the SPI bus speed is 4 Mhz using Equation (4).
From Equation (2) the access time for a one byte read is 220
µs and the energy cost from Equation (5) is 4.62 µJ .

In comparing the two different read methods for this ex-
ample, the direct read has an setup overhead of 0.168 µJ
while that buffered page read has an overhead of 4.578 µJ
regardless of length. Thus, the direct read is favored over
buffered page read regardless of size.

4. FLASH RESIDENT FILE SYSTEM

The goal of the Flash Resident File System (FlaReFS) is to
produce a file system that is transactionally robust with a small
RAM footprint that can run on a sensor node. Unlike other
systems [2][10][11][17], FlaReFS maintains almost the entire
structure of the file system in external flash memory. The low-
est level of the file system provides physical to logical page
translation as well as control blocks for monitoring page sta-
tus and wear leveling. By using the ability to do direct reads
from the flash memory, on chip buffers are used strictly for
writing data. As a result, no page data is buffered in micro-
processor RAM, leaving memory free for other application
components. A buffer manager is responsible for controlling
the allocation of the buffers on the device. Unlike other flash
file systems, no separate garbage collection is needed.

The core idea is that the logical to physical page trans-
lation is encoded in flash memory not in RAM. The logical
address space, shown at the top of Figure 1 consists of N
pages numbered 0 to N − 1. The first page, labeled M, is the
Master Table Translation Page (MTTP) followed by fifteen
Secondary Table Translation Pages (STTPs)(A system with
4096 x 528 byte pages will map to one MTTP and 15 STTPs).
Each Table Translation Page (TTP) stores physical addresses
of logical pages in the system. The MTTP stores the physi-
cal addresses for the first 255 logical pages including the 15
STTPs.

By exploiting direct reads and the physical to logical map-
ping structure, the physical address of any page in the system
can be determined in at most 2 direct reads of 2 bytes each.
To lookup the physical address of a logical page, the TTP is
determined as:

TTPnumber = LPN/(number of pages per TTP) (6)

and the position of the Logical to Physical Page translation in
a given TTP is determined as:

LPindex = LPN mod number of pages per TTP. (7)

If the logical page is located in the MTTP, then the physical
address of the logical page can be accessed directly. If not,
then the address of the STTP is read from the MTTP using
the TTPnumber as the lookup index and then the physical
address read from the LPindex position in the corresponding
STTP. By using direct memory reads, page address resolu-
tion lookups can be accomplished orders of magnitude faster



in terms of energy and time and without having to use flash
buffers or RAM to store translation information.

Fig. 1. Memory Allocation Overview

In Figure 1 is the structure of memory after first format.
After the MTTP and STTPs is the MetaTable Page, which
encodes information regarding the files on the system. Each
file entry has an identifier, structure information, and logical
page number of its first data page. File data are stored in
Data Pages. Each MetaTable page stores multiple metadata
records on files and multiple pages may be used if there are
many files.

Two special pages are used to control the allocation and
status of physical and logical pages in the system. The Physi-
cal Busy Page (PBP) encodes the status of each physical page
in the system while the Logical Busy Page (LBP) encodes the
status of each logical page. A single 528 byte page can be
used to encode the status of all pages in the system as a bit
vector. In the PBP, each byte segment maps to a physical 8
page block. If a page is free then the corresponding bit is set
to 0; if it is busy the bit is set to 1. The same mapping applies
to the LBP. Unlike other designs, our system does not record
or care about the erase state of a page. This is due to the
nature of how the Wear Leveler and Flash Translation Layer
function.

All pages except the PBP and LBP contain an out-of-band
data section. For a 528 byte page, 512 bytes are used for data
while the remaining 16 bytes are used to store information.
Each page has an identifier and reverse logical page pointer
which identifies which logical page is assigned to a specific
physical page. This information is used by the Wear Leveler.
For Metatable Pages and Data pages, fields are present for the
next logical page in the file as well as the number of records
in a given page.

4.1. Frontier Advance Wear Leveling

Similar to [11], pages are allocated by a frontier sweeping
through the memory in an increasing fashion which helps to

spread erase/writes across the entire device and thus extend
its life. Whenever a new page is allocated or an existing page
is updated with new data, it is written to the page pointed
to by the frontier. Pages located at the frontier are clean as
they have been guaranteed to have been erased by the Wear
Leveler.

Unlike other systems, there is no separate garbage collec-
tion process to reclaim dirty pages. Instead, a dynamic wear
leveling and cleaning strategy is used called Frontier Advance
Wear Leveling. It uses a greedy approach to keep a region in
front of the write frontier continually clean and available for
use.

In advance of the write frontier, the algorithm keeps a
minimum of eight blocks (64 pages) free. As data is written
to the device, the write frontier advances into the clear space,
ensuring that no old data has been inadvertently overwritten.

Located at the eight block boundary in front of the write
frontier is the sweep frontier. Blocks immediately in front
of the sweep frontier will be swept clean based on their bit
state in the PBP. Live or parked data pages will be copied to
the write frontier as the sweep frontier advances through the
page space. As live pages are moved, each page’s reverse log-
ical pointer is noted and stored along with the new physical
address. Once all live blocks are moved, the reverse logi-
cal pointers are used to update the secondary table translation
pages and physical busy page. To complete the transaction,
the master table translation page is written as a keystone. If
the transaction fails before completion, the blocks in front of
the sweep frontier are undisturbed and accessible from the
last known good keystone page. Upon a successful write of
the master table translation page, the eight blocks in front of
the sweep frontier are erased.

4.2. Inserting Records

When inserting a record in a page, the physical address of
the logical page is determined from the MTTP and a STTP.
This logical to physical address mapping costs two direct byte
reads of two bytes each. The PBP is used to get new physical
pages for the data page to be written out, PBP, and the MTTP
as all three pages will be updated and cannot be overwritten.
Figure 2 shows how pages are allocated. The pages are writ-
ten out in the order: data page, PBP, and then the MTTP. In
this way, the MTTP correctly points to the most up to date
version of the logical data page. Due to the order of writing
out the blocks, if a failure occurs before writing the MTTP
the previous version of the MTTP still points to the previ-
ous data and will be used at restart. Only after the MTTP
write has occurred will the file system reflect the changes. All
MTTPs have an associated count such that on a restart the
most current master block can be located. By controlling how
and when blocks are erased in relation to the write frontier,
the system guarantees that live data pages being updated will
never be erased until the transaction is complete.



Fig. 2. Record Insert Example

5. EXPERIMENTAL RESULTS

To profile the different aspects of this algorithm, a simula-
tor was developed that allows for extensive visualization of
page utilization and device timing and energy consumption.
The experiments tested the basic operations of FLaReFS by
creating a file and performing 10 consecutive 80 byte writes.
Data was then read back from the file and the energy con-
sumption and bus time determined. The results are presented
in Table 1 and were then compared to the results presented
by [11]. It is assumed that the energy results presented in
[11] is for the flash chip only. In general, FlaReFS compares
well in terms of energy efficiency as it exploits direct reads
and does not transfer buffered data off the device unless it is
needed. In terms of latency, it is on average twice as slow as
other systems as all mapping structure is flash-resident, but
that it is still reasonable when considering the time period of
data sampling in environmental applications (which may be
on the order of minutes to days). For systems that rely heav-
ily on data reads, FlaReFS significantly outperforms the other
systems due to its ability to exploit direct reads. It should be
noted that the results presented for FlaReFS does not include
energy and latency for wear leveling.

FLaRe Capsule Matchbox
Energy (mJ) Latency (ms) Energy (mJ) Latency (ms) Energy (mJ) Latency (ms)

Create 1.25 36.07 1.79 19.16 1.03 14.16
Write (80b x 10) 5.65 168.217 8.83 85.6 10.57 91.6
Open n/a n/a 0.0098 0.184 0.093 1.382
Read (80b x 10) 0.574 27 1.2 18.44 1.12 16.52
Total (c+w,o+r) 7.474 231.287 11.83 123.4 12.82 123.7
RAM footprint 134 bytes 1.5Kbytes 0.9Kbytes

Table 1. Energy Consumption and Latency for FlaReFS,
Capsule and Matchbox

The wear leveling policy presents extremely uniform wear
across the device. A file was created with a record length of
10 bytes which is typical of what would be measured from
a 12-bit device including a time stamp. To simulate a large
collection period of 100 days where samples were taken every
15 minutes, 10,000 records were written to a single file. The
results of the wear leveling policy is seen in Figure 3. After
over 40,000 erase/write cycles data has been uniformly worn
across the entire device with a very small variance.

(a) Wear Heat Map

(b) Erase Cycle Histogram

Fig. 3. Results of the Wear Leveling Policy

6. CONCLUSION

In this paper we present FlaReFS, a flash resident file sys-
tem. Unlike other systems, all support structures for the file
system are maintained in flash with only key pointers being
maintained in RAM. The system is transactionally robust due
to keystoning and has the ability to recover quickly on restart.
Experimental evaluation has shown that the file system is suit-
able for use in long term monitoring applications. Due to the
ability to support direct reads, the system is particularly suited
to applications requiring extensive on device data reads and
analysis. Additionally, the wear leveling strategy employed
ensures uniform wear across the device which results in max-
imum lifetime. Future work will focus on the porting of the
application to a transportable library.
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