
PHYS 121: Calculating  and  of a charging capacitor as a
function of time
March 1, 2023

This notebook attempts to calculate how the charge  and current  evolve with time when charging a
capacitor using a battery, resistor, and switch. We assume at the switch is closed at time  and that the
capacitor is initially uncharged. The circuit that we will consider is shown in Fig. 1 below. We will assume
that:
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Fig. 1: A circuit to charge capacitor  using a battery, resistor, and switch. We assume that the
capacitor is initially uncharged and the switch is closed at . Figure adapted from Wikimedia

Commons (https://commons.wikimedia.org/wiki/File:RC_switch.svg).

Kirchhoff's voltage-loop rule requires that  at all times. Here,  is the voltage supplied by
the battery,  is the voltage across the resistor, and  is the voltage across the capacitor.

 is the current in the circuit and  is the charge on the capacitor. Solving the loop rule for the current 
results in:

In the last set, we have defined  and . Physically,  represents the initial current when
the switch is closed at  and the capacitor is uncharged.  has units of time and is referred to as a time
constant. It determines how long it takes to charge (or discharge) the capacitor.

Recall that the current is determined by how the charge  changes during time interval : .
Therefore, the change in the charge can be determined using Eq. (1) and the time interval:

In order to solve for the time evolution of current and charge, we will repeatedly use Eqs. (1) and (2) to
calculate  and  as we advance in time in steps of . For our calculation, we will use:
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The strategy is to start with  at  and then:

1. Calculate  using Eq. (1)
2. Calculate  using Eq. (2)
3. Update the charge on the capacitor: 
4. Update the time: 
5. Return to step 1 and iterate  times

The cell below defines parameter values that we'll use for this calculation. Let's start with .

Set up some empy arrays that will be used to store the calculated results. Also set the initial time and charge
to zero.

The cell below is a loop that implements the iterative calculation described above. See the comments within
the cell to see what each line of code is doing.

Having populated the charge, current, and time arrays with data, we can produce the desired  versus  and
 versus  plots. The two cells below also compare our results to the exact  and  expressions that

can be found by solving the appropriate differential equations. If you take more math during your degree,
you will learn the techniques used to solve differential equations in MATH 215. The exact expressions are:
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In [1]: # Import required modules
import numpy as np
import matplotlib.pyplot as plt

N = 50

In [2]: Vb = 10 # V
R = 1000 # ohms
C = 0.010 # F
I0 = Vb/R # A
tau = R*C # s
N = 50 # Number of iterations
tmax = 50 # s
dt = tmax/N

In [3]: QList = np.array([]) # Empty charge array
IList = np.array([]) # Empty current array
tList = np.array([]) # Empty time array
t = 0 # Initial time
Q = 0 # Initial charge

In [4]: for i in range(N): # Loop over the lines of code below N times
    I = I0 - Q/tau # Eq. (1) calculation -- step 1
    
    QList = np.append(QList, np.array([Q])) # Add charge data to the charge array
    IList = np.append(IList, np.array([I])) # Add current data to the current array
    tList = np.append(tList, np.array([t])) # Add time data to the time array
        
    dQ = I*dt # Eq. (2) calculation -- step 2
    Q = Q + dQ # Update the capacitor charge -- step 3
    t = t + dt # Update the time -- step 4

Q t

I t Q(t) I(t)

Q = Q∞ (1 − e−t/τ)

I = I0e−t/τ

(3)

(4)



where . Physically,  represents the charge on the capacitor a long time after the switch has
been closed (i.e. ).

Start with the plot of  versus .

Notice that the calculated values closely follow the exact curve, but there are some noticeable differences.
Our approximate calculation improves as we decrease , the size of the time interval. Try re-running the
code after increasing  from  to . You should find that the calculated values very closely following
the exact curve.

Plot of  versus .

Notice that the calculated values closely follow the exact curve, but there are some noticeable differences.
Again, our approximate calculation improves as we decrease , the size of the time interval. Try re-running
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N 50 5000

In [5]: # Plot the calculated Q versus t data
plt.plot(tList, QList, 'ro')

# Calculate the plot the exact Q versus t curve
Qexact = C*Vb*(1 - np.exp(-tList/tau)) # Calculate Qexact 
plt.plot(tList, Qexact, 'k') # Plot Qexact

# Format the plot
plt.xlabel('time (s)', fontsize = 14)
plt.ylabel('charge (C)', fontsize = 14)
plt.title('Capacitor charge versus time', fontsize = 16)
plt.legend(('Approximate calculation', 'Exact, Eq. (3)'), shadow = 'true', loc = 'lower right',\
           fontsize = 14);
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the code after increasing  from  to . You should find that the calculated values very closely
following the exact curve.

N 50 5000

In [6]: # Plot the calculated I versus t data
plt.plot(tList, IList, 'bo')

# Calculate the plot the exact I versus t curve
Iexact = I0*np.exp(-tList/tau) # Calculate Iexact 
plt.plot(tList, Iexact, 'k') # Plot Iexact

# Format the plot
plt.xlabel('time (s)', fontsize = 14)
plt.ylabel('current (A)', fontsize = 14)
plt.title('Current versus time', fontsize = 16)
plt.legend(('Approximate calculation', 'Exact, Eq. (4)'), shadow = 'true', loc = 'upper right',\
           fontsize = 14);
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