Disparity Between Textbook Examples and What
Young Students Find Interesting

Bowen Hui, Parsa Rajabi, Angie Pinchbeck
Department of Computer Science, Mathematics, Physics, and Statistics
University of British Columbia
Kelowna, Canada
bowen.hui@ubc.ca, {prajabi,angiepin} @student.ubc.ca

Abstract—To keep young students engaged in computer sci-
ence, it is crucial to develop teaching material that they find
interesting and relevant. Unfortunately, standard CS1 textbooks
typically use examples that are uninspiring or inaccessible to
young people. To better understand the disparity between text-
book examples and student interests, we analyzed a collection
of CS1 textbooks and compared the resulting topics to those
elicited from young students via focus groups. We found 47 %
of textbook topics (out of 53 topics from 910 code examples)
did not overlap with any topic mentioned by our participants.
Conversely, among the topics elicited from the participants, we
found 29% of these topics (out of 24 topics from 1936 items)
missing from textbooks. To measure the overlap between these
two data samples, we computed the Bhattacharyya coefficient
and obtained 0.4452 indicating a strong difference between the
two sets. These results lead us to advocate for changes in the
teaching materials in order to make them more engaging for
young students.

Index Terms—Intrinsic motivation, interest-based learning,
CS1 textbooks, Java, inclusion

I. INTRODUCTION

Many initiatives have emerged to promote coding liter-
acy in recent decades. Consequently, the university student
population in computer science has diversified. Although our
CS1 course is intended to be taken by majors, the class
typically has students from other disciplines taking CS1 for
credit and older undergraduate students considering computer
science as an alternative career path. In our last academic
session, approximately 20% of the CS1 class was composed
of students majoring in other disciplines, such as engineering,
mathematics, biology, management, and psychology.

Young students today have diverse skill sets and often
pursue computer science for different reasons. To keep them
engaged, it is important to ensure that CS1 content is interest-
ing and relevant for students. Ideally, the educational resources
should be designed in a way that interests the students so that
we can sustain their engagement in the course and foster their
intrinsic motivation for computer science.

Nowadays, it is easy to identify computing applications
around us. For this reason, the importance of computer science
has been recognized by many disciplines. However, the content
in CS1 textbooks has largely remained unaffected by these
interdisciplinary overlaps. In particular, many CS1 texts still
use traditional topics to illustrate programming concepts (e.g.,
the area of a circle, investment calculations). Adopting these

resources often adds to the belief that programming activities
are “boring and demotivating” (p. 41) [1]. Moreover, examples
that are hard to relate to can worsen the learning curve for
students. For example, if an instructor talks about buying
a house, it is unlikely that young students can relate to
that experience. Thus, those students would suffer from an
increased cognitive load by having to process an example in
an unfamiliar domain in addition to trying to relate those ideas
to understand core programming concepts.

To simplify the student’s learning needs, it is important to
develop material that students can relate to in a personally
meaningful context. A recent study categorized 483 papers
about CS1 courses published in SIGCSE over the past 50
years [2]. The authors identified 24 papers that presented
model problems and examples and 12 papers that addressed
gender, diversity, accessibility, and inclusion in CS1 courses.
Several of these studies have also advocated for content
renewal to meet inclusion objectives for women and visually
impaired programmers [3], [4]. Although many interesting
ideas and examples can be found in these papers, none of
them emphasized the need to develop inclusive content tailored
towards young students.

Our vision is to develop introductory material that speaks
to young students as a way to promote intrinsic motivation.
We believe that presenting computer science concepts in an
accessible and relevant context can ameliorate the negative
perception that programming is inherently uninteresting. Our
goal here is to develop coding examples and assessments that
are engaging and meaningful for post-millennials (those born
in 1997 or later). As a first step, we wish to better understand
what material is used in current CS1 textbooks and compare
them with what young students find interesting. In this paper,
we focus on the following research questions (RQs):

e RQI1: What topics are used in CS1 textbooks?

o RQ2: What topics are students interested in?

o RQ3: How much overlap is there between these two sets
of topics?

Our approach is to empirically sample the content in CS1
textbooks and compare them to interesting topics elicited from
young students. Section III describes the methodology used
in this study and Section IV presents the results obtained
from analyzing our data. As a key contribution, we provide

categories of interests gathered from our focus groups so that
others may develop teaching material using those topics.

Our results showed that nearly half of the topics used
in textbook programming examples were missing from the
elicited student data. Based on 1936 items that young students
reported as interesting to them, we derived 24 topics. We found
that 7 of these topics (29%) were not used in any textbooks.
Considering the number of overlapping items, we computed
the Bhattacharyya coefficient [5] and obtained 0.4452, which
indicates a strong difference between the two sets. The details
of this analysis are provided in Section V. To illustrate how
some of these young student topics can be used in teaching
CS1 content, we offer examples of programming exercises.
Ultimately, we wish to make use of these results in designing
teaching material that is more interesting and relevant for
young students and measure the impact of these resources on
their motivation and academic performance.

II. BACKGROUND

In this section, we review the concepts of intrinsic motiva-
tion and studies that promote interest-based learning through
the development of interesting examples in CS1 education. We
also identify CS education studies involving Java textbooks in
order to compare their selection method to ours.

A. Intrinsic Motivation

We focus specifically on Self-Determination Theory where
different dimensions of motivation explain how individuals
carry out autonomous and intentional action [6], [7]. One
such dimension is intrinsic motivation, where individuals take
interest in activities simply because they enjoy them and not
because they want to achieve the result associated with them.
In this theory, when individuals are intrinsically motivated,
they take autonomy in their own actions. Thus, individuals’
behaviors are driven by their personal desires.

Many studies have investigated the relationship between in-
trinsic motivation and academic performance. While it is often
believed that intrinsic motivation promotes better academic
achievement, a systematic review of the literature reveals
conflicting results [8]. The authors found that most of these
studies involved cross-sectional designs and did not control
for baseline student achievement. Through deeper investiga-
tions using three controlled longitudinal studies, these authors
explored the relationship between different types of motivation
and how they relate to each other over time. The main result
from this work shows that intrinsic motivation is strongly and
positively associated with academic performance.

In this context, Werner & Girnat surveyed 874 students
to better understand what aspects of CS education motivate
children in Grades 10 and 11 in Germany [9]. Rather than
asking the children about their interest in different domains
of computing that are largely unfamiliar to them, the authors
constructed a questionnaire around three aspects of computing:
theoretical, technical, and practical. The theoretical aspect
had questions related to the algorithmic nature of computing,
while the technical aspect had questions related to learning

how technology works, and the practical aspect had questions
about interest in application domains. The questionnaire had
seven questions per category, with additional questions to
elicit interest in studying or working in computer science.
The main results from this study showed that the practical
aspect of computing has the strongest association with intrinsic
motivation. Furthermore, the study showed that the technical
aspect is most closely linked to the behavior of pursuing a CS
profession. We found the use of these three categories to be a
promising approach for improving CS1 teaching material.

B. Studies Towards Interest-Based Learning

Studies dating back to the early 1980s have proposed the
use of more interesting programming exercises in CS1 courses.
An early paper argues for the need to choose interesting
programming exercises to be used in classrooms so that
students can be motivated to learn [10]. The paper presents
four example exercises that introduce new technology (“new”
for the paper) such as plotting a graph and using cassette tape
and speech synthesizer. Since then, various ideas on interesting
assignments and semester-long projects have been published
(e.g., a_maze exercise that teaches recursion [11], an ASCII
version of Connect Four [12], a heart rate monitor to shock
the heart as needed [13], a number game called Taxman that
introduces concepts in artificial intelligence [14], a course-
wide tournament game [15]). Due to the community’s interest
in this area, SIGCSE started gathering “Nifty Assignments”
in 1999. Although empirical feedback from students was
not provided for these assignments, their objectives of using
interesting exercises to enhance student learning align with the
goal of our work. Below, we highlight a few in-depth studies to
gain a better perspective on interest-based learning approaches.

Researchers have argued for designing more interesting
materials for target populations. In one paper, the authors
described changes needed to protect the interests of women
studying computer science [16]. One aspect they mentioned,
which applies more generally, is to situate technology in the
real world so to make computing more relevant. They empha-
sized the need to connect computer science to other disciplines
and introduce diverse problems and teaching methods that
appeal to diverse learning styles and preferences. Similarly,
another study pushed for the same ideas so that non-majors
can be motivated to engage in programming activities in the
context of their own disciplines [17].

A study that implemented three practices in a CS1 course
was able to demonstrate that these practices led to the suc-
cessful increase of female enrollment [18]. One of these
practices is a breadth-first approach that provides students
with basic programming skills to write “interesting and useful
programs within the first week of the course” (p. 2) [18].
Although details of what makes these programs interesting
were not provided, the underlying idea overlaps with the
central motivation of our work.

Beyond improvements for specific student populations, stud-
ies have also investigated changes in the teaching material and
the impact on student engagement. One study reported on the

use of a student-authored textbook [19]. The objectives were
to create more collaboration and writing activities in the course
and reducing textbook costs. As part of this experience report,
students were tasked with the creation of exercises for each
chapter. A positive outcome observed by the author is that
some concepts were better explained by students than teachers
because students could elaborate on the examples better and
relate better to the learning needs of their peers.

Related to this work are studies that attempt to increase
student motivation in CS1 courses. Strategies include situating
programming in a “fun” context, such as media computation
[20] or using personal robots [21], and designing open-ended
exercises to positively impact student motivation [22]. More
examples can be founded in [22].

Work has been done on developing a new interest-based
CSO course to improve academic performance and retention
in CS1/CS2 courses [23]. The researchers employed a team-
based and project-based approach in CSO to address several
non-academic factors (e.g., making the course more collabo-
rative and multidisciplinary, making the coding process more
creative). A unique aspect of this course is that students
can choose one of four project tracks: mobile app, robotics,
gaming, and music. The authors recognized the need to have
interesting projects as a source of motivation for the students.
Among other factors, compared to those who enrolled directly
into CS1, the authors found that students who took CSO have
better grades in CS1 (but not CS2) and are more likely to
subsequently enroll in CS2.

Lastly, Cohoon investigated the impact of giving students
computer access in all their classes and using motivating
examples in the course material [24]. Two classes took part
in the study: a research class that used both strategies and
a control class that used neither. The results showed that
the research class had a higher rate of attracting students
into the major. To develop motivating examples, the research
class surveyed students on a 7-point Likert scale to self-report
how much they liked each item in a set of 46 computing
applications. In contrast to our approach, we allow participants
to tell us what they are interested in without restricting them
to a predetermined list of applications.

Based on 330 responses (236 males, 94 females), Cohoon
reported that females found the following applications to be
interesting (an average score > 5.0): card games, connect
four, daily jumble (word puzzle), exercise training zone,
instant messaging, language translation, medical diagnosis,
music library, personality typing, photo manipulation, sudoku,
tic-tac-toe; and interesting applications for males were card
games, connect four, encryption, instant messaging, password
security, tic-tac-toe. In alignment with Werner & Girnat’s view
of intrinsic motivation, this finding shows that females are
more interested in practical aspects of computing, while males
are interested in both practical and technical aspects.

Cohoon’s study also found that less interesting applications
are often mathematically-oriented. Specifically, female partici-
pants reported the following to be less interesting (an average
score < 3.5): econometrics, elevator strategies, redistricting,

statistics, tax computation; and those for males were check-
book register and redistricting. Some applications received
similar low scores for both genders (e.g., tax computation).

C. Studies Involving Java Textbooks

We found several studies that analyzed textbooks for CS
education. Most authors reported their method of textbook
selection was largely based on availability and personal choice.
One study analyzed the treatment of specific Java topics
in a suite of 16 textbooks [25]. The topics under analysis
were objects early versus objects late, I/O, and software
engineering concepts. The author mentioned that the selection
of textbooks for inclusion was “somewhat arbitrary” (p. 2)
[25]. In comparison to our textbooks, we found 2 in common
(and ours made use of later editions).

Another study analyzed the coverage of CS1 concepts in 22
textbooks across several programming languages [26]. The au-
thors identified major curriculum topics based on ACM/IEEE
recommendations and further indicated concepts within those
topics. Based on personal experience, the Congress of Library
database searches, and colleague recommendations, the au-
thors identified 22 texts that use 7 programming languages.
Among those, 4 taught Java and were all published between
1999-2001. None of these books overlap with our selection.

A third study compared the coverage of programming
concepts in C++ and Java textbooks [27]. The purpose was to
determine which programming language had better textbooks
suited for the CS1 curriculum. Based on their discretion, the
authors selected 10 online textbooks for the two languages and
compared their transformed word rate. In comparison to their
Java textbooks, we have 3 overlaps with later editions.

We also found a recent study that evaluated the use of
diagrams in Java textbooks [28]. In contrast to the studies
described earlier, these authors selected 15 textbooks based
on a combination of polled results from members of the CS
education community and best seller programming textbook
lists from Amazon and Barnes & Noble. In comparison to
our textbooks, we found 6 in common (one that was an older
edition, two were new editions).

III. METHODOLOGY
A. Textbook Analysis

To facilitate our search, we used an online syllabus tool
to find textbooks used in CS1 courses [29]. In this tool, the
researchers manually curated a set of CS1 syllabi by looking
up university websites and conducting Google searches on
916 institutions taken from the QS World University Rank-
ings 2016-2017. Their results included 234 syllabi from 207
institutions, 53% of which were from North America.

To manage the scope of our analysis, we limited our search
to focus only on universities in North America that teach Java.
The online database from [29] was accessed on December 02,
2019, and it returned 2 results from Canada and 42 from the
USA (two of the latter were actually Canadian). Among these,
some syllabi did not contain textbook information, some of
them referenced a broken web link, and some of them referred

to custom textbooks that were not available online. As a result,
we identified 12 Java textbooks used in CS1 courses [30]-[41].

For each text, we selected chapters covering topics in a
typical CS1 curriculum. These topics include basic program-
ming, selection, Math/Random/Character/String classes, loops,
methods, single-dimensional arrays, multidimensional arrays,
objects, and classes (prior to complicated object-oriented pro-
gramming concepts such as inheritance and polymorphism).

Next, we identified the coding examples included in the
selected chapters and categorized them based on the context of
the intended application in those examples. Specifically, given
a random chapter from each textbook (approximately 10%
of the material), one coder went through each programming
example and determined a domain topic label for it. Consider a
basic program that calculates a person’s body mass index. This
program would be assigned the topic health. In this case, we
decided to not assign the program to the math topic because
the main purpose is not about the calculation. For simplicity,
all examples belonged to only one topic. We did not use a
predefined list of topics in this categorization task. Instead,
we allowed topics to emerge.

Independently, a second coder categorized the same exam-
ples from the same chapters. Although the two coders did not
coordinate the list of topics in advance, most topics identified
were the same. In some cases, the labels used were different
but they captured the same group of examples (e.g., using
banking instead of bank accounts, or using finance instead of
payroll). Comparing the resulting topics identified by the two
coders, we found 85% agreement and resolved the remaining
categories through discussions until consensus was reached.
Thereafter, one of the two coders categorized the examples in
the remaining chapters. The category labels from this analysis
will henceforth be referred to as the textbook topics.

B. Student Focus Groups

To collect data about student interests, we recruited par-
ticipants through volunteer sampling by targeting young par-
ticipants from different academic backgrounds. We chose to
conduct focus groups in order to explore their interests more
deeply and ask clarification questions where needed. At the
beginning of the session, we explained the purpose of the study
s to re-design teaching material that would interest young
students in computer science university courses. Participants
were compensated with pizza at the end of the session. During
the session, we posed a series of questions that probe their
interests and asked each participant to individually write their
responses on sticky notes. Sample questions include:

o What are your hobbies?

« What kind of activities do you do on the weekend?

o Which activities do your friends or relatives engage in
that you want to learn more about?

« Do you collect any items?

e Where do you volunteer or where would you like to
volunteer?

« What topics do you read about in your spare time?

Overall, we asked 27 open-ended questions about their
general interests, hobbies, spare-time activities, activities with
family and friends, work and volunteering experience, per-
sonal and do-it-yourself projects, club and team membership,
favorite entertainment, collector items, places and cultures,
global issues, and positive classroom experiences. After ev-
eryone was finished, focus group leaders helped participants
identify categories and asked participants to post their own
sticky notes under the categories or create new ones. The focus
group format also lets participants see each other’s responses
and add to their own. During this time, the focus group
leaders reviewed the content on the sticky notes and asked
any clarification questions they may have. For example, when
one participant wrote “water”, the focus group leader was able
to ask what the underlying interest was and discovered that the
note referred to learning about water usage in communities.

In total, we conducted 6 one-hour focus group sessions with
26 participants (18 males/8 females). Among them, 69% are
post-millennials and 31% are millennials, with 85% of them
being in third-year undergraduate studies or higher. While
the majority of the participants are computer science majors
(41%), some are majoring in chemistry, creative writing, po-
litical science, earth and environmental sciences, engineering,
psychology, and mathematics.

After the focus group sessions, we anonymized all the
elicited items and collectively identified an initial set of cate-
gories that included games, television shows, sports, music,
food, events, movies, social media, hobbies, and places of
travel. Three coders began categorizing the data into the initial
categories. During this process, we split up categories with
many items into smaller subcategories if the larger category
had many semantically related items in it. For example, we
noticed that a good number of the items in the music category
were actually about making music. Thus, we separated those
items into a new category called making music and kept the
rest under the general music category. On the other hand, there
were many items in the sports category, but we did not split
them up because we did not find any semantically meaningful
subcategories that could be used. Lastly, we wanted to align
the focus group topics to the textbook topics where possible.
Based on this, we created new categories for collection,
blogs/websites, work/school, animals, friends, and language.

Due to the large number of items we elicited, the three
coders split up the data into three mutually exclusive sets
so they could work in parallel. Afterward, they reviewed all
the categories made by everyone and recorded what they
agreed with. The result of this process was 92% agreement.
The categories for the remaining items were resolved through
discussion until consensus was reached. The category labels
from this exercise will henceforth be referred to as the topics
that emerged from the student focus group sessions.

IV. RESULTS
A. Topics from CS1 Java Textbooks

Figure 1 summarizes the results of our textbook analysis.
Our analysis discovered 910 programming examples from CS1

chapters across 12 textbooks. With each example belonging to
one topic, we found 910 textbook topics which we grouped
into 53 distinct topics. This histogram addresses RQ1 by
presenting the common topics used in CS1 textbooks. Due
to space limitations, topics with fewer than 10 counts (across
all texts) are omitted from this histogram.

Histogram of Textbook Topics

180
160
140
120
100

80

40
20

art

1]
(=] (=]
math

school —

profile m—
cars .
stocks

banking —
games M

numbers E—

statistics -

-2
@

o

@

payroll .
gambling =
money =
biology ®m
physics &

general text T

time/calendar m—
sales transactions =N
algorithm ==
temp. conversion W

Fig. 1. A partial histogram of textbook topics found from our collection of
12 CS1 textbooks. Topics with fewer than 10 occurrences are omitted.

From Figure 1, we see an overwhelming number of ex-
amples belonging to the math topic. These examples include
programs that focus on geometry, metric conversions, and
calculations that have no other application context. The second
most common topic is art, which includes examples such as
ASCII art and graphical user interfaces (GUI) that covered
basic GUI development, interface layout, event handling, and
animation. Many of these examples came from special sections
at the end of the chapter devoted to GUI development. Also,
one textbook took an event approach so all of its examples
are based on GUI development. However, many of them had
to do with drawing shapes or developing a dialog popup that
calculated investment earnings. In those cases, the examples
were categorized as math and banking respectively.

We labeled several topics to denote examples that illustrate
a programming construct without further application context.
The topic general text refers to examples where the code would
display very simple text messages. Text processing consists of
examples with changes in a word or extrapolation of a letter
within a word, typically using String or Character operations.
Numbers involved simple changes to numeric variables. File
utility referred to examples that demonstrated file input and
output. Algorithm referred to examples that illustrated search
or sort methods.

Common CS1 examples include time conversions and cal-
endar calculations which we found in most texts and are
collectively labeled as time/calendar. Surprisingly, there were
also many examples of banking (e.g., investment calculations
or credit card information). There were also some examples
of stocks. We suspect these financial topics are not familiar to
most young students.

We take a closer look ‘at the number of examples from the
topics math, general text, text processing, numbers, file utility,
algorithm, and time/calendar. We found that these topics make

up of 42% of all the textbook topics. This finding indicates
that nearly half of the textbook examples focus purely on the
mechanics of programming.

There were interesting topics such as games, gambling,
and money, as well as familiar but dry topics such as profile
(creating a profile of a person but with no other context),
sales transactions, payroll, and temperature conversion. There
were also a few academic topics like statistics (calculating the
standard deviation and representing a coin or die but without
further context), biology, and physics.

Topics with fewer than 10 occurrences that are not shown
in Figure 1 include food, health, house, music, toy, animals,
colors, people, phone, literature, sports, language, astronomy,
tv/movies, geography, history, voting, collection, encryption,
fundraising, images, shirt, survey, travel, astrology, botany,
game theory, Internet, law, weather, and wedding. Although
these topics were diverse and interesting, there were very few
examples of them.

These textbook topics cover a mix of applications that
students in Cohoon’s study rated [24]. In comparison to the
topics those students rated as highly interesting, the textbooks
covered art and games but did not have much on language,
music, sports, social media, or other specialized subjects.
In comparison to the topics that those students rated as
uninteresting, the textbook topics covered math, taxes (counted
as payroll), statistics, and sales transactions.

B. Topics from Student Focus Groups

A total of 1936 items were elicited from our focus group
sessions. As mentioned earlier, three coders were involved in
processing the data from the focus groups. As a result, all
the items were categorized into 24 topics. For example, when
participants mentioned soccer, karate, running, camping, etc.,
all of these items were grouped into sports. Furthermore, we
ensured everyone was in complete agreement and resolved
disagreements before moving on. We selected one of the two
coders from the text analysis activity as one of the three coders
of this categorization task. Where possible, we tried to use the
labels from the textbook analysis in this task as well. However,
if certain topics had a large number of items, then that topic
had a further split (e.g., music later became music and making
music). The resulting categories for our focus group data are
shown in Figure 2 as a histogram to address RQ2 by presenting
the topics that young students find interesting. We leave the
gender analysis of this data for future work.

We see from this data that the popular topics with 100
or more items are: sports, places (for travel), events/issues,
music, tv/movies, social media, and art creation. Among these,
two of them were very diverse. One is events/issues which
covered a wide variety of social issues and concerns, including
politics, climate change, indigenous issues, ethics in tech-
nology, religion, homelessness, mental health, war, protests,
employment, safety, social welfare, famous figureheads, and
recent events. The second diverse category is other activities,
which covered a variety of pastimes and hobbies, such as
volunteering, studying academic subjects, resting, cleaning,

Histogram of Focus Group Topics
300
250
200
150
100

50

food —
books m———
clubs ——

o
sports
places =——————
music I

games m—

drinks m—
cooking m—

friends m
animals =

tv/movies H———

socializing -
collection

language 1

events/issues ————
social media ———

art (creation) n——
digital games ——
other activities m—m
work/school
making music =
relationship 1

blogs/websites =

Fi

g. 2. The histogram of topics elicited from the focus groups.

gardening, and shopping. These categories reveal that our
participants are active, interested in traveling, socially aware,
and creative. There was also significant interest expressed
for the following topics, which had between 50-100 items:
food, digital games, books, other activities, clubs, (non-digital)
games, drinks, and cooking.

In comparison to the aforementioned study where students
self-reported how much they like a predetermined list of
computer applications [24], we see these student topics cover
all the items that were rated highly and did not include
any item that was rated poorly (aside from one instance of
math). Student interests as reported by [24] and this study
are relatively consistent. Our study includes many more topics
because we allowed the students to name their own interests
rather than providing them with a predetermined list of items.

V. DISCUSSION

Our main research question (RQ3) is to investigate the
amount of overlap between the topics used in examples
for teaching CS1 and the topics that young students find
interesting. Given 53 textbook topics and 24 student topics,
we Afirst attempted to align them to investigate topic coverage.

At first glance, we were surprised to find that many
topics were identical or nearly so: sports, places (matched
to geography and travel), music, tv/movies, art (matched
to art and images), food, books (same as literature), clubs
(matched to fundraising), games, collection (matched to col-
lection, toy, and shirt), work/school (treated as a superset of
school), blogs/websites (same as Internet), friends, animals,
and language. The student topic events/issues overlapped with
the textbook topics of health, voting, law, and the student
topic other activities overlapped with math, gambling, biology,
physics, botany, and history.

As aresult, we are left with the following student topics with
no coverage from any textbook: social media, digital games,
drinks, cooking, socializing, making music, and relationships.
That gives us 7 out of 24, or 29% of the topics not covered by
textbooks. Among the 1936 items elicited from focus groups,
these 7 topics were responsible for 295 of them (about 15%
of the student data).

Similarly, the following textbook topics were not related
to any of the topics elicited by our participants: general
text, time/calendar, banking, numbers, profile, statistics, sales
transaction, text processing, cars, payroll, algorithm, money,
stocks, temperature conversion, file utility, house, colors, peo-
ple, astronomy, encryption, survey, astrology, game theory,
weather, and wedding. That gives us 25 out of 53 topics, or
47% of the topics not identified by young students. Among
the 910 textbook examples considered, these 26 topics were
responsible for 457 of them (about 50% of the textbook data).
This result suggests that students do not have an interest in
half of the examples used in textbooks.

Although this analysis gives us a sense of topic coverage, a
deeper analysis that investigates the percent overlap of these
two distributions is warranted. Consider the topic of math as
an example. As a textbook topic, math was the most popular
topic and it appeared in 166 code examples. On the other
hand, math was only mentioned once from the focus group
data. This means that math covers 18% of the textbook data
while it only represents 0.05% of the student data. Although
the math topic appeared in both cases, a deeper analysis is
needed to assess the overlap of the two data sets.

For this reason, we converted the two data sets into discrete
distributions with common topic labels. To compute the over-
lap of the discrete distributions, we used the Bhattacharyya
coefficient to measure the overlap between two statistical
samples [5]. By definition, the value of this coefficient ranges
in [0,1], with O being no overlap and 1 being complete overlap.
Our calculation gives us 0.4452, which we interpret as a strong
difference between the two sets. In other words, the topics used
in textbooks are vastly different from the topics that students
report as interesting.

A. llustrative Examples

One might argue that simple and short programming exer-
cises described in meaningful contexts are difficult to develop.
This section offers examples of short programming exercises
using student topics that had little to no coverage by the
textbooks. In these examples, we provide the instructions and
highlight the programming constructs involved. We hope that
these examples can serve as motivation for others to develop
coding exercises with relevant contexts.

1) Sports/Health (Time Conversion): This example enables
students to practice arithmetic calculations in the context of
a health application. It is designed to engage students from
both a practical and technical perspective (which covers two
of the three types of intrinsic motivation in computing [9]).
This example reframes a traditional time calculation problem
in the context of a trendy sports watch. Time calculation is
usually done in the early part of a CS1 course.

Instructions: You are programming a Fitbit watch that
measures the time a person spends doing sports activities. The
Fitbit clocks the number of seconds engaged in an activity, and
now you need to convert it into a format that is easy to read
in terms of hours, minutes, and seconds.

o Determine the calculation for converting a specific num-

ber of seconds into the number of hours in those seconds.

o Next, consider the remaining seconds left, determine

the calculation for converting them into the number of
minutes in those seconds.

o Then, determine the number of seconds remaining.

o Display the converted time in an easy-to-read format.

2) Social Network (Friendship Analysis): This example
enables students to practice arithmetic, conditionals, methods,
and 2D arrays in the domain of social network analysis. It is
designed to engage students from both a practical and technical
perspective. This problem abstracts away the details in a social
network and is presented as a simple 2D array exercise. 2D
arrays are typically taught near the end of a CS1 course.

Instructions: You have a group of friends named Ann,
Bob, Cam, Don, and Eva. However, they are not all friends
with each other! Ann is a friend of Bob and Cam. Bob
is friends with Ann, Cam, and Eva. Cam is friends with
everyone. Don is friends with Cam and Eva. Lastly, we
assume everyone is friends with themselves. Create an N x N
table to represent their friendship (where N is the number of
individuals involved). Specifically:

« In this table, write 1 in the cell of a given row and column
if the names of that row and column are friends, and write
0 otherwise.

o Assume that friendship is mutual (so if X is a friend of
Y then Y is also a friend of X).

o Write a method that takes a name, then traverses the
corresponding column in the table, and counts how many
friends that person has.

B. Threats to Validity

Due to a limited budget, we used versions of the textbooks
that are at times older than the exact editions of the books
used in the courses cited in the course syllabi gathered.
Furthermore, we chose to focus on the core chapter content
and excluded chapter exercises from our textbook analysis.
Note that one text provides end-of-chapter exercises titled
Making a Difference and claims to use “problems that really
matter to individuals, communities, countries, and the world”
(p- 200) [33]. Perhaps a more fair analysis of textbook topic
coverage should include chapter exercises as well.

Coding reliability is inherently difficult. We came across
a few issues specific to the textbook analysis process. Some
texts do not provide code examples in an obvious format
for counting purposes. As an example with clear formatting,
[39] always displays example programs as a “listing”. On
the other hand, [31] (as well as several other texts) typically
uses a figure to show code samples, but figures are also used
for other illustrative purposes (such as tables and pictures).
Moreover, code in figures from [31] are sometimes complete
Java programs and sometimes partial code. In these cases, we
counted all examples that show Java programs listed as figures.

A related problem is that some texts would present a Java
program and then extract code snippets from it and explain
each piece separately (e.g., [34]). Those cases only occurred

in texts that did not clearly enumerate code examples. Here,
we only counted complete Java programs. This approach yield
fewer counts for texts that often showed partial code snippets.
Another issue is that some examples span across two Java
classes — one for the program logic and another for running
the program. This happened often in the later chapter(s) on
classes. In these cases, we counted them as two occurrences
of the same topic.

The method we chose to compare intercoder reliability was
calculated using the percent agreement of the coders. The
main drawback of this method is that it does not account
for chance agreement due to the coders simply guessing
the same category. A better measure of intercoder reliability
makes use of Cohen’s kappa [42]. Unfortunately, since our
coding process allowed categories to emerge, we could not
compute this measure because it would require the coders to
have a predetermined list of categories. Now that we have
all the categories, a possible remedy is to conduct a posthoc
coding analysis with all the textbook and focus group data and
determine intercoder reliability using Cohen’s kappa.

We note that the sample size in our focus groups is small and
not representative of a general student population. We chose
a focus group format because we wanted the opportunity to
dive more deeply into topics and discussions as needed. We
also note that these students come from a North American
university and the topics that interest them may only represent
the North American culture. As future work for gathering
input from a larger sample and a broader student population,
alternative data collection techniques such as surveys would
be more suitable.

Lastly, while our results report on the disparity between the
contexts used in textbook examples and the interests of young
students, we note that the value of our findings rests with a
future evaluation that assesses the impact of teaching material
designed using interesting topics from our findings.

VI. CONCLUSIONS AND FUTURE WORK

We found that textbook examples often focus on teaching
the mechanics of programming constructs and are described
in contexts that young students do not report as interesting.
Specifically, we analyzed 910 programming examples from
12 Java textbooks and elicited 1936 interesting items from
student participants. Among the textbook examples, about
42% of them belonged to topics that focused purely on pro-
gramming mechanics without additional application context
or motivation. Moreover, 25 out of the 53 textbook topics
we discovered from the textbooks, or 47% of the textbook
topics, did not overlap with the topics our student participants
found interesting. From the student topics elicited, our analysis
shows that 7 of the 24 topics, or nearly one-third of the topics,
were not covered by any textbook examples.

In light of these results, we illustrated examples showing
that even small programs can be reworded and embedded
in application contexts that young students find interesting.
Our data reveals that young students from our participant
pool are active, interested in traveling, socially aware, and

creative. With this in mind, we recommend dedicating course
design efforts towards developing motivating examples in
CS1 courses because these courses play a crucial role in the
recruitment and retention of the computer science program.

Although our present study focuses on teaching Java in CS1
courses, the results of interesting topics for young students are
generalizable to other courses as well. We hope that by sharing
our results that other educators may develop teaching material
to engage young students in their courses as well.

Our immediate next steps include surveying a broader
student population that is culturally diverse in order to obtain
more representative data about student preferences. With more
data, we can conduct subpopulation analyses that offer insights
into the learning preferences of specific demographics as well
(e.g., interests by gender or by visible minority groups). Our
goal is to develop a repository of interesting programming
exercises to share with other CS1 educators. Ultimately, we
wish to assess the impact of these materials on student
motivation and retention.

REFERENCES

[1] S. Furber, Shut down or restart? The way forward for computing in UK
schools. London, UK: The Royal Society, 2012.

[2] B. Becker and K. Quille, “50 years of csl at sigcse: A review of the evo-
lution of introductory programming education research,” in Proceedings
of the 50th ACM Technical Symposium on Computer Science Education
(SIGCSE), pp. 338—344, 2019.

[3] L. Rich, H. Perry, and M. Guzdial, “A csl course designed to address
interests of women,” in Proceedings of the 35th ACM Technical Sympo-
sium on Computer Science Education (SIGCSE), pp. 190—194, 2004.

[4] R. Cohen, A. Fairley, D. Gerry, and G. Lima, “Accessibility in intro-
ductory computer science,” in Proceedings of the 36th ACM Technical
Symposium on Computer Science Education (SIGCSE), pp. 17—21,
2005.

[5] A. Bhattacharyya, “On a measure of divergence between two statistical
populations defined by their probability distributions,” Bulletin of the
Calcutta Mathematical Society, vol. 35, pp. 99-109, 1943.

[6] E. Deci and R. Ryan, Intrinsic motivation and self-determination in
human behavior. New York: Plenum, 1985.

[7]1 E. Deci-and R. Ryan, “The “what” and “why” of goal pursuits: Human
needs and the self-determination of behavior,” Psychological Inquiry,
vol. 11, no. 4, pp. 227—268, 2000.

[8] G. Taylor, T. Jungert, G. Mageau, K. Schattke, H. Dedic, S. Rosenfield,
and R. Koestner, “A self-determination theory approach to predicting
school achievement over time: the unique role of intrinsic motivation,”
Contemporary Educational Psychology, vol. 39, no. 4, pp. 342—-358,
2014.

[9] C. Werner and B. Girnat, “Towards self-motivated learning in computer

science education,” in Proceedings of the 2020 ACM Conference on

Innovation and Technology in Computer Science Education (ITiCSE),

pp. 26-32, 2020.

A. Tharp, “Getting more oomph from programming exercises,” in Pro-

ceedings of the 12th ACM Technical Symposium on Computer Science

Education (SIGCSE), pp. 91—95, 1981.

I. Liss and T. McMillan, “An amazing exercise in recursion for csl

and cs2,” in Proceedings of the 19th ACM Technical Symposium on

Computer Science Education (SIGCSE), pp. 270—274, 1988.

I. Liss and T. McMillan, “An example illustrating modularity, abstraction

and information hiding using turbo pascal 4.0, in Proceedings of

the 20th ACM Technical Symposium on Computer Science Education

(SIGCSE), pp. 93—97, 1989.

R. Pattis, “A philosophy and example of cs-1 programming projects,”

in Proceedings of the 21st: ACM Technical Symposium on Computer

Science Education (SIGCSE), pp. 34—39, 1990.

L. A. Carmony and R. L. Holliday, “An example from artificial intelli-

gence for csl,” in Proceedings of the 24th ACM Technical Symposium

on Computer Science Education (SIGCSE), pp. 1—5, 1993.

[10]

(1]

[12]

[13]

[14]

[15] R. Pargas, J. Lundy, and J. Underwood, “Tournament play in csl,”
in Proceedings of the 28th ACM Technical Symposium on Computer
Science Education (SIGCSE), pp. 214—218, 1997.

A. Fisher and J. Margolis, “Unlocking the clubhouse: The carnegie
mellon experience,” SIGCSE Bulletin, vol. 34, no. 2, pp. 79—=83, 2002.
A. Forte and M. Guzdial, “Motivation and nonmajors in computer
science: Identifying discrete audiences for introductory courses,” IEEE
Transactions on Education, vol. 48, no. 2, pp. 248—253, 2005.

C. Alvarado and Z. Dodds, “Women in cs: An evaluation of three
promising practices,” in Proceedings of the 41st ACM Technical Sympo-
sium on Computer Science Education, (New York, NY, USA), pp. 57—
-61, 2010.

C. Bennett, “Student-authored wiki textbook in csl,” Journal of Com-
puting Sciences in Colleges, vol. 24, no. 6, pp. 50—56, 2009.

L. Porter and B. Simon, “Retaining nearly one-third more majors with
a trio of instructional best practices in ¢sl,” in Proceedings of the 44th
ACM Technical Symposium on Computer science Education (SIGCSE),
pp.- 165—170, 2013.

M. McGill, “Learning to program with personal robots: Influences
on student motivation,” ACM Transactions on Computing Education,
vol. 12, no. 1, 2012.

S. Sharmin, D. Zingaro, and C. Brett, “Weekly open-ended exercises
and student motivation in csl,” in Proceedings of the 20th Koli Calling
International Conference on Computing Education Research, pp. 1-10,
2020.

M. Haungs, C. Clark, J. Clements, and D. Janzen, “Improving first-year
success and retention through interest-based csO courses,” in Proceedings
of the 43rd ACM Technical Symposium on Computer Science Education,
(New York, NY, USA), pp. 589—594, 2012.

J. Cohoon, “An introductory course format for promoting diversity and
retention,” in Proceedings of the 38th ACM Technical Symposium on
Computer Science Education (SIGCSE), pp. 395—399, 2007.

B. Becker, “Pedagogies for teaching cs1 with java,” tech. rep., University
of Waterloo, 2001. Retrieved Jan 15, 2020 at https://cs.uwaterloo.ca/ bw-
becker/papers/javaTextbooks/.

[26] J. McConnell and D. Burhans, ‘“The evolution of csl textbooks,” in
Proceedings of the IEEE Frontiers in Education Conference (FIE), 2002.
K. McMaster, B. Rague, S. Sambasivam, and S. Wolthuis, “Coverage of
csl programming concepts in c++ and java textbooks,” in Proceedings
of the IEEE Frontiers in Education Conference (FIE), pp. 1—8, 2016.
S. Mazumder, C. Latulipe, and M. Perez-Quinones, “Are variable, array
and object diagrams in java textbooks explanative?,” in Proceedings of
the 2020 ACM Conference on Innovation and Technology in Computer
Science Education (ITiCSE), pp. 425431, 2020.

B. Becker and T. Fitzpatrick, “What do csl syllabi reveal about our
expectations of introductory programming students?,” in Proceedings of
the 50th ACM Technical Symposium on Computer Science Education,
(New York, NY, USA), pp. 1011—1017, 2019.

R. Bravaco and S. Simonson, Java programming from the ground up.
McGraw Hill India, 2012.

K. Bruce, A. Danyluk, , and T. Murtagh, Java: An eventful approach.
Upper Saddle River, N.J: Pearson, 2005.

[32] J. Dean and R. Dean, Introduction to programming with Java: A problem
solving approach. Boston: McGraw-Hill Science/Engineering/Math,
2007.

P. J. Deitel and H. Deitel, Java how to program, early objects. New
York: Pearson College Div., 11 ed., 2017.

A. Downey and C. Mayfield, Think Java: How to think Like a computer
scientist. Sebastopol, CA: O’Reilly Media, 2016.

D. Eck, Introduction to programming using JAVA.
Calif:Createspace Independent Pub., 2019.

T. Gaddis, Starting out with Java: From control structures through
objects. Boston: Pearson, 6 ed., 2015.

C. Horstmann, Big Java. Hoboken, N.J: Wiley, 2 ed., 2005.

J. Lewis and W. Loftus, Java software solutions: Foundations of program
design. Boston: Pearson, 7 ed., 2011.

Y. Liang, Introduction to Java programming,
Boston: Pearson, 10 ed., 2013.

W. Savitch and K. Mock, Absolute Java. Boston: Pearson, 5 ed., 2012.
R. Sedgewick and K. Wayne, Computer science: An interdisciplinary
approach. Boston, MA: Addison-Wesley Professional, 2016.

J. Cohen, “A coefficient of agreement for nominal scales,” Educational
and Psychological Measurement, vol. 20, pp. 37—46, 1960.

[16]

(17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[27]

[28]

[29]

[30]

(311

[33]
[34]
[35] San Francisco,

(36]

[37]
(38]
[39]

comprehensive version.

[40]
[41]

[42]

