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Abstract—This research-to-practice full paper investigates us-
ing team process analytics from GitHub to support team manage-
ment. Effective teamwork is essential in higher education learning
and workplace success. The role of educators in supporting
proper team functioning includes helping students learn how
to participate actively and communicate effectively in meetings,
delegate work fairly, manage high-quality work throughput,
and resolve conflicts if problems arise. Problems often emerge
when team members have differing visions or individuals do
not contribute equally to the work output. These problems are
exacerbated in large classes involving many teams. Detecting
these potential issues in teams and helping students work through
them is important for team success. In software engineering
projects, monitoring individual contributions can begin with
mining activities on programming platforms such as GitHub,
which makes much of the individual contributions more visible
and quantifiable. In this work, we propose a framework for
fairly assessing teamwork and present the development of team
analytics to assist educators in detecting potential issues in team
collaboration. We describe a pilot study involving this tool in
the context of a software engineering capstone course with 104
students split into 22 teams managed by 4 teaching assistants. Our
results show that the reports offer value in guiding the evaluation
process and identifying where problems may be, but do not
replace the actual repository analysis where needed. We discuss
the potential value of using this tool to improve collaboration.

Index Terms—Capstone assessment, collaboration assessment,
collaboration analytics, GitHub metrics, GitHub assessments,
pull request metrics

I. INTRODUCTION

Effective teamwork is essential in higher education learning
and workplace success. The role of educators in supporting
proper team functioning includes helping students learn how to
participate actively and communicate effectively in meetings,
delegate work fairly, manage high-quality work throughput,
and resolve conflicts if problems arise. Problems often emerge
when team members have differing visions or individuals do
not contribute equally to the work output. Detecting these
potential issues in teams and helping students work through
them is important for team success. In software engineering
projects, monitoring individual contributions can begin with
mining activities on programming platforms such as GitHub,
which makes much of the individual contributions more visible
and quantifiable. However, our literature review reveals that
advances in code metrics are designed to address code com-

plexity rather than individual work in team contexts. Thus, we
turn to other literature for insights into alternative solutions.

Over the past twelve years, our Capstone course grew from
an enrollment of 10 graduating computer science students to
over 100 students. Project topics varied widely, ranging from
web to mobile applications, to database optimization work. A
mix of grading strategies has been used to assess individual
contribution, team collaboration, and professionalism in client
interaction. As the class grew, teaching assistants (TAs) were
added to support grading tasks. However, TAs still struggled
with identifying the relevant team indicators and often did
not grade efficiently and consistently across teams. Problems
became more serious in large classes involving multiple TAs.
Section III explains the course context in detail.

To help manage large classes, previous attempts in mining
code repositories to garner contribution statistics were used
but they were not well received. Many projects use different
programming languages and frameworks so developing a
standard set of meaningful metrics is not easy. To amend these
problems, as our first contribution, we propose a framework in
Section III-C that considers multiple data sources and positions
the human grader as the decision-maker of the assessment.
From this perspective, we focus on building analytics tools
to assist the human grader in their sense-making process
by summarizing the code contributions and simplifying the
analytics so that the information can reveal insights about the
team’s collaboration process.

Coupled with the framework is an analytics report that
summarizes interaction and contribution behaviors from code
commits, pull requests (PRs), and code reviews. This report
serves as our second contribution. Section IV describes the
system for building this analytics tool. In addition to simple
metrics such as frequency and size information, we developed
visualizations and metrics that help human graders differen-
tiate active from inactive participation within teams. We are
also interested in differentiating good, systematic collaboration
processes that follow industry standards from inexperienced,
inconsistent collaboration patterns. To do this, we created
an analytics report focused on PR contributions called PR
reports which are generated for each team on a weekly basis.
These reports are designed to assist the human grader in their
assessment and decision-making about the team’s progress.

Section V describes a study using this tool in a software



engineering capstone course in 2023-2024 with 104 students
split into 22 teams managed by 4 TAs and an instructor. We
evaluate the utility of the PR reports by gathering survey
feedback from the TAs who graded the teams weekly and
managed the day-to-day interactions with their teams. Our
investigation surrounds the following research questions:
RQ1: What are the administrative gains afforded by the use

of PR reports?
RQ2: What are the potential risks of using these PR reports

as part of the assessment process?
RQ3: What information should be used in place or in addition

to the analytics in the PR reports?
Our findings reveal these analytics afford efficiency gains

in the grading process and have a strong potential to detect
problematic teams early. However, care must be taken so that
TAs do not misinterpret the information presented. Our results
also suggest that alternative ways of delivering the PR reports
may improve the sense-making process. To develop a more
holistic view of team interactions, future work will explore
additional collaboration behaviors such as branching, merging,
project management activities, and peer evaluation content.
Future work also includes giving students access to these
reports so we can study to what extent the analytics influence
students’ collaboration habits.

II. RELATED WORK

A. Team Process Models

Many team process models attempt to explain team per-
formance by viewing teams as a single entity [6], [16],
[17], [25], [27]. While these descriptive models are useful in
understanding effective teamwork, they do not explain how
teams transition from one state to another. More importantly,
these models do not explain how individual characteristics and
behaviors influence team dynamics. In contrast, a multilevel
theory of team effectiveness can capture the characteristics
and interactions of individuals, teams, and organizations over
time [15]. Unfortunately, most studies in this area have relied
on traditional data collection methods, such as self-reported
surveys which may not be accurate on their own, and repeated-
design experiments which cause participant fatigue [14]. In-
stead, researchers are recommending the use of digital traces
that result naturally from team interactions, such as com-
munication logs, productivity management tools, and online
collaborative activities. These types of digital traces can be
used to build computational models of teams and individuals.
For this reason, we turn to observable collaboration activities
as a potential source for modeling team dynamics.

B. Collaborative Work and Code Metrics

Computer-supported cooperative work investigates how
people use technology to collaborate on a common goal.
Much work has been dedicated to studying team formation,
collaboration dynamics, and tool design to facilitate collab-
oration [29]. However, the context of collaboration is often
limited to groups that work on isolated tasks together without

necessarily having to deal with long-term team dynamics and
fair assessments that are central to capstone courses.

In software engineering, many researchers studied code
complexity and developed a variety of metrics for source
code analysis [20]. Many of these metrics have also been
applied to investigating the difficulty of programming concepts
and code complexity in student submissions (see [13], [21]
for examples). Unfortunately, this approach is challenging to
apply to a capstone context because teams typically work on
different technology stacks, and parsing different programming
languages and frameworks would pose too many obstacles.
While mining code repositories is feasible, we are unaware of
meaningful code metrics that allow for general comparisons
across technology languages and frameworks that enable col-
laboration insights about the team members.

C. Capstone Collaboration Assessments

Many universities use a capstone course to help students
pool the skills gained from their degree and apply them to
open-ended projects. Typically, the capstone is structured to
allow students to work with external partners in an authentic,
project-based learning context [10]. For reasons mentioned
earlier, it is becoming increasingly difficult to fairly assess
individual contributions in a collaborative setting [11]. Studies
on capstone assessments highlight the importance of fairness
in group work but do not discuss how student collaboration
or team processes might be measured. In particular, we found
several reports on using rubrics to create transparent capstone
assessments but they did not use collaboration as a criteria –
some based their rubric criteria on the quality of the project
deliverables [9], or project and course outcomes [23] [28], or
discussed the assessment roles that different stakeholders had
[4]. Three papers mentioned using teamwork as a criterion in
their rubrics but no details were provided [1] [30] [19].

Some educators use peer evaluations to make assessments
more fair in cases where individual contributions are unevenly
distributed. For example, some educators use peer evaluations
to identify when problems arise in teams but do not necessarily
use peer evaluations to modify individual grades [2] [3]. Some
instructors collect peer evaluation data to create estimates
of individual contributions, then use them as an adjustment
factor on the team deliverable [24] [11]. In another study, the
researchers mention a 4-year study designed to train students
to fill out accurate peer evaluation assessments [5]. Since peer
evaluation scores are often biased and inflated, educators must
be careful with how they are used to modify grades.

D. Weekly Assessments

Rather than conducting peer evaluations at the end of each
milestone which may be susceptible to recency bias, we found
several studies that used weekly peer evaluations beyond the
capstone context. One of the earliest uses of weekly peer
assessments was reported in 2006 where students distributed
a percentage of the grade to each team member, along with
a 5-point Likert scale question and an open-ended question
[26]. A key strength in this type of assessment is the use



of a distribution question which enables students to focus on
the amount and quality of work completed rather than the
perceived competency of the teammates. Other researchers
have used weekly assessments involving quantitative ques-
tions, but the question wording varied. In one case, students
distributed percentages based on work performed, creativity
in solving problems, and positive impact on group dynamics
[18]. In another study, students completed weekly surveys with
checkbox questions, Likert scale questions, and open-ended
questions to elicit students’ perceptions of work performed
for early identification of dysfunctional teams [22]. Other
researchers built a weekly survey to assess team harmony
using multiple choice questions about tasks performed, amount
of speaking time, and task assignment decisions and Likert
scale questions about their sense of belonging, feeling valued,
and perceived team functioning [12]. We adopt a mix of these
approaches to develop our weekly peer evaluations.

III. COURSE CONTEXT

In our four-year undergraduate computer science program,
we run a final-year software engineering capstone course that
spans two semesters between September and April. In the first
few weeks of the course, students spend time understanding
course logistics, developing teamwork, establishing a common
collaboration process, and writing a project charter that defines
the requirements. By the end of October, the teams will have
developed design mocks, set up their technical stack, designed
some database relationships, and started implementing their
software solution. Generally, the teams are expected to have
completed a minimal working prototype by December so
they can focus on adding features in January. In the second
semester, students work on extending the prototype, gathering
peer feedback on their systems, and fixing bugs. By April,
each team will have a fully developed project to showcase.
In some cases, projects have known bugs documented in the
handover document. Many projects also get deployed publicly,
such as websites and mobile apps.

The course has three evaluation components: a team compo-
nent, an individual component, and a client component. Their
details have been refined over the years. Students are required
to pass all three components to pass the course.

A. Past Assessment Challenges

Common issues observed in previous course offerings in-
clude higher performing students carrying the team, certain
students assigned to all the non-technical work, and students
generally reluctant to do written and reflective work. When
class sizes increased, close team monitoring became difficult
and we attempted to mine Github repositories to garner code
contribution insights. However, students disliked having their
work summarized in terms of common code metrics such
as lines of code, cyclomatic complexity, or the number of
dependencies. Students who worked on projects that required
heavy system administration felt such code metrics could not
capture their effort accurately. Teams that used frameworks
with auto-generated code also expressed a misrepresentation

of contributions for the individual who happened to set up
the project and committed those lines of code. With varying
technology stacks and development environments, students felt
that progress should be evaluated differently because some
situations require a steeper learning curve.

Assessing individual contributions was challenging because
some students worked on “invisible tasks” like project man-
agement and client liaison. This is a well-known problem
in the literature [8]. While we tried to encourage students
to divide all the work fairly and evenly, some students are
consistently left with less technical tasks.

B. General Assessment Goals

While we acknowledge that not all aspects of collaboration
can be automated, we wish to quantify common tasks so
we know how students spend their time. Specific to software
projects on the GitHub platform, we wish to identify metrics
that help unveil whether students are following the code
collaboration and review processes established within their
teams. We will use these two objectives to guide the design
of our assessment approach described below.

C. Framework for Assessing Work Contributions

We propose a triangulation framework with three sets of
data that offer a more accurate picture of individual contri-
butions. This framework is illustrated in Figure 1 where each
data source and each validation iteration help to unravel an
individual’s involvement. The three data sources are:

1) Self-Reported: Logs and peer evaluations
2) Observed: Code repository contributions
3) Meetings: In-class check-ins

Data is collected weekly and this process repeats throughout
the project to enable the teaching staff to become familiar with
the members of each team.

The first data source uses students’ self-reported progress
logs and peer evaluation information to reveal the amount of
work done across the team. Since these team and individ-
ual logs are pushed to the team repository, teammates can
validate the truthfulness of each other’s claims. Students also
completed several peer evaluation questions to help us assess
team dynamics. We asked students to distribute a percentage
across all the members to represent the amount of work,
talking, and decision-making each student did in the past week.
Students also completed a checkbox question by selecting the

Fig. 1. The triangulation framework for assessing individual contributions.
Nodes represent data sources and arrows represent direction of flow.



Fig. 2. System Architecture Diagram

activities they spent time on. These tasks are designed to
encompass both technical (e.g., programming, testing, system
administration) and non-technical work (e.g., report writing,
presentations, diagram construction, interface design).

The second data source comes from the code repository,
where we assess code contributions, tests, and code reviews.
Although this data is purely objective, the quality and the rel-
ative difficulty of the contributions are subjectively measured
by the teaching staff.

The third data source is an in-class meeting between the
student team and the TA (or instructor) to review project
progress, potential problems, and disputes on previous grades.
Before each meeting, TAs should ideally review all the repos-
itories, logs, and peer evaluations from the previous week.
Since there is a lot of data to synthesize, TAs did not always
come prepared in practice. To facilitate these meetings, we
summarized the pull request activities for each team in a PR
report and generated one report per team. These reports also
included an overview of the peer evaluation data designed
to help the TAs quickly identify anomaly patterns. The next
section presents the system designed to create these reports.

IV. SYSTEM ARCHITECTURE

Figure 2 shows the system architecture for generating a PR
report. The system has three main components: GitHub Object
Processor, Peer Evaluation Processor, and Report Generator.
The two processors are responsible for parsing the relevant
input data based on the specified parameters such as date range
and output format. The output of the GitHub Object Processor
is a set of GitHub pull requests, issues, and pull request
code review comments. The output of the Peer Evaluation
Processor is a set of graphs that visualize different patterns
in the peer evaluation data. The Report Generator merges the
outputs from these two components into a readable format.
This component generates a PR report for each team based
on their repository and peer evaluation data. Each report
provides overall statistics and visualizations to give the reader
an overview of the activities that took place in the past week.
The reports also have accompanying details about the pull
requests to facilitate a deeper diagnosis without having to dive
into each code repository. Example details of a PR report are
presented in the remainder of this section.

A. Collaboration Analytics

The PR report is designed to assist team management by
gathering different data sources in one place and showing an
overview of that information. First of all, the report presents
a broad overview of productivity at the individual and team
levels as shown in Figure 3. This table presents information
about pull request statuses, the number of commits, lines, and
the number of files changed related to these PRs for each
member of the team and for the whole team.

A key aspect of the PR report is to enable the TA to
glean insights about the team’s code development processes
so they can help the team improve their collaboration habits.
For example, Figure 3 shows GitHub User C has 3 small
unmerged PRs. This suggests the user may be lost or have
trouble finishing tasks. Comparing GitHub User A and B, we
see they merged two PRs but the first involved 11 file changes
while the second involved only 4 file changes, suggesting that
the first user’s tasks were more complex. Also, GitHub User
A made a total of 6 commits involving 280 line additions and
26 line deletions. One may argue that more commits should be
made in this case to practice better version control habits. For
users without merged PRs, they may need help scoping their
PRs and sizing their features. Many students feel small PRs
are insignificant and prefer to spend time building more code.
However, if the PRs are too big, students may have more code
conflicts and unwanted code which cause future complications.
Lastly, we see GitHub User D has 1 commit but no PRs. This
means the user made the commit on someone else’s branch,
and a deeper conversation around those activities is warranted.

Figure 4 shows the team’s line edits visually. This bar graph
is designed to give the reader a quick comparison of the

Fig. 3. Overview table of PR activities.



Fig. 4. Bar graph of line contributions.

relative contributions made by the team members. Although
GitHub User E made a lot of line additions and deletions, the
relative code contribution is similar to that of GitHub User A.

The next part of the report displays PR details. These details
are meant to give the reader more information about the PRs
by presenting the header descriptions as shown in Figure 5
and commit messages as shown in Figure 6. The idea is that
this information should give the reader a sense of what the
PR is trying to accomplish without reading the code. If the
header description is missing or poorly written, the TA should
help train the student to write more meaningful descriptions.
Based on the commit messages shown in Figure 6, we see
that this user does not provide much detail at all. Which
bug was fixed? What did the tests handle? Which comment
was resolved? The lack of details in these commit messages
often makes the review process slower, especially if the team
members are not familiar with each other’s work. In order to
better understand what was in this PR, the reviewers and the
TA would need to read the code more closely. Ideally, students
should be directed to produce more details in their messages so
that the TA management process can operate more efficiently.

Lastly, we have a table summarizing code review activities
as shown in Figure 7. It includes data such as the number of

Fig. 5. Header details for a given PR.

Fig. 6. Commit history for a given PR.

review comments made (including approval messages, request
changes, and general comments), the number of review replies
made, the average number of words, and the total number
of reviews made at the individual and team level. This table
provides a concise summary of PRs that are not reviewed
which should be alerted to the TA. It also provides an
estimation of the depth of the written comments. For example,
the comment “looks good to me” is quite shallow and only
counts as 4 words. Also, the number of code review comments
made by an individual indicates their level of involvement
with other member’s code in the repository, which reflects the
interdependencies of the team based on code review activities.
Overall, the activities reported in Figure 7 suggest this team
does not have a strong code review process because they did
not have any discussions in the PRs (as indicated by 0 review
replies) and the approvals are usually shallow (the number of
total reviews is more than the number of comments).

B. Integration with Other Data Sources

The PR report also includes data from weekly peer evalua-
tions that report individual tasks, student perceptions of their
teammates, and written acknowledgments or complaints. This
information was only added to the PR report at the end of the
year so the TAs only saw these graphs in the last week. A com-
mon scenario where students may be involved in programming
but the work is not visible is when they are pair programming
with another person. To account for this invisible work, we
ask students to explicitly acknowledge other teammates when
they receive help. Based on this information, we create an
acknowledgement graph as shown in Figure 8. The system
extracts team member names from the peer evaluation data and
plots a histogram based on the number of times those names
were mentioned in a given week. For example, we see Student
A is a frequent helper in Figure 8. Based on the number of
acknowledgments shown in this graph, this team likely has
good interaction and are able to work closely together.

Next, the system extracts the percentage of work completed
from the student evaluations and graphs them longitudinally.

Fig. 7. Overview table of code reviews associated with the PRs.



Fig. 8. Acknowledgement graph displayed for the whole project.

Figure 9 shows an example of this longitudinal work graph for
a team of 5 members. We see quickly that on average, most
data points hover around the 20% mark, indicating the team
generally felt their work was evenly distributed. Although not
presented in this paper, we also have similar peer evaluation
data asking students to report on the percentage of people
talking and making decisions. Analogous graphs are also
generated to show the dominance relationships within a team.

Recall the peer evaluation checkbox question listing the
categories of tasks commonly needed in capstone projects.
Our system took this information, weighed it using the av-
erage percentage of work done calculated by their teammates’
responses, and constructed a heatmap as shown in Figure 10
with the list of tasks displayed on the left and the weeks at
the bottom. Note that the darker the colored box is the more
time is spent doing that task as perceived by the teammates.
If the team collectively reports that one member did not do
any work in a given week, the average percentage of work
done for that student will be 0% and the column of tasks for
that week will remain uncolored even if the individual claims

Fig. 9. Average percentage of work done perceived by other teammates.

Fig. 10. Self-Assigned Tasks Done Graph

to have done work on certain tasks. From Figure 10, we see
Student A did not work in weeks 1, 2, 7, 13, 14, and 21.

Overall, the PR report can also be used as a tool for
assessing the truthfulness of the amount of work that students
claim to have done. The report enables the reader to quickly
cross-reference information that would have otherwise taken
a long time to check across multiple data sources.

V. PILOT STUDY

A. Participants

The primary participants of the study were 4 TAs of the
Capstone course. Among them, there were 2 males and 2
females, all 4 of whom were racial minorities. With the 104
students grouped into 22 teams, 2 TAs managed 4 teams and
the other 2 TAs managed 7 teams.

B. Procedure

At the end of the course, we distributed a Qualtrics survey to
the TAs to provide anonymous feedback about the PR reports.
Everyone was given 2 weeks to complete the survey.

C. Materials

The TA survey had 20 questions about the PR process,
with 10 structured questions and 10 open-ended questions. The
structured questions had 4 Yes/No questions about the impact
the PR report had on the ease of evaluation, the guidance
it offers, and new information to include. There were also 6
even-point Likert questions about their accuracy in assessment
with and without the PR reports and the helpfulness of the PR
reports. The open-ended questions asked the TAs to provide
explanations and suggestions for improvements.

D. Analysis

The structured questions are summarized numerically. To
analyze the open-ended responses from the TA survey, we con-
ducted a thematic analysis and developed codes discovered in
the responses [7]. The responses were segmented by sentences
and further by phrases if a conjunction was used to separate out
multiple ideas. Specifically, two raters independently analyzed
all of the qualitative responses from these surveys based on
the codebook established from the initial round of inductive
familiarization, followed by two rounds of deductive catego-
rization. In total, the raters completed two passes to reach an



Fig. 11. Total counts from Yes/No questions based on TA responses.

acceptable intercoder reliability level of α = 0.88 for the TA
data. The final codebook is provided in Table I.

E. Results

We developed 13 codes to capture the TA responses: New
Information (20), Insightful (16), Supplemental (11), Generic
(11), Positive (7), Neutral (7), Efficient (5), Misleading (5),
Access (4), Unclear (4), Excessive (3), Easy (2), Inaccessible
(1). We explain these codes below. In two Yes/No questions
shown in the first and second bars of Figure 11, we see the
TAs generally felt the PR reports were useful in guiding their
weekly evaluations and made it easier for them to identify
where problems occurred.

New Information, where participants suggest new infor-
mation to be included in the PR reports, have the highest
frequency count. On average, each TA made 5 suggestions.
There were 3 categories of suggestions: filtering data (e.g.,
based on dates and PR status), providing more data (e.g.,
list of review comments, dates for commit activities), and
general improvements (e.g., definitions where terminology
may be unclear). The TAs also unanimously agreed that peer
evaluation and weekly log details should be added to the PR
reports, as shown in the third and fourth bars of Figure 11.

TAs felt the PR reports were insightful and this code
appeared 16 times overall. On average, the TAs mentioned
these reports were insightful 4 times per person, stating
comments such as “[the PR report] can give a quick insight

Fig. 12. Average scores reported from 4-point Likert scale questions
(1=Strongly Disagree; 4=Strongly Agree) based on TA responses.

about the individual contributions and the team contributions”.
Figure 12 supports this finding, showing that TAs generally
strongly agreed the reports provided insights into assessing
both individual contributions and team progress.

We were curious whether the TAs felt confident in ac-
curately evaluating individual and team assessments using
the PR reports. As seen in Figure 12, the TAs generally
strongly agreed in these respects. However, we asked them
these questions in the context of using the PR reports (most
of the semester) and without using the PR reports (at the
very beginning of the semester). We see no change in their
agreement. This suggests that, with or without the PR reports,
the TAs were confident in their skill to assess the teams. Thus,
the value offered for the TAs may be limited to efficiency only.

The TAs mentioned using the PR reports as a supplemental
tool to assess student work almost 3 times per person on
average. This suggests that the PR reports do not replace
the actual repository inspection done by the TAs. As one TA
commented, “I used the PR reports but mainly relied on going
through the actual commits and the individual logs”.

The remaining codes appeared about once per TA, or less.
All the TAs found the PR reports made the assessment more
efficient. Most of the responses refer to a quicker process using
PR reports than not using them, such as “I could point directly
to the report and ask them questions, which sped things up”
or “spending less time overall hunting down work that had
been done”. This suggests that PR reports improve efficiency
specifically in measuring the amount of work done by indi-
vidual team members. Related to efficiency, 2 comments were
coded as easy, which denotes the PR reports were easy to use
or made the assessment process less overwhelming. The PR
reports seem to be beneficial for assessing students, as “they
made things WAY easier and clearer”. Recall from Figure 11
that most TAs found the PR reports helped guide the evaluation
process and locate the problems.

The TAs also felt that the PR reports made the discovery
and access to information about the student activity easily
accessible because “everything [is] neatly in one place”.
However, one response was coded as inaccessible, indicating
that tracking individual contributions was made more difficult.
This could be related to the problems of information being
unclear and excessive. We believe some text definitions can
be used to clarify potential misconceptions of the presented
data. Perhaps a better organization of the information or an
interactive version of the PR reports where TAs can select the
desired graphs and details would be preferable.

Unfortunately, the TAs also found some aspects of the
reports as misleading, because they gave inaccurate data. For
instance, the report shows PR activity simply because its status
is open even if the activities took place in previous weeks.
Unfortunately, this is a limitation of the GitHub API that we
encountered. Another TA stated that “PRs can be very skewed
and the charts [can] lose meaning”. This means, if one member
has tens of thousands of auto-generated lines of code added,
then the rest of the contributions would not be visible in the
graph. These responses suggest the system needs better data



TABLE I
CODEBOOK USED IN THE ANALYSIS OF TA DATA, SHOWN WITH CODING FREQUENCIES.

Code Frequency Explanation
New Information 20 Suggestions of new types of info to include, such as filter by week, updated timestamp, actual review messages

E.g. “Having the date it was updated might help us determine whether a PR is just sitting open, or whether it’s actually
being worked on.”

Insightful 16 PR report gives insights that would otherwise not have been discovered; problems and issues a team experienced as
derived from their report
E.g. “I probably wouldn’t have noticed the branching strategy issue as quickly as I did without the reports”

Supplemental 11 Old methods of assessing performance is still found to be more effective.
E.g. “I still heavily rely on the github repo for details, the report helps me to see if there’s anything I might have
missed.”

Generic 11 Anything not relevant or nothing to add
E.g. “I cannot think of anything new”

Positive 7 General positive opinion with no specific information or reason, generally helpful
E.g. “The PR reports were wonderful.”

Neutral 7 Opinion is neutral
E.g. “Further, I’d often see commits from multiple different people on the same branch.”

Efficient 5 PR report makes assessments faster than before (requires less time)
E.g. “This meant that I was spending less time overall hunting down work that had been done, because now I knew
where to look.”

Misleading 5 PR report gives inaccurate data that leads to false conclusion
E.g. “Some things on the PR reports may be misleading on a glance, for instance number of PRs per student include
PRs for merging into branches.”

Access 4 Easy to locate and access information about student activity
E.g. “The PR reports showed me the aggregated total of comments, which helped me to search them out on GitHub.”

Unclear 4 PR report requires additional information to allow for understanding, for example, adding time stamps
E.g. “The amount of code lines does not directly reflect the amount of work done so it was necessary to go through
it.”

Excessive 3 When too much information becomes a bottleneck
E.g. “Some PRs that remain open are not dealt with show up every week.”

Easy 2 PR report is easy to use, or a way to make comparisons easier, or makes part of a process easier
E.g. “It also makes it easier to track which PRs I need to look at on the repo.”

Inaccessible 1 Difficult to locate and access information in the report, easier to find directly in the repo
E.g. “This also make the contributions of persons who did those hard to track.”

filtering and cleaning to remove ambiguity and potential bias.
Finally, 25 comments were coded as Generic, Positive, or

Neutral because they expressed general sentiments.

VI. DISCUSSION

A. Threats to Validity

We note that this pilot study primarily involves the self-
reported experience of 4 TAs in one course. While we tried to
gather more details from them to garner deeper insights, we
acknowledge the data obtained from this study is limited.

B. RQ1: Administrative Gains

Our findings reveal that TAs find value in using the PR
reports as part of their evaluation process. While it is clear
that these reports do not replace repository analysis, they all
believe that the information in the PR reports helps guide their
assessment and locate where problematic areas are. Thus, PR
reports help create better conversations between students and
their TAs, providing a broad overview of repository activities
and team dynamics. All the TAs indicate using PR reports
improves their grading efficiency.

C. RQ2: Risks and Drawbacks

As mentioned in the results, some TAs felt the information
was not labeled correctly or presented in a misleading way.
Fortunately, when the students raised concerns during the in-
class checkin’s, the TAs were able to verify what was going on

by checking the detailed activities in the code repositories. On
the other hand, if the TA relied solely on the information in
the PR report and ignored the student’s concerns, the problem
would have escalated further.

If used on their own, PR reports do not suffice in encap-
sulating accurate details about individual contributions done
outside of the code repository. However, the TAs knew that
code contributions constitute one of the data sources in the
assessment triangulation framework presented in Section III-C,
so this was not a problem.

Although our goal in designing these PR reports is to help
students improve their collaboration habits, it is not clear
whether the TAs used the reports this way and whether the
students’ collaboration processes improved. Future work needs
to control this aspect more carefully to encourage better TA
guidance. Alternatively, another study could involve students
accessing the reports directly and evaluating the impact on
their collaboration behavior.

D. RQ3: New Information and Features

The TAs suggested report improvements by including more
details in certain areas and making the content more clear.
Another suggestion was to provide different ways for filtering
the data. However, this might create a cognitive overload on
the reader when there was already some feedback about the



reports being overly excessive. A possible solution is to create
an interactive report where data is dynamically filtered.

VII. CONCLUSIONS AND FUTURE WORK

This work presented a novel system for analyzing GitHub
repositories and peer evaluation data to generate PR reports
that provide context about individual contributions and team
collaboration. The purpose of this work is to assist the
teaching staff in better managing their student teams in large
software development classes. Previous automation attempts
that provided superficial code metrics did not measure work
output accurately and fairly. With PR reports, the focus of
the assessments now shifts from measuring individual code
contributions to understanding the individual’s role relative
to the team’s work and their collaboration process. It is
important to note that these collaboration analytics should
be used holistically in the broader assessment framework,
such as the triangulation framework proposed in this paper,
while considering the specific context of the project and the
expectations set for the team. Individual contributions are
multifaceted, and a combination of these metrics provides
a more comprehensive understanding of a team member’s
impact and effectiveness within the collaborative environment.

Our next step is to run another study and emphasize collabo-
ration habits. Future work includes detecting tests, computing
test coverage, and incorporating chore activities available in
GitHub projects such as issue creation and assignments.
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[20] A. N. nez Varela, H. Pérez-Gonzalez, F. Martı́nez-Perez, and
C. Soubervielle-Montalvo. Source code metrics: A systematic mapping
study. Journal of Systems and Software, 128:164–197, 2017.

[21] H. Nguyen, M. Lim, S. Moore, E. Nyberg, M. Sakr, and J. Stamper.
Exploring metrics for the analysis of code submissions in an introductory
data science course. In Proceedings of the International Learning
Analytics and Knowledge Conference, page 632–638, 2021.

[22] K. Presler-Marshall, S. Heckman, and K. Stolee. Identifying struggling
teams in software engineering courses through weekly surveys. In
Proceedings of the ACM Technical Symposium on Computer Science
Education (SIGCSE), page 126–132, 2022.

[23] T. Sasipraba, R. K. B. Navas, N. M. Nandhitha, S. Prakash,
J. Jayaprabakar, et al. Assessment tools and rubrics for evaluating the
capstone projects in outcome based education. In Proceedings of the 9th
World Engineering Education Forum (WEEF), pages 296–301, 2020.

[24] C. C. Tappert, A. M. Leider, and S. Li. Student assessment in a capstone
computing course. In Proceedings of the 2019 Southeast Decision
Sciences Institute (SEDSI) Conference, pages 1–7, 2019.

[25] K. W. Thomas and R. H. Kilmann. Comparison of four instruments
measuring conflict behavior. Psychological Reports, 42:1139 – 1145,
1978.

[26] R. Tucker and C. Reynolds. The need for a culturally inclusive andra-
gogy for collaborative design learning. In Proceedings of the Australian
University Building Educators Association Annual Conference, pages
1–10, 2006.

[27] B. W. Tuckman. Developmental sequence in small groups. Psycholog-
ical Bulletin, 63(6):384–399, 1965.

[28] M. Vijayalakshmi, P. D. Desai, and G. H. Joshi. Outcome based
education performance evaluation of capstone project using assessment
rubrics and matrix. In Proceedings of the IEEE International Conference
on MOOC, Innovation and Technology in Education (MITE), pages 6–
10, 2013.

[29] J. Wallace, S. Oji, and C. Anslow. Technologies, methods, and values:
Changes in empirical research at CSCW 1990 - 2015. In Proceedings
of the ACM on Human-Computer Interaction, pages 1–18, 2017.

[30] J. Yousafzai, I. Damaj, and M. El Abd. A unified approach for assessing
capstone design projects and student outcomes in computer engineering
programs. In Proceedings of the IEEE Global Engineering Education
Conference (EDUCON), pages 333–339, 2015.


	Introduction
	Related Work
	Team Process Models
	Collaborative Work and Code Metrics
	Capstone Collaboration Assessments
	Weekly Assessments

	Course Context
	Past Assessment Challenges
	General Assessment Goals
	Framework for Assessing Work Contributions

	System Architecture
	Collaboration Analytics
	Integration with Other Data Sources

	Pilot Study
	Participants
	Procedure
	Materials
	Analysis
	Results

	Discussion
	Threats to Validity
	RQ1: Administrative Gains
	RQ2: Risks and Drawbacks
	RQ3: New Information and Features

	Conclusions and Future Work
	References

