
Guiding Principles
for Assessing Software Engineering Teams

Bowen Hui
Computer Science

University of British Columbia
Kelowna, Canada

bowen.hui@ubc.ca

Abstract—This research-to-practice full paper presents guiding
principles for developing assessments based on our experience
in teaching the software engineering capstone course over the
last twelve years. Software engineering courses are central to
computer science and engineering programs. To provide students
with an authentic learning experience, teams of students work
on realistic projects that help them apply theoretical concepts
to develop practical skills. Challenges arise with increasing class
sizes and limited teaching resources. Despite these constraints,
educators must intentionally design assessments that align with
learning theories that promote deeper learning opportunities
and support lifelong learning. In this work, we report on our
experience designing and adapting the assessments used in our
software engineering capstone course over the past twelve years.
We reflect on our approach by aligning the evaluation strategies
to learning theories such as behaviorism, constructivism, and
social constructivism. This research-to-practice paper discusses
the practical implications behind different assessment strategies
in the face of large class sizes and presents guiding principles for
developing assessments for software engineering team projects.

Index Terms—Capstone project, authentic assessments, behav-
iorism, constructivism, social constructivism, large classes

I. INTRODUCTION

Software engineering courses are central to computer sci-
ence and computer engineering programs. To provide students
with an authentic experience, students are often placed into
teams to work on real-world projects that help them connect
theoretical concepts to practical skills. Some programs also
run a software engineering capstone course where students
pool the knowledge and skills they acquired throughout their
degree and apply them to complete a graduating project.
Capstone courses enable students to gain proficiency in writing
efficient, maintainable, and scalable code in a large project
that runs for the full academic year. In some cases, capstone
projects also connect students with industry clients to solve
real-world problems. Such capstone projects serve as authentic
assessments at the end of the student’s degree and prepare
them before they enter the industry workforce.

As student enrolments grow, it becomes increasingly dif-
ficult to manage a large number of teams while keeping
the teaching resources unchanged. Two main issues arise in
such cases – grading student assessments and monitoring the
teams for ongoing project progress and behavioral interactions
that indicate rewarding and risky actions. Certain assessments
afford deeper and more authentic learning experiences for stu-

dents, which are typically harder to administer in large classes.
The complexity of these issues increases if the projects involve
varying clients and requirements, which is common in cap-
stone courses. Due to the limited visibility into team processes,
educators are faced with the challenge of assessing individual
contributions fairly while also considering the effort exhibited
by the team weighted against the complexity of the projects.
Different situations make grading individual work non-trivial
such as highly skilled students who do not cooperate or coordi-
nate well with their teams, average students who demonstrate
great leadership in the team, and low-performing students
who are not given any opportunities to do meaningful work.
Learning about the underlying dynamics in each team can
be very time-consuming for the teaching staff, causing many
obstacles in monitoring team progress in real time. Lastly,
since individual behaviors influence overall team dynamics,
assessment becomes more complex due to the subjectivity and
ethical considerations involved. Different evaluators may have
varying perspectives on the quality of work, team dynamics,
and individual contributions. This subjectivity can make it
challenging to provide fair and consistent evaluations. This
paper explores the following research questions:

RQ1: What are the necessary capstone evaluation compo-
nents?

RQ2: How do various assessment activities align with learning
theories that promote deep learning experiences?

RQ3: What are the assessment challenges encountered due to
an increase in enrollment?

Over the past twelve years, our experience from teaching
the software engineering capstone course has led us to explore
different learning theories such as behaviorism, construc-
tivism, and social constructivism. Although behaviorism is
often aligned with traditional teaching techniques and passive
learning while constructivism and social constructivism are
associated with student-centered teaching and active learning
strategies [1], [2], [18], many courses still use a mix of these
theoretical perspectives. We review these theories and their
applications in designing capstone courses in Section II. Sec-
tion III elaborates on the course context at our university and
discusses the assessment changes made over the years. We will
further identify the challenges encountered due to the growth
in the student population, discuss the necessary adaptations



made to these assessments, and reflect on the lessons learned
based on our experience. Section IV aligns specific aspects
of the course design and assessment strategies to the learning
theories. Our discussion reveals that many assessments have
a constructivist or social constructivist approach, but the
underlying systemic nature of grade assignment follows a
behaviorist perspective. Section V identifies guiding principles
that emphasize a social constructivist approach to developing
assessments for software engineering team projects. Our hope
is to help other educators be intentional about their assessment
approach in designing authentic and fair assessments for
grading student team projects.

II. BACKGROUND ON LEARNING THEORIES

Behaviorism is a learning theory based on the principle
of stimulus and response [14], [19], [22]. Behaviorists be-
lieve that learning is a function of the conditions in the
environment and they focus on how people form habits and
exhibit observable behaviors based on these conditions. Pos-
itive reinforcements are given to desirable behaviors while
negative reinforcements are given to undesirable behaviors.
In a behaviorist classroom, “the teacher is in control of what
needs to be taught, how it will be taught and what evidence of
behavioral change needs to be produced” (p.27) [2]. Teachers
design learning activities with the appropriate stimulus to
elicit student responses that demonstrate the desired behavior.
Behaviorists view students as passive learners who soak up
information given to them without concerns about what might
be happening in the minds of the learners.

In response to behaviorism, a number of cognitive theories
emerged. During this time, “research suggests that learners –
from a very young age – make sense of the world, actively
creating meaning while reading texts, interacting with the envi-
ronment, or talking with others” (p.3) [24]. Under the theory
of constructivism [15], this interaction facilitates knowledge
construction, where learners build meaning based on prior
experiences and refine ideas through interacting with the en-
vironment. In this view, students bring their own perspectives
to interpret and shape their understanding of the concepts
taught. The philosophy of treating learning as a process in the
mind is referred to as cognitivism, and it has many overlaps
with constructivism where knowledge construction extends the
concepts in the mind.

Students under the constructivist viewpoint create a person-
alized experience where knowledge is negotiated and learners
do not automatically absorb the information presented to
them. In contrast to a behaviorist classroom, a constructivist
classroom shifts the focus of learning from the teacher to
the students. Constructivism promotes activities that enable
students to actively engage in the learning process, such as
interactive exercises and student-led discussions. In contrast
to cognitivism, pure cognitivist classrooms focus on concept
development achievable through teacher-led instruction, while
constructivist classrooms depend on the learners to interpret
the content they are given to deepen their grasp of the
knowledge. Since constructivists believe that knowledge is

built upon one’s prior experience, constructivist classrooms
emphasize what students already know and help them build
deeper learning experiences.

Social constructivism focuses on the collaborative aspect
of constructivism where learning is situated in society and
culture [6], [21]. Learning is viewed as a social process, where
knowledge is constructed based on social interactions and
the relationships people form in their society. Students rely
on others to help create their building blocks, and learning
from others helps them construct their own knowledge and
reality. Social constructivist classrooms provide the context for
students to engage in authentic learning experiences measured
by the norms of their communities. Activities are often situated
in collaborative and interactive settings where students practice
the concepts they need to learn.

Several researchers reported their ideas and experiences
from aligning learning theories to teaching and learning in
practice. We found two cases where the authors suggested us-
ing constructivist learning activities to promote better learning
experiences in online learning environments [23] and in de-
signing ePortfolio capstone projects [17]. One closely related
work is a survey of 200 papers on computer science capstone
courses conducted in 2011 [11]. The review found some
instructors revised their courses to use more constructivist
techniques, such as providing an authentic project, creating
ill-structured and complex problems to promote problem-
based learning, deliberately inserting conflicting requirements,
requiring students to perform software lifecycle and process
tasks, employing studio-based learning to provide formative
feedback, requiring student reflections, presenting new mate-
rial through a just-in-time learning approach, and focusing on
the process rather than the product.

More broadly, a general assessment framework was pro-
posed that maps learning theories to learning levels in Bloom’s
taxonomy [4] and example assessment activities [12]. In this
framework, behaviorism was mapped to lower-order thinking
skills in the taxonomy (such as remembering and understand-
ing), whereas cognitivism, constructivism, and theories on
metacognition were mapped to mid- and higher-order thinking
skills (such as applying, analyzing, evaluating, and creating).
This alignment suggests while behaviorist thinking does not
promote or exercise higher-order thinking skills, it is necessary
for building foundational, lower-order thinking skills.

In a general learning context, some researchers propose
shifting away from traditional assessments completely because
they typically follow a behaviorist perspective to alternative
assessments that better align with constructivist thought [1].
The authors propose several alternative assessments that offer
deeper learning opportunities, but it is unclear how well they
scale to large classes. These authors raise very interesting
points about the role of assessments serving as instruments
for improving education and questioning how one can ensure
students learn for the sake of learning rather than for the
sake of passing an exam or a course. From this perspective,
one may argue that the impact of an assessment is only as
effective as allowed by the learner’s mindset regardless of the



intended design. We return to this point when we reflect on
our assessment choices in Section IV.

III. COURSE CONTEXT AND DESIGN CHANGES

We offer a four-year undergraduate degree in computer
science. As part of the degree, one of the required courses is a
capstone software engineering project course that is expected
to be taken in the student’s final year of study. The purpose of
this course is to serve as a holistic assessment of the student’s
cumulative knowledge of computer science where they apply
their collective knowledge to solve a real-world problem. The
official calendar description of our course is as follows: “A
capstone project requiring team software development for an
actual client. Students must produce comprehensive reports
and deliver presentations.”

In this course, students work in small teams to elicit tech-
nical requirements from an industry client, design a software
solution, develop a working prototype with extensive features,
and present the accomplishment to the client. Akin to a
doctoral candidacy exam, our capstone course was designed
to help students make connections across the different subject
matter from their degree, demonstrate their ability to learn and
troubleshoot technical problems, as well as learn new industry
processes and standards. This project course runs for two 13-
week semesters in the academic year, spanning approximately
8 months of the calendar year. The capstone project serves as
an authentic assessment at the end of their degree and prepares
the students before they enter the workforce.

Despite having different instructors teach the course over
the last twelve years, the general course design and evaluation
approach have remained rather stable. This stability is not
a positive indicator as the number of students has grown
from less than 10 students in the class (grouped into two or
three teams) to over 100 students (split into 20+ teams). The
course has been taught in a relatively similar way despite the
increase in the instructor-to-student ratio. The main difference
is the added support for undergraduate and graduate teaching
assistants (TAs) to help with assessments. However, there is
also no guarantee about the quality of the TAs assigned to the
course so TA training has become an added concern. Thus,
we need to rethink project assessments to accommodate this
under-resourced situation.

Traditionally, every student team is assigned a unique ex-
ternal client and project. Clients typically come from a non-
technical background, although we occasionally have technical
clients as well. In most years, clients are entrepreneurs, small
business owners, or managers from large companies. On rare
occasions, university faculty members also acted as clients.
Teams between 3 and 5 students were formed at the begin-
ning of the project by balancing skill sets and their elicited
preferences. Due to the university’s relationship with external
clients, there is a strong emphasis on project success and the
quality of the project outputs. At the same time, we highlight
the importance of the teamwork process and professionalism
when working with the instructor and the client. Students
are advised to act as consultants for clients by giving them

technical advice, anticipating potential obstacles, providing
technical options, and building prototypes that realize the
intended project goals. Overall, we wish the students to be
accountable to their team and their clients while ensuring their
grades fairly reflect the work they produce individually.

The general design of this course follows a social construc-
tivist paradigm where students work in teams and learn from
each other, collaborating and learning by doing together to
solve a real-world problem. What they learn is immediately
experienced by applying to their projects and adapting the
techniques to tackle the problems at hand. Students are taught
industry-standard tools and processes and are asked to use
them throughout the capstone project. When they make mis-
takes or use the tools in suboptimal ways, they gain feedback
from the teaching staff and, in some cases, also from the
clients. By setting clear expectations and giving feedback
on student deliverables, the client establishes industry norms
within the classroom setting.

The rest of this section reviews changes in our capstone
software engineering project course by sampling the course
design details from 2012, 2017, and 2023. We chose these
years as they were the first, middle, and last course offerings
of the twelve years of teaching experience reported here. Each
year, the capstone course instructors meet to discuss what went
well and brainstorm ideas to tackle issues that arose in the
class. The discussion in this section describes changes in the
course design over the years and the accompanying rationale
for those changes.

A. Course Learning Outcomes

We designed course learning outcomes (CLOs) aimed at in-
tegrating the soft and hard skills needed to transition smoothly
into a software development role in the industry. In 2012, the
CLOs were not explicitly stated in the syllabus. As seen from
the list provided below, the CLOs from 2017 focused on the
software development process:
1) Apply software engineering principles in a real-world

project
2) Research the needs and interests of a particular target group
3) Determine key elements in complex issues, problems, and

questions
4) Collect, synthesize, and evaluate reliable information or

data from relevant sources
5) Manage, mitigate, and resolve conflicts
6) Anticipate likely problems, consider unanticipated out-

comes, propose the means by which resolutions may be
attained

7) Gain a deeper understanding of key design and implemen-
tation issues

8) Acquire experience working with clients and professionals
in the industry

Due to a lack of student interest, CLO 2 is typically not done
well. Rather than focusing on developing this outcome further,
we opted to remove it because it was covered in a prerequisite
course on human-computer interaction. Another removal was
CLO 5 because most teams did not encounter conflicts. In



the rare cases when conflicts arose, the instructor was heavily
involved in helping the teams and individual members work
through their challenges. Lastly, CLO 8 was removed due
to large class sizes that required us to match one client to
multiple student teams. As a result, clients no longer worked
closely with students, although they were available to give
input, evaluate student deliverables, and provide a source of
external validation of the student’s work. The remaining CLOs
were subsequently synthesized into the following in 2023:
1) Apply software engineering principles to work in a team

on a non-trivial project
2) Gain hands-on experience with design and implementation

issues
3) Adopt industry standards and tools in a programming

project
4) Collect, synthesize, and evaluate information or data from

reliable sources
5) Troubleshoot technical problems and propose alternative

feasible solutions
According to Bloom’s taxonomy, these CLOs focus on mid- to
higher-order thinking skills where students synthesize, apply,
and create new knowledge. From a course design perspective,
it is difficult to tease apart which aspect of the capstone project
or which assessment maps to each of these CLOs because,
arguably, the entire process of working toward building a
successful capstone project addresses these CLOs collectively.
Another challenge is, given a particular assessment, to what
extent does each team member achieve the associated CLO?
The nature of the capstone team projects makes this mapping
extremely difficult to accomplish accurately and reliably. Al-
though we do not have an ironed-out solution to this problem,
we are working towards developing an assessment approach
for it. Below, we discuss the assessments used over the years
that were designed to help students meet the CLOs.

B. Major Milestones and Deliverables

A total of 4 team deliverable dates were set approximately
once every two months throughout the eight-month course.
In 2012, these milestones included a project plan, a design
document and test plan, a prototype presentation, and a final
project presentation and document. These team deliverables
were designed to resemble real-world business reports. During
this time, class size was small and teams had the luxury
of submitting a draft of their reports to obtain formative
feedback from the instructor and subsequently improve their
work before the official reports were graded. Modeled after
core ideas of mastery learning [5], this process gave teams
personalized feedback with multiple chances to succeed.

Soon after, we felt the students did not take the feed-
back seriously from the teaching staff during the milestones
where they presented their prototypes. Many students felt
their opinions and approach were better, while others felt the
suggested changes required too much work. For these reasons,
we replaced the prototype presentation in the second semester
with two peer testing sessions evenly spaced out in the second
semester. Dedicated class time was allocated to run these

sessions. In a peer testing session with a team of 4 students,
two members would run a usability study with their classmates
as participants and the other two would participate in the
usability study for other teams. After two rounds, students
in the team would switch roles from running the study to
participating in one, and vice versa, and repeat the study for
two more rounds. At the end of the session, each team had
to write up the usability results of their study and produce a
list of prioritized features and bugs to fix as a result of the
study. Students have generally been extremely well-prepared
for these peer testing sessions and have found them to be very
engaging and helpful in getting critical feedback from their
peers. In summary, the major milestones were changed to a
project plan, a design document, two peer testing sessions, and
a final deliverable in 2017.

In hindsight, using written reports as an assessment com-
bines behaviorist and constructivist approaches. On the one
hand, the reports facilitate team management so the teaching
staff can better assess project progress. On the other hand, the
writing includes an explanation of the system design, which is
an articulation of how well the students understand what they
have learned and what they are supposed to be doing. In cases
where students take the graded feedback to correct possible
misunderstandings either in future versions of the report or in
implementing the software that adheres to those changes, we
may conclude that these students have successfully applied
what we intended for them to learn. However, if students
are only writing the reports for the sake of completing a
course milestone and they never refer to the feedback or the
contents of the reports, then the students themselves have a
behaviorist mindset and the class has failed to teach them the
importance of those concepts. Evidence of students writing
separate sections and stitching their work together without
proofreading each other’s work also points to this pattern.

These five milestones have persisted through to 2023, al-
though the size of the documents required has significantly
decreased. Operationally, while creating a project plan was a
helpful tool to scope out the project requirements and have
students consider how well their skills meet those require-
ments, the inevitable changes of these requirements quickly
outdated the project plan making it not very useful in the
second semester. Similarly, the design document in the early
years resembled the deliverable from a waterfall development
process where a full system design was built (e.g., use case
diagram, entity-relationship diagram, user interface mockups).
Over the years, we shifted to a more agile approach and
encouraged incremental design and builds. The peer testing
sessions no longer required reports, but the deliverables were
replaced with logging issues for project tracking in the code
repositories. Finally, the final project deliverable requirements
have decreased via an imposed maximum page length. To
better assess individual contributions, the final report also
became an individual report in 2023.

A major change in the presentation format occurred when
class sizes increased. Previously, each team would present in
front of the whole class. In general, this format encouraged



students to be more involved in each other’s work and im-
proved team communication and morale. Unfortunately, class
time was insufficient to accommodate all the presentations for
large classes. Thus, the presentation format changed to video
presentations only. While some teams still delivered high-
quality, cohesive presentations, many teams opted for each
member to record their own clips and stitch them together
as the final submission. We believe using a video format for
presentations reverts our students to a behaviorist mindset.

C. Team Roles

Team roles are commonly used in the workplace to increase
individual accountability and team success [3]. Initially, team
roles were designed to facilitate effective teamwork in the
course. In 2012, we asked teams to identify an individual who
would take on each of the following roles: Team Lead, Lead
Assistant, Client Liaison, and Secretary. Our view was that
different students could contribute to the project in technical
and non-technical ways because their technical competencies
have been assessed in previous courses in the program. How-
ever, asking students to pick a role and keeping them “in their
place” seems counterproductive to student learning; students
often choose tasks that they are good at and avoid doing
work that requires extra effort. Furthermore, we saw power
dynamics between a high-performing student who assumed
the Team Lead role and others who were expected to follow
the lead’s directions and felt they could not speak up in the
team meetings. Having dedicated team roles may also create
inequitable situations as the literature reports that minorities
are often pressured to take on less technical tasks in project
work [7], [9], which we also encountered in our experience.

To create a less hierarchical structure, we introduced multi-
ple leading roles. In 2017, the roles evolved to include Project
Manager, Technical Lead, Test Lead, and Client Liaison
(which assumes secretarial tasks). Due to changes in tech-
nology and industry trends, many projects had more demands
on system administration and operations. For this reason, we
replaced the Test Lead with an Integration Lead, and everyone
was responsible for high-quality testing. Unfortunately, the
challenges mentioned about having team roles persisted. For
example, roles such as the Project Manager and the Client
Liaison were seen as less technical, and students in those
roles often took on more of the “chores” in the project. Note
that we did not collect data directly related to the student
roles and their participation level, and therefore, we cannot
make conclusions that certain roles fostered higher levels of
participation or that certain roles were more suited for a
constructivist or social constructivist learning environment.

Since some students took many prerequisite courses online
in recent years (because of COVID-19) and quality control
was less strict due to increasing class sizes, we felt that
a significant portion of low-performing students got by in
team projects but did not do their fair share of the work.
Thus, we removed role assignments in order to place more
emphasis on individual competencies. In 2023, we adopted
a fully agile process where teams were asked not to have

assigned roles because we wanted to emphasize the importance
of technical skill assessment in this course where everyone
is expected to be competent in programming, testing, and
reviewing code. Although we still saw power dynamics be-
tween high-performing and low-performing students within a
team, we believe this approach enables students to contribute
more equally and is more appropriate for facilitating a social
constructivist environment for student learning.

D. Weekly Interaction and Assessments

In 2012, the instructor would meet with every team weekly
to review progress and troubleshoot problems. Since there
were very few teams, the instructor could spend 30 to 60
minutes with each team weekly. This format provided a
collaborative and constructivist environment where the in-
structor acted as a facilitator to assist students in solving
their problems. No formal rubrics were used to assess weekly
performance at this time.

Teams were asked to have hour-long meetings with their
client on a weekly basis as well, although in the early years,
this was not enforced. All the team members were expected
to attend these client meetings, however, some students would
miss these meetings occasionally and, in rare instances, the
client may cancel meetings. These meetings aimed for the
teams to present their ideas, prototypes, and progress to the
client and ask for clarifications where needed. Following a
social constructivist viewpoint, clients used these meetings to
communicate their expectations and feedback to the students,
helping them understand industry norms.

To ensure consistency and transparency between the in-
structor and the students, the instructor began to employ a
rubric in 2016 to evaluate individuals on their professionalism
(e.g., collegiality, attitude, following processes, punctuality,
mature responses, work ethics), planning and management
(e.g., time logging, time management, task focus, plan de-
velopment, plan evaluation, plan adjustment), and the work
completed (e.g., number of tasks completed, number of tests
written, number of tasks reviewed, number of hours spent).
This rubric was used during the weekly in-class meetings
which gave students immediate feedback on their progress as
well as areas of improvement. Although this rubric intended
to follow a social constructivist approach by incorporating
industry standard practices (such as professional behavior, time
management, and work done), the idea of grading students
based on their weekly demonstrated behaviors is naturally
behaviorist because the grades function as a reward for an
observed behavior.

Furthermore, the majority of the points in this weekly
assessment are allocated to the amount of work completed
individually, which is measured based on individual work
output rather than individual learning. Nonetheless, students
were rewarded bonus marks if they did extra work, giving
them the flexibility to focus on constraints from other courses
or personal lives. This flexibility helps create a less stressful
academic environment for students.



As the class size increased, the amount of time dedicated to
meeting each team decreased. This forced the instructor meet-
ings to change from collaborative problem-solving to progress
update reports only. In 2020, the class increased to 20 teams
and we decided to change the client model to have two to three
student teams matched to every client. Since the number of
contact hours did not increase, each client met multiple teams
simultaneously. This created confusion for the clients as they
had a hard time keeping track of the teams, individuals, and
team prototypes. This arrangement also imposed scheduling
constraints and increased unanticipated communication dif-
ficulties (see Section III-E3 for further details below). For
the instructor-to-student meetings, the weekly rubric was no
longer feasible so alternative approaches were needed (we
discuss individual evaluations further in Section III-E2 below).
The increase in class sizes has made these meetings less about
knowledge construction and more about progress and end-
product evaluation.

E. Evaluation Criteria

In 2012, 70% of the course grade was based on group
work, such as weekly activity reports, major requirements
and design documents, a test plan, intermediate prototypes
produced, and final project products. The remaining 30%
was based on individual work, divided evenly into individual
contributions, peer evaluations, and individual presentations.
Since we observed different levels of contributions across the
individuals in the teams, the future years weighted the team
marks and the individual marks more evenly. Moreover, due
to some disrespectful behavior exhibited toward the client, a
client component was added in all subsequent years.

In 2017, the team component was worth 35% of the grade,
the individual component was worth 45%, and the client
component was worth 20%. These percentages fluctuated
slightly from year to year. For example, the client component
ranged from 15% to 25% depending on the specific year.

In 2023, the course evaluation criteria shifted to 55% for
the team component, 40% for the individual component, and
5% for the client component. One major change was reducing
the client component because the student teams no longer held
weekly client meetings and, therefore, did not have to manage
client expectations or learn to communicate professionally
with clients. Instead, clients were asked to evaluate submitted
work twice in the course. A second major change is adding
more weight to the team component to measure their weekly
progress and collaboration process, which gave more of an
emphasis on the learning process rather than the deliverables
produced by the students.

None of the learning theories reviewed gave any indica-
tion of how each of these components should be weighed.
However, we believe the learning theories provide insights
into how each component should be assessed. We discuss the
assessment details of each component in more detail.

1) Team Component: In all years except 2023, the team
component is measured based on the major course deliverables
mentioned in Section III-B. The instructor evaluated all the

team deliverables to calculate a base score. Peer evaluations
were used to create a weight multiplier to the team scores so
that the resulting individual mark could be lower or higher
than the base score. We provide more context on the peer
evaluations in Section III-F below.

In 2023, we dedicated a portion of the team component
to assess the team’s collaboration process. In a software
engineering context, this includes conducting project man-
agement activities regularly, reporting on project progress
effectively, (re)prioritizing tasks while considering changing
requirements and project constraints, coordinating with the
team, and following a list of standard programming practices.
The introduction of this criterion is meant to make students
more accountable to the team while ensuring they are engaging
in proper team conduct and professional coding practices. As-
sessing students on their collaboration process also expressed
the importance of industry norms and practices over a team’s
ability to build software that has many working features but
does not conform to standard conventions and is not easy to
maintain. This approach encourages students to focus more on
the learning aspects that are central to social constructivism
and have the grades reflect those aspects of student learning.

2) Individual Component: In principle, this component
represents the amount of work an individual contributes to
the team. Before 2020, this assessment was largely subjective
based on the weekly in-class interactions with each team and
student measured by the rubric mentioned in Section III-D.
Since students were measured based on their ability to apply
knowledge learned from other classes to the project, their
ability to evaluate online resources and subsequently overcome
technical obstacles, and how much work they completed, this
rubric assessed higher-order learning outcomes which aligned
closely with constructivism and social constructivism. With
small classes, instructors felt it was still possible to accurately
discern how much each student was working and check code
contributions as needed to evaluate individual work fairly.

In the years when peer evaluations were used, a small
portion of the individual component also included a grade that
assessed the quality of the submitted evaluations to ensure the
content reflected critical thinking, which supports the ideas
promoted by constructivism and social constructivism.

In 2019, a self-reflection activity was introduced to help
individuals improve their team communication at the end of
each milestone. This activity asked everyone to identify their
strengths and areas of improvement based on their experience
in the last milestone. When they completed their form, all the
team members were asked to review each other’s responses
and discuss as a group potential strategies to strengthen one
or two problematic areas. Sadly, many teams did not take this
activity seriously and refused to complete the forms during
the dedicated class time. Rather than forcing students to do
self-reflection just for the grade, we discontinued the activity
and sought alternative ways to improve team communication
and individual self-regulation.

Since 2020, class sizes increased and automated scripting
tools have been used to garner statistics about individual con-



tributions with limited success. At first, simple code metrics
such as line and file contributions were used. These metrics
were normalized based on team contributions and weighed
relative to the expected weekly contributions. However, many
students disagreed strongly about using these metrics to di-
rectly calculate their grades and found ways to game the
system by collectively inflating their code contributions as a
team. Clearly, students felt certain coding behaviors were not
good indicators of their learning and productivity.

Subsequently, these metrics were used to inform student
progress and not their grades directly. In 2023, code metrics
not only measured lines of code but also the number of tests
added and code reviews done for other team members. The
idea was to enforce good software development practices so
that the programs they build would be properly tested and
reviewed by others. Unfortunately, most students did not spend
time writing meaningful tests and code reviews, but they did
what was needed to get them marks in the rubric. Furthermore,
counting the number of completed features, tests, and code
reviews made the students think only quantity matters. Overall,
there is still resistance and fear that this approach weighs
too heavily on the quantity of work produced. Ideally, the
individual component could incorporate a systematic way that
measures the quality of the work produced and reflect an
individual’s learning gains over the course of the project.

3) Client Component: Starting in 2013, each team received
a client evaluation based on identical surveys completed by
their client in the middle of and at the end of the project.
Since they had weekly meetings with the teams, clients were
expected to report on the team’s professionalism, teamwork
ability, project progress, and confidence in receiving a high-
quality final deliverable. These questions were written as 5-
point Likert scale questions where we converted the responses
into a numeric score to provide a client grade. The client
feedback survey also had open-ended questions about team
strengths and areas of improvement. With a small number of
teams, this process was very manageable and ensured we met
client expectations for the course project. Students also got
immediate feedback on their professional conduct and work
quality based on industry expectations. This process promotes
a social constructivist learning environment for students.

For teams that struggled with client management, the mid-
point survey helped identify the problems and gave students
a second chance at improving the process for the second
semester of the project. This approach adopts some of the
core ideas of mastery learning and provides added incentive
for students to improve in the course.

In 2023, this client interaction was reduced due to a new
approach we experimented with. Modeled after a hackathon
competition, in this course offering, only 4 clients were
available and teams chose the project they wished to work on.
Subsequently, clients gave feedback on the project submissions
in the middle and at the end of the project. Arguably, this client
feedback still provides a sense of industry norms and external
validation for the students, but we have unfortunately lost the
feedback on professional conduct from the clients. For details

on the hackathon client model, please refer to [10].

F. Peer Evaluations

After each deliverable submission, students were asked to
complete a peer evaluation of their team. When answers
were released to the team, students typically played nice and
generally did not report problems. However, when answers
were kept confidential with the teaching staff, we saw some
cases where students expressed concerns about team dynamics
when they arose. We felt this approach was effective in helping
the teaching staff identify and manage team conflicts early.

As mentioned earlier, peer evaluations are compiled and
converted into a numeric multiplier to weigh the base score
of the team deliverable. In the early years, this weight ranged
from 0 to 1.0, and from 2017 onwards, this weight ranged
from 0 to 1.2 so that students have a chance to receive bonus
marks for extraordinary work if the weight is over 1.0. In 2023,
peer evaluations were conducted weekly and the accumulative
average peer scores were used as the weighted multiplier
for the team deliverables. Using peer evaluations in this way
gives students a chance to explain discrepancies in workload
distributions among the team members which supports the goal
of situating their learning in a social context.

IV. REFLECTIONS

A. RQ1: Necessary Evaluation Components

Based on our discussion of the various assessment activities
from Section III, we highlight the ones that foster deeper
learning opportunities. In terms of course design, we find the
following aspects promote a social constructivist environment
and enable students to engage in experiential learning:
• A team project that assesses the collaboration process in

addition to the deliverable quality
• Regular peer evaluations where members provide construc-

tive feedback to each other
• A real-world industry project that offers external validation

and, ideally, regular client interaction
• Problem-solving sessions with the teaching staff to assist

with knowledge construction and promotion of a construc-
tivist and social constructivist mindset

Furthermore, students who graduate from our program should
have mastered all the competencies of a “computer science
undergraduate student”. To better prepare them for industry-
quality work, the course should also give students opportu-
nities to engage in industry-standard tools and practices. The
following points summarize these ideas:
• Measuring students’ work against all relevant competencies

(a departure from enforcing team roles)
• Using industry tools and following industry standard prac-

tices in collaborating in the software development process
Certain assessments have successfully evaluated effective
teamwork, professionalism, and depth of understanding. The
following items should be used for this purpose:
• Weekly check-ins with a rubric to evaluate preparedness,

planning, management, and professionalism



• Peer testing sessions to give feedback and suggestions on
development deliverables

• Written or oral explanations on project inner-workings
• In-person client presentations on project functionality
Written reports resembling business documents can be used
as project deliverables, but the administrative requirements
should be altered to foster constructivist thinking.

B. RQ2: Alignment with Learning Theories

Section III discussed each assessment and how they align
with the learning theories presented in Section II. Generally,
most assessments were developed from a constructivist or
social constructivist perspective. However, their effectiveness
varied due to three key issues. First, certain mechanisms
in grading students made students value behaviors over en-
hancing their knowledge. Many students prefer exhibiting
behaviors associated with rewards (i.e., high scores) even if
it means not agreeing with the purpose of the assignments,
over working on the activities for the sake of learning and
self-improvement. We saw this behavior in the written reports,
weekly coding behaviors, and video presentations. When stu-
dents do not buy into the learning goals of the assessments,
they complain about the fairness of the assessments and devote
their effort to alternative activities instead.

Second, increasing class sizes has made our approach be-
come less constructivist and more behaviorist because there
is less time available to engage with students in meaningful
discussions. This happened with in-class contact, client com-
munication, project presentations, and individual assessments.
At the heart of the problem is the limited resources available to
properly support student learning. Although TAs can provide
some relief to the resources problem, adequate training is
necessary to ensure TAs have the technical competency and
teaching experience to support the students. Attempting to
solve a problem by introducing another challenge does not
truly remove the problem in the end.

Third, some students come with a behaviorist mindset
and they just want to know what they need to do to get
a good grade in the course. For example, despite knowing
that feedback is important to learning, many students ignore
feedback from others and most students do not take time
to provide constructive feedback for their peers. Also, when
faced with an open-ended project, rather than embracing the
freedom, some students struggle with the uncertainties and
would rather be told what they need to do instead. Certain
students may have been ingrained in behaviorist paradigms
which makes them more resistant to classrooms that celebrate
constructivist approaches.

C. RQ3: Added Challenges for Large Classes

To summarize, several challenges have been introduced due
to large class sizes that prevented the successful implementa-
tion of our capstone course:
• Number of available industry partners to serve as clients
• Increasing time commitment in managing client expecta-

tions and minimizing client confusion

• Reduced contact time per student, resulting in shallow
progress updates and adopting code metrics as a proxy to
progress and levels of individual contribution

• Lack of time to engage collaboratively with students in
overcoming their technical obstacles and team conflicts

• Harder to change student mindset due to reduced interaction
• Instructors had less frequent student and team interactions

since TAs serve as surrogates for the instructor check-ins
• Inadequate TA training to provide TAs with the technical

expertise and teaching experience to support the teams
• Tradeoffs between team size and number of teams; larger

teams involve more complex dynamics and management,
smaller teams are more productive but having too many
teams makes it difficult to provide reasonable guidance

• Increasing difficulty in monitoring team progress closely and
ensuring no individual student feels lost in the project

Overall, the biggest impact is that these challenges resulted in
removing constructivist and social constructivist aspects from
the course. This implies that large classes are more suited to
be run as a behaviorist classroom.

V. GUIDING PRINCIPLES IN LARGE CLASSES

Using our findings to the research questions, we formulate
the following principles to guide the development of assess-
ments for software engineering teams in large classes.

1) Course evaluation components should consist of a client
component to allow for external validation, a team compo-
nent to emphasize the importance of teamwork, and an
individual component so students can demonstrate their
accountability to the team and client. How much each com-
ponent is worth should reflect the pedagogical objectives
of the course. Having all three components helps situate
learning in a social constructivist context.

2) The client component should be based on the interaction
experience between the client and the students, as well as
the client’s satisfaction with the prototype. The goal of this
component is to help students understand industry norms.

3) The team component should evaluate how well the students
function as a team, how well the team follows industry-
standard processes, and the quality of their required deliver-
ables. The grades for the deliverables may be individualized
via the use of peer evaluations. The purpose of this com-
ponent is largely to teach students how to work in teams
effectively, while exercising industry-standard practices.

4) The individual component should evaluate how well stu-
dents demonstrate a list of “necessary” computer science
competencies. This evaluation may need to be separate
from the team deliverables, for example, through addi-
tional individual tests. This component ensures each stu-
dent has the basic competencies required for a graduat-
ing computer science undergraduate student. Instructors in
under-resourced classrooms must design these assessments
carefully so that students have time to demonstrate the
necessary skills and the teaching staff has enough time and
technical expertise to evaluate those outcomes reliably.



5) Deliverables should be meaningful for the students so they
are more likely to take ownership of the work. For example,
computer science students who wish to get a programming
job are unlikely to value writing business documents. Thus,
the knowledge we wish the students to demonstrate in those
documents should ideally be incorporated into the software
development process instead (e.g., in the README doc-
umentation). Making the deliverables relevant for students
increases the value of constructivist ideals.

6) When used to identify discrepancies in workload distri-
butions, peer evaluations should protect student confiden-
tiality so that the responses are not released to students
without explicit instructor approval. This way, students
have a safe platform to voice their concerns. This approach
helps make outcomes more fair in a social constructivist
learning environment. Although we did not experiment
with this, it should also be possible to teach students how
to provide constructive and critical feedback in the peer
evaluations as well.

7) Short, weekly surveys can serve as quick, effective tem-
perature checks in large classes (e.g., [8], [13], [16], [20]).
Questions should help identify issues in team dynamics,
such as the fairness in workload distribution. The purpose
here is to provide early alerts to the instructor in case
interventions are required. This approach alleviates the ad-
ministrative overhead of monitoring teams in large classes.

8) When project progress data is collected periodically (e.g.,
via self-reported logs, project management reports, regular
check-ins), teams should be taught to use this information
to self-regulate their own learning by enacting, evaluating,
and monitoring their progress [25]. This process must be
repeated and the data must be updated regularly. Although
we did not experiment with this idea, we believe this is
a necessary next step in helping students take an active
role in their own learning. Likewise, the same can be
said for data collected on individual skills (e.g., via self-
reflections, code repository data) where students can be
taught to self-regulate their individual learning process
[25]. Releasing the data back to the students closes the loop
in the learning process by helping students take ownership
of their education and become more effective learners.

VI. CONCLUSIONS

This work results from our experience in teaching the soft-
ware engineering capstone course over the past twelve years.
Our goal is to inform instructors and course designers on how
the structure and implementation of assessments can influence
student learning. We analyzed a variety of assessments from
a learning theory perspective, with an emphasis on changing
requirements mandated in under-resourced classrooms. A key
finding revealed that, while many assessments were designed
with constructivism and social constructivism learning oppor-
tunities in mind, the implementation and the student mindset
can deter the benefits of those assessments. We hope this work
fosters a discussion around these challenges so we can together

develop effective strategies to improve the teaching and student
learning experience.

REFERENCES

[1] S. Ahmad, N. Sultana, and S. Jamil. Behaviorism vs constructivism:
A paradigm shift from traditional to alternative assessment techniques.
Journal of Applied Linguistics and Language Research, 7(2):19–33,
2020.

[2] B. Bates. Learning Theories Simplified: And How to Apply them to
Teaching. Sage Publications Ltd., 3rd edition, 2023.

[3] R. Belbin and B. V. Team Roles at Work. Routledge: London, 3rd
edition, 2022.

[4] B. Bloom. Taxonomy of educational objectives: Cognitive and affective
domains. New York: David McKay, 1956.

[5] B. Bloom. Learning for mastery. UCLA Evaluation Comment, 1:1–12,
1968.

[6] J. W. (ed.). Culture, Communication, and Cognition: Vygotskian
Perspectives. Cambridge: Cambridge University Press, 1985.

[7] K. Grindstaff and M. Mascarenhas. ‘no one wants to believe it’: Man-
ifestations of white privilege in a stem-focused college. Multicultural
Perspectives, 21(2):102–111, 2019.

[8] N. Heyl, E. Baniassad, and O. Ola. Team harmony before, during,
and after covid-19. In Proceedings of the ACM SIGPLAN International
Symposium on SPLASH-E, pages 52–61, 2022.

[9] N. Holmes, G. Heath, K. Hubenig, S. Jeon, Z. Kalender, E. Stump, and
E. Sayre. Evaluating the role of student preference in physics lab group
equity. Physical Review Physics Education Research, 18(010106), 2022.

[10] B. Hui, S. Hodge, and D. Samra. Transforming the client relationship
to support large capstone classes. In Proceedings of the 54th IEEE
Frontiers in Education (FIE), 2024.

[11] R. D. Jr. A survey of computer science capstone course literature.
Computer Science Education, 21(3):201–267, 2011.

[12] A. Millet and c. E. Din˙Synthesizing a conceptual framework for assess-
ment in online education. In Proceedings of International Technology,
Education and Development Conference (INTED), pages 7893–7899,
2023.

[13] M. Modell. Iterating over a method and tool to facilitate equitable
assessment of group work. International Journals of Designs for
Learning, 4(1):39–53, 2013.

[14] I. Pavlov. Conditioned Reflexes: An Investigation of the Physiological
Activity of the Vertebral Cortex. London:Oxford University Press, 1927.

[15] J. Piaget. Construction of Reality in the Child. London:Routledge &
Kegan Paul, 1957.

[16] K. Presler-Marshall, S. Heckman, and K. T. Stolee. Identifying strug-
gling teams in software engineering courses through weekly surveys.
In Proceedings of the 53rd ACM Technical Symposium on Computer
Science Education (SIGCSE), page 126–132, 2022.

[17] R. Prokopetz. A reflection upon capstone eportfolio projects and their
alignment with learning theories. International Journal of ePortfolio,
12(1):1–15, 2022.

[18] D. Singhal. Understanding student-centered learning and philosophies
of teaching practices. International Journal of Scientific Research and
Management, 5(2):5123–5129, 2017.

[19] B. Skinner. Reinforcement today. American Psychologist, 13:94–99,
1958.

[20] R. Tucker and C. Reynolds. The impact of teaching models, group
structures and assessment modes on cooperative learning in the stu-
dent design studio. Journal for Education in the Built Environment,
1(2):39–56, 2006.

[21] L. Vygotsky. Mind in Society: The Development of Higher Psychological
Processes. Cambridge, MA:Harvard University Press, 1978.

[22] J. Watson. The Ways of Behaviourism. New York:Harper & Brothers,
1928.

[23] M. Weegar and D. Pacis. A comparison of two theories of learning:
Behaviorism and constructivism as applied to face-to-face and online
learning. E-Leader, pages 1–20, 2012.

[24] S. Wilson and P. Peterson. Theories of learning and teaching: What
do they mean for educators? Technical report, Best Practices: NEA
Research. National Education Association, 2006.

[25] B. Zimmerman. Becoming a self-regulated learner: An overview. Theory
Into Practice, 41(2):64–70, 2002.


	Introduction
	Background on Learning Theories
	Course Context and Design Changes
	Course Learning Outcomes
	Major Milestones and Deliverables
	Team Roles
	Weekly Interaction and Assessments
	Evaluation Criteria
	Team Component
	Individual Component
	Client Component

	Peer Evaluations

	Reflections
	RQ1: Necessary Evaluation Components
	RQ2: Alignment with Learning Theories
	RQ3: Added Challenges for Large Classes

	Guiding Principles in Large Classes
	Conclusions
	References

