

Technology-Enhanced Personalized Learning

Technology to maximize learning outcomes for *individuals*

Technology to maximize learning outcomes in *teams*

Why Teams?

- Collaborative problem solving leads to better outcomes
 - Builds on each other's knowledge
 - Increases productivity
 - Encourages personal growth
 - Promotes innovation
 - Develop long-term relationships
- Attention on teamwork in educational and workplace settings
 - A core 21st Century skill

Diversity in Teams

- Many educators agree that team diversity is important
- Conflicting results that diversity has on team outcomes and how diversity is defined [Horwitz & Horwitz, 2007]
- **Gender-diverse** and **race-diverse** teams often result in more conflict where minoritized members are:
 - Confronted with microaggressions [Ong et al. 2011]

• Perceived as less skillful than peers in homogeneous teams [Pelled, 1996; Baugh, 1997]

- Treated with bias
 - not heard, not given leadership roles, pressured to change behaviors [Grindstaff & Mascarenhas, 2019]
- Problems are exacerbated when minorities
 are tokenized [Kanter 1977; Spangler et al. 1978;
 Thompson & Sekaguaptewa 2002]

Your Reflections

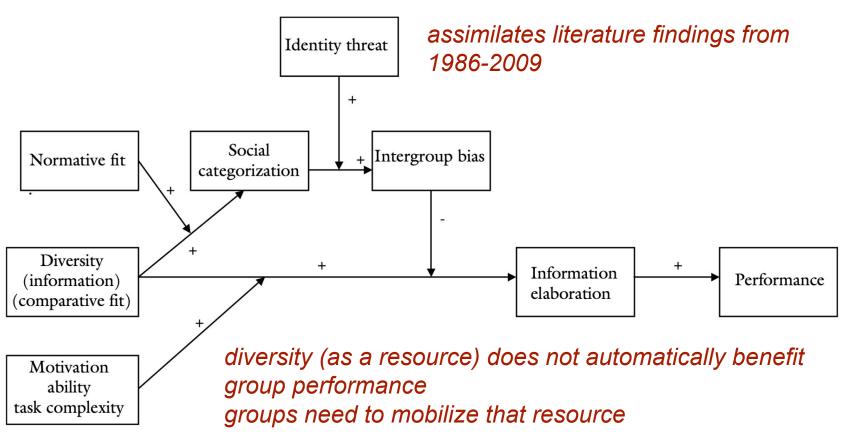
- Your past experiences or observations of student teams
 - What kind of imbalances were/are there?

Your Reflections

- Your past experiences or observations of student teams
 - What kind of imbalances were/are there?
- Literature reports on:
 - Gender-based role division
 - Task assignment bias
 - Dominance and comfort in group interactions
 - Social loafing

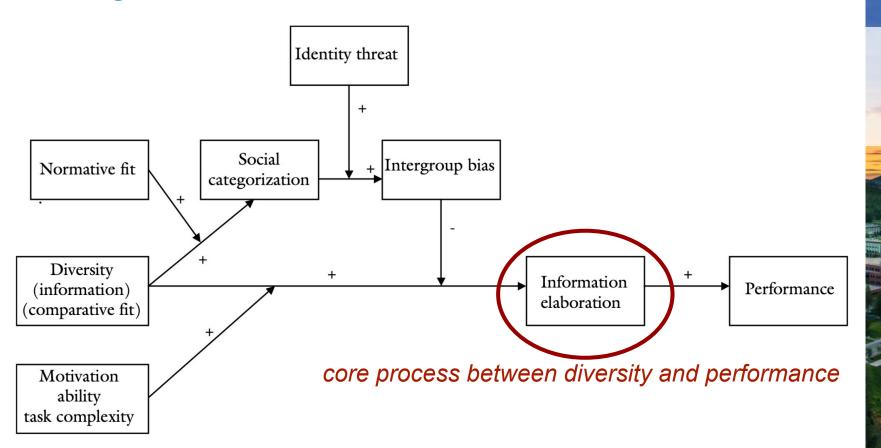
Recent Findings [Sæter et al., 2024]

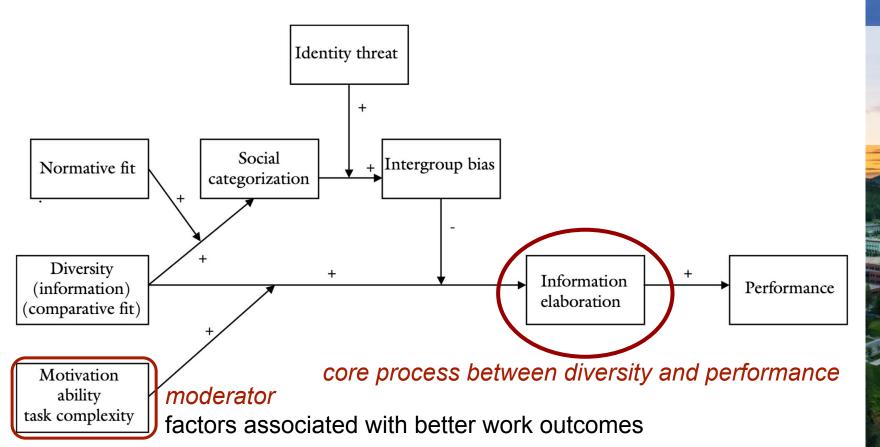
- Paper: The Role of Team Composition in Agile Software Development Education: A Gendered Perspective
- Divided 240 students into teams of 6
- Controlled for number of women
- Collected self-reported data
- Patterns:
 - "tendency for gatekeeping at a technical level by the boys"
 - Boys expect girls to do design tasks
 - 5W/1M: "a friendly and chatty tone while programming"
 - 0W/6M: least focus on design, most on programming
 - Lowest Teamwork Quality scores at 2W/4M, 3W/3M
 - Seeking technical advice and approval from men

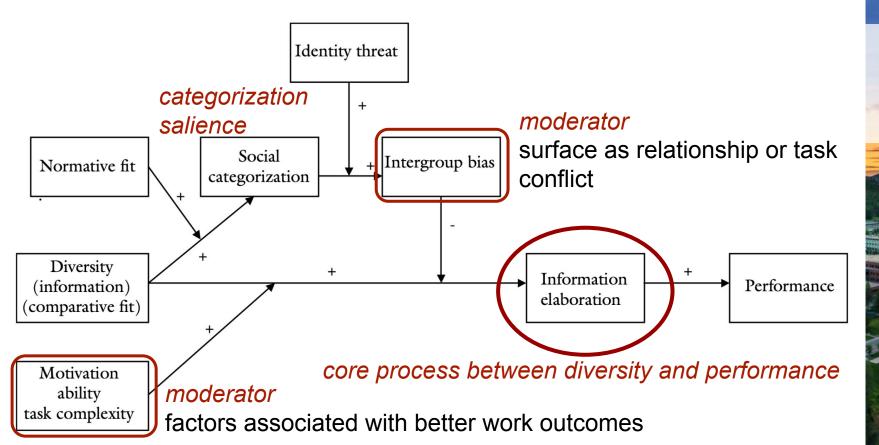


Recent Findings [Sæter et al., 2024]

- Paper: The Role of Team Composition in Agile Software Development Education: A Gendered Perspective
- Divided 240 students into teams of 6
- Controlled for number of women
- Collected self-reported data
- Findings:
 - Tokenism effects persist beyond 1
 - Gender parity ≠ equality
 - Equitable treatment begins to surface when *majority* are women







Software Engineering Team Collaboration

- Team members work on a programming project (e.g., hosted on GitHub)
- Development cycle:
 - Members simultaneously pull the master version
 - Members work independently on additional features locally
 - Members ask for code reviews from others
 - If approved, new code is pushed and merged to create a new master version
- Literature reveals issues with gender-diverse professional teams, but limited studies on student teams and other diversity factors [Rodríguez-Pérez et al., 2021; Graßl et al., 2023]

Dataset

- Code reviews manifest as asynchronous messages between team members
- Collected this data from 105 students split into 22 teams
 - 86 males, 15 females, 1 non-binary, 3 no answer
 - 63 racial minorities and 42 European descent
 - 11 racialized gender minorities
- A team is *diverse for a learner characteristic* if at least 2 members differ
 - 12 gender-diverse teams vs. 10 all-male teams
 - 16 racially diverse teams vs. 6 racially homogeneous teams (5 were all racial minorities, 1 all European descent)
 - 8 teams had 1+ racialized gender minorities vs. 14 teams without intersectional members

Content Analysis

- Two coders on 29.79% of the data
 - 7,610 comments segmented by sentence
 - One round of inductive familiarization, followed by two rounds of deductive categorization [Braun & Clark, 2021]
 - Established intercoder reliability ($\alpha = 0.8564$)
- Codebook on next slide
 - Utilizing an action/process coding form of categorical labeling, and a non-exclusive approach to assigning labels [Saldana, 2009]
 - 12,587 comments segmented by phrases that switched labels

Codebook

Task Oriented

Relationship **Building**

Facilitates Elaboration

	Code	Meaning and Examples
Task	Approving	= to approve something e.g. "The code all works and looks good to me", "Approved.", "LGTM"
Task	Updating	= providing programming context or a status update or stating a planned task (i.e. something that is <i>done</i> , a task left out intentionally) e.g. "All the individual logs added", "Ready to merge!"
Task (Reln)	Criticizing	= pointing out something is wrong without additional helpful suggestions e.g. "This doesn't work", "This package is outdated"
Task	Directing	= giving specific instructions, suggestions with code e.g. "Please add the user stories", "Remove this", "Let's"
Task (Reln)	Suggesting	= providing specific direction on how to change something. Soft version of directing. e.g. "How about this?", "Perhaps"
Rein	Complimenting	= saying something is good or well done e.g. "Great logs", "Nice work", "The UI looks fantastic", "Great work Mac!"
Reln	Encouraging	= saying something supportive, boosts team morale e.g. "You've got this buddy!", "It was great working with you all"
Rein	Thanking	= saying thanks with or without reference to the object e.g. "Thanks!", "I appreciate all the work you've done"
Elab (Reln)	Apologizing	= recognizing a mistake e.g."oops my bad", "sorry about that"
Elab (Reln)	Agreeing	= saying something in agreement e.g. "sounds good!", "Ok makes sense", "Sure"
Elab	Disagreeing	= saying something in opposition e.g. "I disagree. It should be SERIAL", "Hmm, or not."
Elab	Explaining	= explaining why something is done, knowledge explanation e.g. "as I understand it, the builtin package replaces it"
Elab	Asking	= requests for explanation or clarification, asking for an opinion e.g. "newline?", "Could you help explain what this is?", "Let me know what you think"

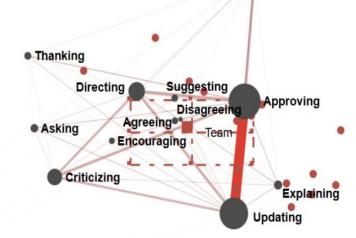
Epistemic Network Analysis (ENA) [Shaffer, 2017]

- · Uses quantitative techniques to analyze qualitative data
 - Identifies and quantifies connections among units in coded data
 - Visualizes their relationships in dynamic networks
 - Compare statistical differences between networks
- Our context:
 - Units are the coded labels (Approving, Criticizing, Encouraging,...)
 and teams (but no analysis here)
 - Comparing differences in communicative behaviors
 - Context within work artifact (not full picture)

Overall ENA Graph: All Teams, All Codes

Black dots are codes

Larger ~ more occurrences


Red dots are teams

Square is the average team

Lines represent code co-occurrence

Thickness ~ higher frequency

Dashed box is confidence interval

Complimenting

Detailed Results (Removed)

How do we encourage equitable participation?

