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- Undergrad software engineering project with 8 students
- About half A/B-students and half low-performing
- Taught me the pains of working in large self-managed teams
- Always wondered what criteria the prof used 

- Fast forward 15 years later
- As a new professor who fumbled into team-based learning
- How should I form students into teams?

- Explored with student self-formed teams and strategic criteria
- Advice from colleagues to diversify team skills and gender

Most Memorable Team Experience
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- Team formation task: assign all students into non-overlapping groups
- NP-hard problem 

- Common strategies:
- Random teams - can generate unbalanced teams that result in 

disproportionate individual participation
- Self-Assembled teams - can cause discrimination among students 

with poor social relationships 
- Strategically formed teams - which criteria? e.g., demographics, 

common time, social preferences, projects, diversify vs. concentrate
- Goals:

- Foster balanced interactions so students can maximize learning gains

Collaborative Learning Context
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Literature Overview
Computer-Supported 

Collaborative Learning 
(CSCL)

AI
CS/Engineering 

Education

Research 
Questions

● Finds collaborative teams 
e.g. heterogeneous teams
(no projects)

● Solves specific 
problem instances
e.g. finds a best team

● Finds practical 
solution in 
classroom

Algorithms ● Ad hoc approaches
e.g. genetic, search, etc.

● Many learner characteristics

● Mostly game-theoretic 
and agent approaches

● Abstract char.

● Varies case by case
● Limited 

characteristics

Evaluation ● By demonstration 
● Some algorithm-specific 

measures
● Minimal comparisons with 

other algorithms
● Some learning effectiveness 

measures

● Mostly simulations 
(Strong use of metrics 
and benchmarking)

● Some application in 
trivial instances

● By demonstration
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Caution: Variable representation and distance calculation
e.g. Gender with 1 = woman, 2 = man, 3 = non-binary, etc.
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Our Proposal: The Priority Algorithm
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+ unbiased

+ general
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- Many educators agree that team diversity is important
- Conflicting results that diversity has on team outcomes and how diversity is 

defined 
- Gender-diverse and racial-diverse teams often result in more conflict 

where minoritized members are:
- Confronted with microaggressions
- Perceived as less skillful than peers in homogeneous teams
- Treated with bias 

- not heard, not given leadership roles, 
pressured to change behaviors

- Problems are exacerbated when minorities are tokenized

Diversity in Teams
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Our Proposal: The Priority Algorithm
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Schematic View of the Priority Algorithm

Visualizing the solution space
● Objective function maximizes solution criteria

goal
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Schematic View of the Priority Algorithm

random starting point

eventually 
reach the 
optimal solutionStandard hill climbing approach

● Objective function handles multiple types
of team formation criteria 
e.g. diversify without creating token minorities



16

Schematic View of the Priority Algorithm

random starting point

How to avoid local optimum?
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Schematic View of the Priority Algorithm

random starting point

Perform a "random swap" at each step
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Schematic View of the Priority Algorithm

MAXITER
= num
steps to
climb

Spread
= num simultaneous paths 
(at a given step)

Keep best K paths 
(for computational efficiency)

random starting point
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Understanding Algorithmic Behavior

- Varying MAXITER, Spread, K
- Exploring 2 initial algorithms
- Measures priority satisfaction

http://www.youtube.com/watch?v=TZY_MI_zMt0
http://www.youtube.com/watch?v=ZQJzIEWugfw
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Understanding Algorithmic Behavior

- Measures solo status

http://www.youtube.com/watch?v=0Lm8DQJ-hNU
http://www.youtube.com/watch?v=KMDnC-1xrxI
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Understanding Algorithmic Behavior

- Scenario with social preferences
- Only 1 mutual friend

http://www.youtube.com/watch?v=7fIjyoa0JdU
http://www.youtube.com/watch?v=UKMIkHg1n0U
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Understanding Algorithmic Behavior

- More complex social scenarios

http://www.youtube.com/watch?v=zy4QR-hpfKc
http://www.youtube.com/watch?v=IBLhpqEfopM
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Simulation Framework

- Modules:
- Simulation Controller
- Inputs: Team Formation Criteria, Class Composition, Algorithms 
- Output: Evaluation 
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Simulation Comparisons with Other Algorithms
- Scenario 1:

- 1. Match project requirements
- 2. Diversify females without tokenizing them
- 3. Diversify African-descent without tokenizing them
- Class composition:

- 20% females, 80% males
- 15% African background, 85% European backgrounds
- 10-80% students can meet each requirement
- 5 unique projects, 3-5 requirements each, duplicates to form 

teams of four for class sizes 20, 100, 240, 500, 1,000
- Scenario 2
- Simulation settings
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Simulation Comparisons with Other Algorithms
- Scenario 1
- Scenario 2:

- 1. Concentrate on common time availabilities
- 2. Diversify females without tokenizing them
- 3. Diversify African-descent without tokenizing them
- Class composition:

- 10 timeslots and each student had 3-5 available times
- Gender, cultural backgrounds, class sizes: same as before

- Simulation settings
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Simulation Comparisons with Other Algorithms
- Scenario 1
- Scenario 2
- Simulation settings:

- MAXITER=250, Spread=100, K=30, initial algorithm=weight
- Results averaged over 100 trials
- Comparison algorithms:

- Random
- Double round robin (DRR) - project matching
- Greedy round robin (GRR) - more general purpose
- Group matcher - mentoring based on time and tokenism

- Metrics specific for each criterion
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Simulation Comparisons with Other Algorithms

Manual teams 
reported 60+ 
hours for 240 
students;

CSCL algorithms 
take 2 hours on 
small class sizes

AI algorithms 
mostly applied to 
classes < 40
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Simulation Comparisons with Other Algorithms

Excellent
project
coverage
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Simulation Comparisons with Other Algorithms

Better time
matching
than Group
Matcher
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Simulation Comparisons with Other Algorithms

More 
diverse
than 
random
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Simulation Comparisons with Other Algorithms

Performs
worse on
minimizing 
tokenism
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Insights from Simulation Analysis
- Why DRR does so well on solo status in Scenario 2?

- Putting everyone into one team (nobody tokenized)

- What is Group Matcher doing?
- Generating teams of 3-6 members (not teams of 4)
- Generating fewer teams on average
- Not trying to diversify at all

- What if Priority …
- Generating teams of 6?
- Concentrated instead of diversify?



33

Insights from Simulation Analysis
- Why DRR does so well on solo status in Scenario 2?

- Putting everyone into one team (nobody tokenized)

- What is Group Matcher doing?
- Generating teams of 3-6 members (not teams of 4)
- Generating fewer teams on average
- Not trying to diversify at all

- What if Priority …
- Generating teams of 6?
- Concentrated instead of diversify?



34

Insights from Simulation Analysis
- Why DRR does so well on solo status in Scenario 2?

- Putting everyone into one team (nobody tokenized)

- What is Group Matcher doing?
- Generating teams of 3-6 members (not teams of 4)
- Generating fewer teams on average
- Not trying to diversify at all

- What if Priority …
- Generating teams of 6?
- Concentrated instead of diversify?



35

Simulation Comparisons with Other Algorithms

Becomes 
competitive 
with Group
Matcher
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Real Data Comparisons with Other Algorithms
- HCI class:

- 215 students but only 175 responded
- 168 undergrads, 7 grads
- 37 females, 135 males, 2 non-binary, 1 prefer not to answer
- 6 timeslots, with 31 to 138 students available in each slot
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Real Data Comparisons with Other Algorithms
- Summer Capstone class:

- 9 client-sponsored projects, 2 duplicates, each with 2-5 requirements
- 41 students, all responded

- 4 A+'s, 16 A's, 18 B's, 3 D's, 0 F's (C's were forgotten)
- 6 timeslots, with 13 to 33 students available in each slot
- 15+ students could meet all but 1 req., nobody could meet last req.
- each student has up to 3 friends and 3 enemies

.



38

Conclusions
- Diversity considerations:

- Representing demographic attributes in an unbiased way
- New metrics for group diversity and token minorities
- Approaches for formulating tokenism criteria

-

- Specific contributions:
- Priority algorithm is a new general-purpose team formation algorithm

- Handles project requirements matching, social preferences, 
diversity constraints, tokenism

- Simulation approach for algorithmic 
advancement

Contact: bowen.hui@ubc.ca
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