
Socially-Adaptable Interfaces: 
Crowdsourcing Customization 

Ben Lafreniere, Michael Terry 
HCI Lab 

University of Waterloo 
{bjlafren,mterry}@cs.uwaterloo.ca 

 

ABSTRACT 
This paper reports our work developing socially-adaptable 
interfaces, interfaces that crowdsource the creation of task-
specific interface customizations and instantly share them 
with all users of the application. 

We start with an introduction to the socially-adaptable in-
terface concept and Adaptable Gimp, a system that we are 
developing to test these ideas. We then discuss a number of 
new interaction paradigms for feature-rich applications that 
this work opens up. 

Author Keywords 
Adaptable interfaces, crowdsourcing, human-powered inter-
faces, wikis. 

ACM Classification Keywords 
H5.m. Information interfaces and presentation (e.g., HCI): 
Miscellaneous. 

INTRODUCTION 
For many reasons, modern desktop applications are packed 
with more functionality than is required by any given user, 
and particularly for any given task [4,5,6,7,10]. This excess 
interface complexity has been shown to have a negative 
effect on individuals’ use of the software, both quantita-
tively [2,5] and qualitatively [10]. Adaptable interfaces, 
which give users a mechanism for customizing the inter-
face, have been demonstrated to be an effective solution 
when correctly designed [9]. Unfortunately, users are hesi-
tant to spend time customizing interfaces, since it takes time 
away from their primary task [8]. 

We are exploring socially-adaptable interfaces to address 
excess interface complexity. In this approach, users create 
task sets, task-specific customizations of the application’s 
interface, which are automatically made available to all 

users of the application through an online repository (see 
Figure 1). In essence, the application supports crowd-
sourcing the creation of interface customizations. Once a 
comprehensive collection of task sets exists, users can 
quickly customize the interface by using a keyword search 
to find and install task sets. The result is an imperative in-
terface paradigm, in which users issue direct commands to 
the interface. A keyword search for a task set amounts to 
issuing the command: “Adapt the interface for performing 
task X”. 

In Adaptable Gimp, a system we are developing to test this 
concept, task sets are collections of commands that can be 
displayed in a customizable toolbox. Each uploaded task set 
is associated with a wiki page, allowing any user in the 
community to add or remove commands from the task set, 
or contribute free form documentation. 

User-created task set documentation acts as an organic 
bridge between how users conceptualize tasks and the ap-
plication’s functionality for performing those tasks. This 
and other contextual data created around task sets allows us 
to automatically categorize users, learn about their tasks, 
and make conclusions about the application itself. This 
could feed techniques for connecting users with one another 
or support human computation paradigms. Contextual data 
could also allow user interfaces to become self-correcting, 
providing developers with a hotline to their users and a con-
stant stream of quantitative and qualitative data on how 
their application is used. Finally, it opens new possibilities 
for researchers to perform large-scale user studies. 

In the following sections, we discuss these possibilities fur-
ther. We start by motivating and more formally defining our 
socially-adaptable interface concept and introducing Adapt-
able Gimp. 

 
Figure 1. 



SOCIALLY-ADAPTABLE INTERFACES 
Functionality in feature-rich applications is seldom orga-
nized to help the user with perform specific tasks. Rather, it 
is organized around housing all of the available functional-
ity somewhere in the interface, typically in a hierarchical 
organization. Even if the user understands the logic under-
lying the organization, commands for any individual task 
are spread throughout the interface. For novice users, this 
means that the interface provides few clues as to what 
commands to use for a given task. Experienced users may 
know the commands to use, but could still benefit from 
having them in a single location. 

The solution to this problem seems obvious: organize func-
tionality based on tasks. Unfortunately, this is difficult to do 
because feature-rich applications support huge numbers of 
distinct tasks and the organizations dictated by these tasks 
may conflict with one another. 

We could overcome this problem in two ways. First, we 
could develop a single interface that organizes functionality 
based on a generalization across tasks. The Ribbon inter-
face used in recent versions of Microsoft Office has 
adopted this approach; commonly-used commands are 
grouped by the broad category of task they are involved in 
(for instance, there is a Page Setup category that includes 
commands for setting margins, page orientation, page size, 
columns, breaks, etc.) 

The second approach is an interface with many different 
organizations of functionality. Our approach falls into this 
category, with no bound on how many customizations can 
be created. 

Similar to existing adaptable interfaces, our approach 
makes a part of the application’s interface customizable, 
and gives the user an in-application method of adapting the 
interface. Interface customizations are artifacts, which we 
call task sets. The user can have many task sets installed at 

once and switch between them as needed. This supports 
(and encourages) the use of different task sets for different 
user tasks. 

When a task set is first created it is uploaded to a shared 
online repository and a wiki page is associated with it. At 
this point, any user can modify the interface customization 
that the task set represents, or contribute to its documenta-
tion page. 

Task sets in the online repository are available to all users 
from within the application’s interface. A user who wants to 
perform a particular task can enter keywords into a search 
box, searching the repository and returning a list of match-
ing task sets. Selecting a result installs the task set and cus-
tomizes the user’s interface. While using a task set, task set 
documentation can be viewed either on the web or from 
within the application itself, giving the user immediate ac-
cess to instructions, notes, or other information contributed 
by the community. 

Compared with existing adaptable approaches, there is less 
of a need to encourage individual users to spend time creat-
ing interface customizations. For a given task, only one user 
need create a task set, which may be used, modified and 
improved by others in the user community. 

In the next section, we describe Adaptable Gimp, an appli-
cation with a socially-adaptable interface that we are cur-
rently developing. 

ADAPTABLE GIMP 
Adaptable Gimp is a modified version of the GNU Image 
Manipulation Program (GIMP), an open-source image ma-
nipulation application with features similar to Adobe 
Photoshop. 

The Adaptable Gimp toolbox is shown in Figure 2. From 
top to bottom, the toolbox consists of 1) a search box for 
searching the online repository, 2) an area for selecting 

 
Figure 2. The process of searching for and installing a task set in Adaptable Gimp. 



among installed task sets using a dropdown, and 3) an area 
containing commands and information from the currently 
selected task set. Figure 2 shows the process of searching 
for and installing a Tilt-Shift Photography Tutorial task set. 
The documentation page for the task set selected in Figure 2 
is shown in Figure 3. We are using a modified version of 
the popular Mediawiki software to run the Adaptable Gimp 
wiki. Editing the page shown in Figure 3 allows the user to 
edit the documentation, but also presents an interface for 
editing the commands contained in the task set. 

By providing an unstructured medium for editing task set 
documentation, we hope to encourage users to document 
task sets in interesting and inventive ways. Some of the 
uses that we anticipate for task set documents include: tuto-
rials for performing specific tasks, documenting usage of a 
set of related commands, providing rationale for including 
commands in a task set, and documenting a user’s experi-
ence using the application. Documentation on the wiki can 
be viewed from within the application as well, lowering the 
barrier to referring to it while using a task set. 

Current status 
As of the time of writing, we are nearing completion of the 
Adaptable Gimp application and associated wiki software. 
We plan to release the software to the public in early 2011. 

In the next section, we will discuss some of the research 
possibilities for socially-adaptable interfaces. 

RESEARCH QUESTIONS 
In this section, we look at some of the research areas 
opened up by socially-adaptable interfaces, including: 

• Building communities around desktop applications 
• Studying imperative interfaces 
• Crowdsourcing interface design 
• Connecting users with one another 

• Using the rich context created around users, tasks, and 
the application 

• Connecting researchers and developers with the user 
community 

We’ll discuss each of these areas in turn. 

Building customization communities 
Two initially important research questions are How do we 
build the community required to support a socially-
adaptable interface?, and What will such a community look 
like? These are important questions to answer to show that 
this is a viable technique, and to make it generalizable to a 
wide variety of applications. 

A key question is how to provide a compelling user experi-
ence before the community has reached critical mass and 
become self-sustaining. For Adaptable Gimp, we plan to 
seed the repository with task sets for common tasks, culled 
from a study of ingimp, an instrumented version of GIMP 
[11], and GIMP-related search queries sampled from Goo-
gle query logs [3]. 

Crowdsourcing interface design 
Socially-adaptable interfaces give the community of users 
control over portions of an application’s interface. We’ve 
kept this simple in Adaptable Gimp, where task sets consist 
of subsets of GIMP commands, but there is the potential to 
support much more radical interface customizations. 

One could imagine many ways that interfaces could be 
customized to suit a particular task. Task sets could be 
designed to use particular hardware peripherals, such as 
WACOM tablets or touch-screen monitors. They could 
support input from sources that the developers may never 
have anticipated (say, input from a microphone varying 
brush thinkness). They could also be designed with the user 
performing the task in mind, providing special interfaces 
for children, users with special needs, or crowdsourced 
workers in systems such as Soylent [1]. 

Security is an obvious challenge that would need to be 
overcome before task sets could include scripts or custom 
UI elements, but the potential of allowing a community to 
radically tailor interfaces for particular tasks is compelling 
enough to make it worthwhile. 

Connecting the user community 
Socially-adaptable interfaces have the potential to connect 
users with other members of the user community in a much 
tighter way than is typical for desktop applications. The 
wiki serves as a natural place for users to discuss the 
application, its features, task sets, or anything else. Users 
can help each another learn about the application, solve 
problems, or connect over shared experiences. 

The interface could also explicitly support direct 
connections between users to assist with performing tasks. 
Task sets could be equipped with a “Click here to talk with 
other users of this task set” feature, or even a “Do this for 

 
Figure 3. Each task set has an associated wiki page 

that can be edited by the user community to 
add/remove commands, or edit descriptive text. 



me” feature that would farm out work to community 
volunteers or paid workers in a Soylent-style human-
computation paradigm [1]. 

Rich contextual data 
Socially-adaptable interfaces create an immense amount of 
contextual data around the interface and users’ interactions 
with it. Community documentation, logs of task set 
searches, users’ task set usage, and discussions around a 
task set each tell us much about users, the task they are 
performing, and the application itself. 

For example, the act of searching for and installing a task 
set is essentially a declaration of the user’s intended task. 
As a result, logs of search keywords provide records of 
users’ intentions over time. This is data at a much higher 
level than traditional logs of command usage or interface 
events. 

One use of this data would be to make inferences about 
users’ skill levels or areas of expertise. This information 
could then be fed back into the interface, automatically 
tailoring it to the user, highlighting features that the user 
might be interested in, or connecting the user with similar 
users in the community. 

Contextual data could also help one understand tasks 
performed with the application. For a given task, which 
commands do users most often use? Does this vary with a 
user’s skill level? What tasks are related to one another? 
Answers to these types of questions could be used to 
organize task sets into broad categories (e.g. task sets for 
graphic artists, task sets for new users, task sets for users 
coming from a Photoshop background). They could also 
feed into intelligent tutoring systems, suggesting sequences 
of task sets to bootstrap a user’s knowledge of the 
application. 

Finally, contextual data could help us understand the 
application itself. For example, the corpus of task sets 
created by the community indicates the types of tasks users 
are using the application for. It may also give insights into 
tasks that the default interface provides poor support for. 
For instance, the existance of a task set might indicate that 
commands in the application are at too fine a level of 
granularity. 

Connecting users with researchers and developers 
In addition to generating data, socially-adaptable systems 
could serve as a platform for studying the user community. 
Researchers could administer surveys, perform remote user 
studies, or solicit qualitative feedback from users. In an 
interface where social interactions are an integral part of 
how the interface works, users may be more willing to vol-
unteer their time to provide feedback to researchers or de-
velopers. 

Developers could add simple feedback mechanisms into the 
interface to quickly gauge the opinion of the user commu-
nity. For example, task sets could be outfitted with a “This 

task set should be a single command in the next version” 
button. 

There may also be some particular benefits to socially-
adaptable interfaces for open source software. Our previous 
work indicates that a primary motivation for open source 
developers to address usability issues is high-quality feed-
back from users [11]. By creating a public discourse around 
the interface, socially-adaptable interfaces provide passive 
feedback to developers as well as an easy way to connect 
with enthusiastic members of the user community. 

AUTHOR BIO 
Ben Lafreniere is a Ph.D. candidate at the University of 
Waterloo Human Computer Interaction lab, under the su-
pervision of Professor Michael Terry. Ben’s current work 
on socially-adaptable interfaces was motivated by previous 
work analyzing data from ingimp, an instrumented version 
of GIMP that gathered rich usage data from users [6]. 

REFERENCES 
1. Bernstein, M.S., Little, G., Miller, R.C., et al. Soylent: 

a word processor with a crowd inside. Proceedings of 
UIST 2010, (2010), 313–322. 

2. Carroll, J.M. and Carrithers, C. Training wheels in a 
user interface. Commun. ACM 27, 8 (1984), 800–806. 

3. Fourney, A., Mann, R., and Terry, M. Characterizing 
the Usability of Interactive Applications Through 
Query Log Analysis. Proc CHI '11, 10 pages. 

4. Greenberg, S. The computer user as toolsmith: The 
use, reuse, and organization of computer-based tools. 
Cambridge University Press, New York, USA, 1993. 

5. Hsi, I. and Potts, C. Studying the Evolution and En-
hancement of Software Features. Proceedings of ICSM 
'00, (2000), 143–151. 

6. Lafreniere, B., Bunt, A., Whissell, J., Clarke, C.L.A., 
and Terry, M. Characterizing large-scale use of a direct 
manipulation application in the wild. Proceedings of 
GI 2010, (2010), 8 pages. 

7. Linton, Joy, and Schaefer. Building user and expert 
models by long-term observation of application usage. 
Proceedings of UM '99, Springer-Verlag New York, 
Inc. (1999), 129–138. 

8. Mackay, W.E. Triggers and barriers to customizing 
software. Proceedings of CHI '91, (1991), 153–160. 

9. McGrenere, J., Baecker, R.M., and Booth, K.S. A field 
evaluation of an adaptable two-interface design for fea-
ture-rich software. ACM Trans. Comput.-Hum. Inter-
act. 14, 1 (2007). 

10. McGrenere, J. and Moore, G. Are we all in the same 
"bloat"? Proceedings of GI 2000, (2000), 187-196. 

11. Terry, M., Kay, M., and Lafreniere, B. Perceptions and 
practices of usability in the free/open source software 
(FoSS) community. Proc of CHI 2010, 999–1008.

 


