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ABSTRACT

Adaptive software systems are intended to modify their appece, perfor-
mance or functionality to the needs and preferences ofrdiffeusers. A
key bottleneck in building effective adaptive systems isoanting for the
cost ofdisruptionto a user'smental modebf the application caused by the
system’s adaptive behaviour. In this work, we propose agiiistic ap-
proach to modeling the cost of disruption. This allows arpéida system to
tradeoff disruption cost with expected savings (or othesffies) induced by
a potential adaptation in a principled, decision-theoré&shion. We con-
ducted two experiments with 48 participants to learn modehmeters in
an adaptive menu selection environment. We demonstratetitite of our
approach in simulation and usability studies. Usabiliutes with 8 partic-
ipants suggest that our approach is competitive with otdaptwve menus
w.r.t. task performance, while providing the ability to vee disruption and
adapt to user preferences.

ACM Classification Keywords
1.2 Artificial Intelligence: Misc.; H.5 Information Inteaices
and Presentation: Misc.

Author Keywords
Disruption, probabilistic mental model, decision-thefmre
systems, user modeling

1. INTRODUCTION

of the application that reflects the knowledge gained thinoug
experience. This may include available software functiona
ity, the locations of functions, the effects of those fuont
(e.g., how long they take, whether multiple actions achieve
the same result), etc. A key bottleneck in building effestiv
adaptive systems is accounting for the indudisduptionto

a user's mental model. Consider for instance menu selection
The first time a user selecExi t from theFi | e menu, he
scans all the items insidé | e. After usingExi t several
times, he learns it is located at the bottomFifl e. An
adaptive system may obserkzi t is frequently used, and
decide to move it to the top & | e so that future access be-
comes faster. Obviously, there are tradeoffs involvedrethe
are long-term task performance gains (the user will access
the frequently use@xi t more quickly); however, the dis-
ruption of the user's mental model &ki t 's location may
cause short-term performance degradation—more search is
involved until the new location is learned—and annoyance.
The degree of disruption is, intuitively, related to thestyth

of the user’s prior beliefs and the degree of “new search” re-
quired (e.qg., if the new location is near the old one, disrup-
tion may be less than if it were further away).

While natification mechanisms may ease the abrupt transi-
tion caused by adaptive actions, some users may find them
distracting or unnecessary. ldeally, an adaptive systemldh

The need to develop user adaptive systems has been madgssess a user's mental model, and make the tradeoffs be-
evident by emerging work that applies user modeling to tech- yeen thelong-termbenefits of adaptive actions (e.g., im-

nologies ranging from automatic interface customization [

proved task performance) and the costs of disruption be-

11] to health care systems [1]. Since different people pre- f5q taking those actions. We propose just such a model

fer different styles of interaction, intelligent systenoald

here, with a focus on models of function location, relevant

adapt to individual user's changing needs and preferences;, 5daptive systems that change function locations in order
For example, some users may prefer to optimize task perfor-i, make access more convenient or to reduce interface bloat.
mance, while others may prefer to learn the software bettter a or mental model is probabilistic: it allows for a natural

the expense of task completion time. The sequential naturegefinition of strength, model dynamics (including learning
of .human—compgter interaction (HCI) makes it possible to 54 forgetting), and cost of disruption. We also propose
build user adaptive systems that learn user preferences oveaans for assessing the long-term tradeoffs in a decision-
time. When deployed successfully, adaptive systems haveieoretically principled fashion. This stands in contrast

the potential to increase productivity and user satisfacti

Through repeated interaction, a user buildaental model
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adaptive system models that focus only on maximizing ben-
efits of speed performance, while designating a “generic”
cost to adaptive actions or ignoring costs altogether [12].

In Sec. 2, we review some known properties about mental
models from existing literature. As our first contribution,
we present a probabilistic mental model in Sec. 3 and define
three mental operations (learning, forgetting, disruptiss-

ing mental model strength. In Sec. 4, we describe how our
model is used to estimate the cost of disruption in a decision
theoretic system. Unlike other user adaptive systems,igurs



the first to explicitly tradeoff the long-term benefits of gda  actions. We are unaware of any such formal models of dis-
tive actions against the associated cost of disruption. Ourruption. In Sec. 3, we present a probabilistic represesmati
system is first evaluated in simulation in the context of adap that adequately captures the three mental model properties
tive menus in Sec. 5. While we use adaptive menus as aTo make our discussion more concrete, we consider three
testbed, our goal is to demonstrate the value of explicitly types of adaptive actions in menu selection tasks (although
modeling disruption cost in adaptive settings in general. T the general principles apply more broadly): moving a func-
learn a more realistic model, we conducted two studies re-tion to the top and shifting functions down as neededg)T
ported in Sec. 6 and Sec. 7. Most importantly, these exper-swapping a function with the one above itW&pP); hiding
iments show a significant overhead in search performancea function at the bottom of a menu (e.g., under double ar-
times that varies with mental model strength and cannot berows) and shifting functions as neededgid); and the non-
naturally explained by existing predictive models. Fipall adaptive default of not moving any items gNg). We aim

we confirm our simulation results by conducting usability to capture the effect of such actions on a user’s mental model
experiments described in Sec. 8. Both the objective and sub-in order to quantify the induced disruption.

jective usability results show that our approach offers com

petitive performance with adaptive menus, while enabling 3 A MENTAL MODEL OF FUNCTION LOCATION

more opportunities for users to learn the system. Most mental model research elicits information to deteemin
the representation of mental models, “rather than trying to
determine which set of hypothetical mental operationsyis su
ported by the data” [16]. Here, we develop a probabilistic
representation of a mental model for function location that
supports three key operations of interest for adaptive sys-
tems: learning, forgetting, and modeling disruption.

2. PROPERTIES OF MENTAL MODELS
The termmental modehas been used in psychology to de-
note a person’s mental representation of (concrete or ab-
stract) objects [13, 8]. We use the term in its HCI sense,
pertaining to software usability—a mental model is a user’s
representation of an application. In particular, we focas o
mental models of function locations, e.g., the location of 3.1 Basic Model and Model Strength
menu items. Much research on mental models describesl_et K be a set of pOSSible functions each located in one of
conditions and effects, but does not offer explanations or L (menu or interface) locations. For akye K, the user's
theoretical predictions [16]. Furthermore, due to vasias ~ mental model of’s location, ¢, is a multinomial distribu-
in the elicitation and experimental procedures, much debat tion overL locations. We might think of* (1) as the prob-
surrounds these results [2]. ability the user will attempt to (first) access functiénat
location!. As adaptive systems may “copy” the same func-
Despite the imprecise state of work in the area, most re-tion to allow access from multiple places of the interface,
searchers agree that people’s mental modelamnplete this probabilistic representation naturally models thegpo
dynamic and unstable[14]. Consider a word processing bility that % is accessible from multiple locations via a multi-
application with standard menus lilé | e, Edi t , etc. A modal probability distribution (we see an example of this in
typical user will learn where common functions are located Sec. 3.4). While generally not true, we assume for simplicit
within menus, but will not know the locations of all availabl  that the distributiong', ..., #% are independent, allowing a
functionality, thus rendering his mental model incomplete convenient marginal (rather than joint) representation.
Through extended usage, the user reinforces, or strerggthen ) ) )
what he already knows and learns new information about the Without experience, modéF will be “weak” (e.g., uniform
application. Certain knowledge may weaken as well (e.g., OverL or a prior induced frpm using similar mterfaces)_. Us-
rarely used functions). This illustrates the dynamic nanfr ~ Ing & then generally requires the style of search typical of
a mental model. Finally, if we ask the user to report his be- nhovices (e.g., visual search) [10]. After executingome
liefs (based on his current mental model), elicited respsns number of times, we expect the modélto become stronger
will often vary, even without disruption to the mental madel ~ (and more accurate), with higher probability assigned ¢o th
indicating instability of mental models. true location (and possibly nearby locations, spatiallgroa-
logically), leading to reduced search time, and eventually
In HCI, mental models are often used to account for software leading to expert behaviour (e.g., logarithmic search o “i
learnability, or the user’s ability to master the application. mediate” execution) [3]. Indeedtrengthof a mental model,
For example, after usage, a researcher may elicit/evaluateor how well users believe they know a function’s location,
how well a user’s mental model depicts the actual state of the Seems to be a key criterion in how they assess their own level
software. If a system could “track” a user’s mental model at of interface expertise. Our model leads to a natural notfon o
runtime, it could identify sources of disturbance to the men strength, which we use extensively below to quantify disrup
tal model and eliminate them from the design of the soft- tion. In what follows, we focus our formalization on model
ware. To this end, some computational approaches to men-strength, rather than the model itself.
tal models have been proposed, but are non-probabiligiic an . .
use heuristic updates [17]. Thus, these approaches donot adMlodel strengthis defined w.r.t. to a user's degree of un-
count for the three properties above in a principled manner. certainty or normalized entropy of the model distribution.
Specifically, the strength of* is M* = 1 — H(6%)/H],
Our aim is to develop an approach to mental models that al-whereH (X) = — 3 P(x)log(P(x)) is the entropy of dis-
lows a system to quantify the disruption caused by adaptive tribution X, and H;" is the maximum entropy of any multi-



nomial with L events (i.e., the entropy of the uniform distri- the accumulated usage frequencykdf immediate neigh-
bution overL locations). This definition normalizes strength  bours. Specifically, we obtained} = o/ 1Og(bereqf) +
in [0, 1], with 0 corresponding to the “weakest” mentalmodel .7 with of = 0.11, b/ = 0.51, ¢/ = 0.56 when NBY is
(high normalized entropy, no knowledge of function loca- high, anda’ = 0.11, b = 0.4, ¢f — 0.50 when NB" is

tion) and1 corresponding to the “strongest” mental model |, “\ve found little evidence of a learning effect with cues
(low normalized entropy, complete certainty of location). (see Sec. 6 for details)

Using this representation, we develop the dynamics of men-
tal models, with an eye toward quantifying disruption cost,
using three key operations: learning, forgetting, anduglisr
tion due to adaptation. (The first two apply to any form of
software, adaptive or not.)

3.3 Forgetting

When functions are not used, we expect users to forget their
locations over time. Thisimplies a decrease in model streng
(and accuracy in most cases), and an increase in search time.
Fig. 2 illustrates this process, with an unused function be-

coming more uncertain.
3.2 Learning

We begin by examining how location models are learned. /\

o - - - -
As noted, we expect modéf to become stronger with in- /\ /\ /\ /\
creased usage df. Additional factors may also influence g 162 Forgetting and changesin the mental mode distribution.

this process. For example, using a functidriocatednear We model the rate of decrease in strength using exponen-

k may reinforce)” somewhat—searching féf mayinvolve | deca¥, as suggested by other memory literature [4]. The
seeing (and learning)'s location: Thus, usage history df impact of disuse on model strength is given by:

and neighbouring functions can influenge Other factors M = BME @

are visual-spatial cues surroundihg For example, menu : X : Y
length and depth may influence how well users know menu WNErek is unused attim¢, ando < § < 1is the forgetting
rate (w.r.t. model strength, as distinct from decay of model

item locations (longer/deeper menus leave greater ptigsibi

for error). Landmarks could accelerate learning, with func parameters themselves).
tions near landmarks—line separators, submenu arrows, dis
abled (greyed-out) functions, shortcut labels, top ordiott

of a (sub)menu—Ilearned more rapidly.

Using the processes modeled in Egs. (1) and (2), we tracked
model strengths in simulation in the context of menu selec-
tion. In a menu withX' = 20 items andl. = 20 locations,

Abstractly, letContezt denote the set of function usage his- the user repeatedly selects a series of items according to a

tories and cues that influence the mental modet.offhe  Zipf distribution [19]. Fig. 3 shows the resulting dynam-
learning process can be encoded&s= f'(Context). As ics. In general, used functions exhibit logarithmic growth

discussed above, varying contexts afford different lemgni  strength while unused functions exhibit exponential decay
rates, as illustrated conceptually in Fig. 1. In terms of the

dynamicsof model strength, we assume that strengffi 1o k=2 freq=3
at timet is a linear combination of the prior strength and 0.9] = k=6 freq=7
. . : k=11 freq=4
strength induced with the new usage contekt 0.8] ——ke12 freqe3
k k k —k=19 freq=28
My =1 —=NM 1+ \C; Q) 0.7 k=20 freq=5

o
=2}
T

Here,\ € [0,1] is a learning rate an@F = f(Context,) is

the strength associated with = f/( Context;), butignores

the dynamics of the update process. By incorporating the
prior strength, this definition is consistent with the cqpice
of belief perseverandd 5], whereby people maintain strong
beliefs in the face of contrary evidence.

Mental Model Strength (M‘)

40 50

Aﬁ/\%ﬂ 0 10

(a) Faster rate of learning.

20 30
Number of Trials (t)

Figure 3. Dynamics of strength estimates over 50 trials with Mé“ =0.3

for all k. Strengths of several functions (indexed as k = 2, 6, etc.) with
A_)/\—)/\—)/\—)A varying usage frequencies (of 50 trials) are shown.
(b) Slower rate of learning. 3.4 Model Disruption

Modeling the effect of adaptive actions on mental models,
and strengths, is critical to assessing their utility. Whes
We investigate the relationship between the user’'s mentalmoved to a new location, intuitively, we expéétto change
model and several cues and usage histories empirically inin a way that reflects the learning process in the new context
Sec. 6. From this, we derive(dt’“ = f(Freq,’f, NBf), where (function arrangement) and the previous one. This is due to

Freq® is the accumulated usage frequencykaind NB is our expectation that users will retain some memory:'sf
previous location, even after realizing it has been movad (a

This is one reason our assumed model independence failscto ho  effect like “muscle memory”).

Figure 1. Learning and changesin the mental model distribution.




Formally, we capture this effect as a mixture of two mod- 4.1 The Benefits of Savings
els. Let¢” denote a hypothetical model learned (using the An adaptive action provides savings for the user if it maves
learning and forgetting processes above) as if the user hado a location that is closer to the user’s reach. We ado Fitt

no experience withk prior to the adaptation that moved it.
The user’s model at timefollowing the adaptation is given
by the mixturedy = (1 — )0F_, + a¢f_,, wherea denotes

Law [5] and define theavingsof movingk from I¥ , to ¥
asS(IF_,,1F) = fitts(1k_) — fitts(IF), wherefitts(d)
alogy(d/w + 1) + b with w as the width of a target] as

a learning rate (the rate at which the new model replacesthe distance traversed to reach the target, @mohd b are

the old one). The process is illustrated in Fig. 4 whieiie
moved to a new location aftér= 3. Notice that the “new”
model (which is mixed with the old) also evolves over time
as the user gains experience with the “new” location.

/\J\J\
D ASYACYA )

Figure 4. Changesin 6% as k ismoved to a new location at timet = 3.
Thebottom distribution represents 8% and the consequences of moving
k. Thetop distribution represents the hypothetical mental mode ¢* of
learning k in a new context. Prior tot = 3, the dynamics of 6% follow-
ing theregular learning and forgetting processes. Once k is moved, the
resulting distribution is0¥ = (1 — @)0F | + a¢® ;.

In what follows, we model impact of disruptioon model
strengthM/* instead of the modél* itself. This approxima-
tion is more tractable (requiring tracking strength onlgt n
models). We assume thaf} = (1 —a)M}F | +aM(¢F ;).
(The strength learning rate will not be the same as the
model learning rate, but can be derived from it.)

Adaptive actions disrupt a user's mental model and incur two
types of costs. First, referring to Fig. 4, we see a location

empirical constants.

The savingexpectedf any (singIeRAinteraction depend on
the probability of function usage. Moreover, functions-can
not (usually) be moved in isolation (e.g., others may shift)

Thus, we define thpint expected savinggES) of a vector
of location moves to be:

K
JES(U,17%) = pt S, 1) ©)
k=1
where 1K is shorthand notation foi variables,p”* is
k's estimated probability (e.g., based on sample frequency)
Since an adaptive actiof fully determined % giveni} %

t—17
we also denote Eq. (3) akES (A|l} ).

4.2 The Costs of Disruption ] ] o
When an adaptive action occurs, we define disruption time
(see Sec. 3.4) as the search time required for the function se
lection task over and above the time required given the prior
user modeb*. Since this is an objective measure, we de-
vised an experimentin Sec. 7 to learn this value. With adap-
tive actionA being one of NNE, SwAP, Top, and HDE, we
define (initial) disruption time a®} = g(A|M[), where

g takes the formu?MF + b, with empirical constants of

al = 0,b% = 0 for NONE, a? = 1.4,b? = 0.2 for SwAP,

change initially has a negative impact on task performancead = 2.8,b¢ = 0 for Top, andaf = 6.0,b¢ = 2.9 for

or search behaviour, due to the reduction in model strengthHIDE. Usire)%

and accuracy. At = 3, 6% is peaked and user can assess
k quickly. Immediately after the move, the user will search
for k at the old location, not find it, and need to discover the
new location (e.g., using visual linear search). This iscur
an (objectiveXisruption time In addition, the user proba-
bly experiences some level of frustration (due to both menta
effortand increased task time), which is reflected in a sibje
tive annoyancdactor. In Sec. 7, we conduct an experiment
to learn the objective disruption time. In practice, the an-
noyance factor may amplify the disruption time so that users
who dislike adaptations perceive a more significant cost. We
do not address annoyance further here. Notice, of course

learned. We discuss this further in the next section.

4. DECISION-THEORETIC ACTION SELECTION

A typical metric for evaluating adaptive systems is the de-
gree to which they reduce user effort in repetitive tasks.{e.
typing common phrases, or selecting frequently used func-
tions such as menu items or toolbar icons). On the other
hand, the costs associated with adaptations are oftenagnor
[12]. Here, we develop a decision-theoretic model that al-
lows benefits (e.g., selection time savings) and costs, (e.g.
selection time increases due to disruption) to be traded off
against one another. Our model is also sequential, refepctin
tradeoffs over time.

this definition, we definpint expected dis-

ruption (JED) analogously to JES:

K
JED(AIM) =" p*g(A|MY)
k=1
Sec. 3.4 presented the dynamics of model strength as a result
of disruption. Generally speaking, when functiois moved
as a result of adaptive actioh strength becomes weaker. In
the system implementation, we capture this with a disrumptio
factord, which weakens the model after applyidg

4)

Mf = sMf (5)
The factor by which strength weakens is defined as a func-

. ; B X e ; k )
that disruption time decreases over time as the new model is'tlon of disruption timeDy’. Specifically, giveri,’, we ex

pect no change in strength when disruption tig = 0
(i.e., A is NONE). In that case§ = 1. When D¥ is small,
users may not notice the disruption, so we expect strength
to only decrease slightly. AB} increases and becomes no-
ticeable, we expect strength to decrease. The greatepédisru
tion time, the less the effect on strength because the mental
model will, in the worst case, “reset” itself to the weakest
point. The specific function we crafted to model this pattern

is a Gaussian function defined ds= exp—(P1/9)° with
¢ = 3.977. In effect, there is minimal impact when disrup-
tion time is betweerf to 1.5 second. WherDF > 1.5s,

2\We require an application-specific mapping from locatiandis-
tances, which reflects specific implementation artifaci. (¢ ac-
cess a hidden menu item, hovering or clicking double arrowt fi



the impact peaks and eventually stabilizes beybfid> 6s. The scenario is repeated interaction focusing on menu-selec

These boundaries are developed using the empirical resultgion tasks. In each session, a (simulated) user must select a

from Sec. 7 as guidelines. item, drawn from a predefined item distributidt.items are
drawn in turn and the system can adapt its menu according

4.3 Sequential Decision Model to some policy after each interaction.

The savings and disruption cost models above focus on a Sin'PoIicieS' We compare seven menu policies w.r.t. selection
gle interaction. In repe_ated_ use, bpth savings and Q|_$nu|pt| and disruption. BST STATIC provides an upper-bound on
ggzzsd?n?l(i:r:ilic,ehg;/e()r\/rgrutlitrl‘rl?(leeagttehreaztls%r:id.et'/g\lgf)\ée;r?(l,?/vmmp(tanta erformance: it presents the menu layout with items sorted

. . i . “In descending frequency. Aside froneEBT STATIC, no other
model as described in Sec. 3.4. The utility of an adaptive gireq Y

. . : .~ policy has access to the item distribution. At the opposite
?Ct'o? must éa{(i |r|1to ?Ci.(l).ltmt the sequer;]nal_ naturfez.oI:we "N end of the spectrum, we tested the adaptive polisy RoM-
eraction and total net utility over some norizon ot INt€res ;-\, hich randomly movesV items at each interaction (it is
For simplicity, we model the long term effects of the current

daptati : fut dapti . tak maximally disruptive). The remaining policies make use of
adaptation assuming no future adaptive actions areé taken.  oqmatedtem distributions to adapt their menus.

Let 7¢ denote the expected number of interactions with an Split menu$ave been shown to offer faster selection perfor-
mterface_. we assume dgcougt factos 7 = 1, with long- mance than various other static and adaptive menus [18]. A
term savings given by}~ , v JES(A[l; ). Long-terms  gpjit menu consists of two areas—the top (adaptive) parti-
costs are defined similarly, but with a wrinkle. Unlike sav-  tion hasN menu items with highest estimated usage (in or-
ings, the long-term effects of disruption decay over tin®, a er), while the bottom (static) partition h&s— N remaining

the user learns the new model at raté\Vith the old modgl’s items arranged in a fixed (default) ordering Setti¥ig= 4 is
retention rate a$ — «, we discount/ED at ratel — a (in understood as providing good performance in practice [18].
addition toy): 3°)°, (1 — a)"y"* JED(A|M}K). We refer to this policy as &.17-4 3.

While one could sum the two expressions above to obtain Qur adaptive policy is denoted ¥%(w;)-N, and is parame-

the estimated utility of an adaptive action, we wish t0 ac- tarized by the savings weight (and hence, disruption wiight
count for different user preferences. SpeC|f|caII¥, we imag
0

ine that some users have a strong preference for interface@nd the number of items moved simultaneously.(We im-
that support fast selection (and more generally, task com-plement action selection in Eq. (7) greedily (the best meve i
pletion) time, even if they are somewhat “disruptive”; oth- derived first, then the next begiventhe first, etc.). We test
ers may prefer a more stable interface, even at the expensenree versions by varying, = 0.1, 0.5, 0.9. Finally, we test
of increased expected selection time. This is accomphshedthe EsN policy, maximizing joint expected savings from

heuristically by scoring actions using a convex combirmatio . . . ; .
of the scorgs gbove, v?ith weight, € ?0’ 1] applied toJES Eq. (3). This alternative adaptive approach ignores disrup

andw, = 1 — w, applied toJED. Users with greater tion (and hence need not reason sequentially).
wy are more tolerant of disruption if this induces selection

savings. This gives theveighted expected rewarscore, We investigate these policies under two item distributions
WER(A|M}FR VK w,, H, o, 7): Zipf (which models actual function usage frequencies [9])
and uniform. We fix the number of menu items2@ (K =
H N LK W on LK 20 and L = 20), the learning rates t&d = 0.5 anda = 0.5,
> [wsw JES(A|l;=1) — wa(l — o)y JED(A|M, )} (6) the forgetting rate t@# = 0.9, the savings discount factor
h=1 to v = 0.95, and the horizon t¢1{ = 50. To enable com-
To compute the optimal action, the&M system policy is: parative results with 8LiT-4, all the adaptive systems take

Top actions only withN = 4. All the systems estimate

* 1:K ;1:K
A" = argmax WER(A|M; ™", L=y, ws, Hoay) - (7) frequency using normalized sample frequency.

Since we only consider specific kinds of adaptive actions Smulated Users  The simulated users select menu items

(i.e., NONE, SwAP, ToP, BOTTOM), only a few location  pv'oampling from the predefined item distribution. To model
changes are possible (specifically, the neighbouringaiog,  selection times, we adopt the model of Cockburn et al. [3]
bottom locations of*). which accounts for novice and expert performance (which
is necessary in adaptive systems since interface changes ca
lower a user’s degree of expertise). In this model, item se-
5. SIMULATION RESULTS lection requires the user to (i) mentally decide to select an

To illustrate the benefits of our model, we conducted a sim- ?tem and (ii) physic.ally sele.cF it. Selection tinje.for ide
ulation experiment to compare the performance of severalis T% = T# + TZ? (i.e., decision time plus pointing time).
system policies in the context of adaptive menus. The ob- Pointing time is roughly the same for everyone (using Fitts’
jective is to assess the behaviour of these policies and thei law). However, decision time varies wiéxpertisew.r.t. k's
ability to reason the tradeoffs between potential timerggsi  location. Decision time is modeled as a linear combination
versus disrupting the user's mental model. Moreover, since f NoVice and expert search times with € [0, 1] denoting

. . . the user’s expertise with [3]:
this tradeoff may differ across users, we would like to as-
sess the extent to which these adaptive policies respect use Ty = (1 —Ts + €T, (8)

preferences. We report analogous usability results with re  3Refinements of split menu design have been proposed recently
users in Sec. 8. e.g., the “copy” variant [6], which we discuss further below




Total Percent Total Percent
Select. Disrupt. | Strong  Strong Select. Disrupt. | Strong  Strong
Method N | Time Time | Models Moves Method N | Time Time | Models  Moves
BESTSTATIC 0 1197 0 152 0.00 BESTSTATIC O 1700 0 100 0.00
RANDOM 4 1306 196 136 56.80 RANDOM 4 1701 120 93 49.61
SPLIT 4 1213 22 150 3.11 SPLIT 4 1702 44 95 7.33
JES 4 1301 130 133 36.31 JES 4 1703 82 91 45.60
WER(.1) 4 1296 0 152 0.00 WER(.1) 4 1700 0 100 0.00
WER(.5) 4 1284 6 152 0.18 WER(.5) 4 1700 2 100 0.10
WER(.9) 4 1273 50 149 2.58 WER(.9) 4 1702 28 97 4.42
Table 1. Resultsusing a Zipf distribution with K = 20 menu items, Table 2. Resultsusing a uniform distribution with K = 20 menu items,
averaged over 100 runs, each with a horizon H = 50. Timesin msec. averaged over 100 runs, each with ahorizon ‘H = 50. Timesin msec.

user. Only when setting, = 0.9 (i.e., a user who prefers
to maximize selection performance) is when we see more
disruption than BLIT-4.

whereT,, andT},;, are previously proposed search models
for novices and experts respectively (see [3] for details).

Since the literature does not offer a generally acceptedmod
for estimating user expertise in adaptive systems, we equat
e® = M} based on our mental model strength estimate. In
effect, whenM} = 1 (strong), the user is a complete ex-
pert withe® = 1. As M} decreases (becomes weakef),
approaches to the value of a novice.

The more a system adapts its interface, the less the user is
able to learn and develop a strong mental model of it. We see
that the number of total strong models thatN®om-4 of-
fersis much less than that oEBT STATIC. Since WER(.1)-

4 behaves like a static system, it also offers just as many op-
portunities to develop strong mental models &sBSTATIC.

We see a similar pattern among these systems when compar-
ing the percentage of strong moves made. When comparing
how other systems perform with respect to the percentage of
strong moves made, we see that all the®\Wariants make
fewer disturbances thanP8I1T-4. Note that having a lower
percentage of strong moves does not imply a faster selec-

a threshold based on the sample median of strengths fro tion time; the policy may move more functions with weaker

experiments in Sec. 6. We also measure how often a strong odel strengths. Indeed, we see this pattern in thaViri-
mental model is disrupted. We definesaong moveio be ants in comparison tor&.17-4 in Table 1. This suggests the

any action that moves a function with a strong model to a WER policy reasons that disrupting weaker mental models

new location, and record the percentage of strong models'® better than disrupting strong ones.
that are movedpercentage of strong movesUltimately,

we are interested in systems that can tradeoff reduction in
selection time (via adaptation) and stability (by minimigi
disruption of strong models, where costs are greatest).

Results:  We defineselection timeas the time predicted
according to [3], andisruption timeas any additional search
time (Sec. 4.2.3). To assess the impact of adaptation on
learnability, we measure how often a user develops a “strong
mental model of any functions in the sessidotdl strong
model3. We deem a model to be strong whaff > 0.4,

Results using a uniform frequency distribution are presgnt

in Table 2. Not surprisingly, selection time is difficult to
optimize regardless of the policy; users have fewer oppor-
tunities to develop strong models (since experience is dis-
tributed over more items). As a result, selection times are
slower and strong models are rarer. The performance across
other dimensions is similar for all policies, with the ndt&ab
exception that all VER variants outperform 8L.iT-4 in all
dimensions. Overall, our R policy is able to tradeoff time
savings with associated disruption cost, and is able totadap
its behaviour to user preferences.

The results using a Zipf distribution is presented in Table 1
We report the average times based on 100 simulation runs.
Note that computation times are fast in all casess(ms).
BEST STATIC is the gold standard for desirable selection
time and stability. 8LIT-4 is fast, as is evident from the
literature. All WER variants perform about the same, about
60-83ms slower thanf&.1T-4 and 5-28ms faster thargg-4.
RANDOM-4 is a lower baseline and induces an undesirable
amount of disruption. As expecteds}4 ignores disruption ~ 6- LEARNING MENTAL MODEL DYNAMICS _
so it has a cost close to that 0ARDOM-4. The remaining Our first experiment is deS|gne(_j to _determme ;he kinds of
methods induce a similar and much smaller range of disrup_y|sual-spatlal cues and usage hI.StOI’IeS thqt define the-lear
tion times. Although these times are small, the associated,inNd context for model strength. First, participants weceta
subjective annoyance factor of adaptation should playe rol With a series of controlled menu selection tasks. This al-
in amplifying overall costs. As a result, we expect task com- lowed participants to build a mental model of our experimen-
pletion times in practice to be greater than the sum of the @l interface. Second, the same participants were presente
predicted selection and disruption times (we see this in the With a series of recall tasks designed to assess their model
usability results as well). Thus, the ability to accommedat strengths. In total, we collected data from 48 participants
user preference toward adaptation is crucial.

6.1 Training Session
When the WER weight setting isv, = 0.1 (i.e., represent-  The training session was designed to accommodate a range
ing a user who cares most about minimizing disruption), no of cues and usage conditions in order to test the effect of
disruption is induced. Indeed, our data indicates thiscgoli  these variables on the mental model. Participants werelaske
behaves like a static system so as to not annoy this type ofto complete a set of 29 menu selection tasks as accurately



and as quickly as possible using abstract labels in a pull- sonants. For example, the corresponding filler for “Floun-
down menu as shown in Fig. 5. Only four distinct (randomly der” is “Xtnxctzr”.

chosen) menu items were used as targets among the 29 tasks.

If a mistake was made, the participant had to redo the task.To create the set of target items for this recall session, we
This set of tasks is designed to mimic a particuiastory first took the four targets from training and added their near
of application use, so we can probe the participant's mental neighbours—i.e., all menu items within a distance of three—
model (in the next session) knowing the usage history that to the set. For example, if one of the original four targets wa

“created” it. In each trial, we measured task completioretim in location/, then items at positioris+ 1, --- , [+ 3 andl —
and accuracy. We used these results to filter out particpant 1,--- ,I — 3 were added to the recall set as well. This yields
who did not take the experiment seriously. a total of 28 £ 4 x 7) items. However, the condition with
high frequency neighbours (i.eN B = high) require the
Fie target withF'req = 16 be located close to the other targets.
— Therefore, these 28 items are not distinct. As a result, the
Mipmow recall task has betweelf) to 25 unique target items across
o all the conditions.
tahi-mahi .. .. . .
T F I 0 u n d e I Participants were asked to recall each distinct item thinees,
Scukin resulting in 30 to 75 recall tasks presented in random order.
Flathead In each task, participants were asked to identify the loca-
Flounder | tion of the targets as accurately and as quickly as possible.
EENEGES For each unique target, the participant responded wittethre
Pollock samples of his mental model of that target's location (one
Sauser per repeated trial), three corresponding response timds a
Figure 5. Experiment prototype with desktop menu. self-reported confidence score (how well he thinks he knows

While we recognize the potential impact of all of the vari- the original location, on a Likert scale).
ables discussed in Sec. 3.2, we restricted our attentiovoto t

cues and two usage variables: 6.3 Experiment Results

We used the task completion times in the training session

to identify outliers so that if the completion times did not

generally decrease for high frequency items, we assumed

e Freq: Target usage frequency. One usage frequency isthe participant did not pay attention. With this criteriag w
assigned to each of the four distinct targets. Values: 1, 4, discarded data from 5 participants and kept 48 for analysis.
8, 16. These give the 29 tasks. Next, we present the results from the recall session.

e Landmark A line separator in the menu. Values: none,
line above the item witli'req = 16, line above the item 554 Computing Mental Model Strength

with Frreq = 1. Recall our definition of model strength in terms of entropy
e NB: Usage of functions near the target. Values: low (neigh-is 1 — H(6*)/H; for an interface withL locations (here,
bouring items are used zero times), high (a neighbouring L = Length). To compute strength, we estimated the model
item is used 16 times). distribution using the recalled locations. For each unique
target, the three responses were fit to a discrete normal dis-
As we expecfFreqto play a key role in determining model tribution (fit using the sample mean and standard deviation
strength, we use a denser set of test values (than prescribedf the three responses). Strength was computed using this

e Length Total number of menu items (shown and hidden)
belonging to the menu. Values: K=20, 40.

by Zipf). Using four items from a menu witlk’ = 40 distribution. This provided us with a single strength esti-
items mimics real-world scenarios with complicated inter- mate, an average response time, and a confidence score for
faces where only 10% of the interface is used. FoukKof each of the 10 to 25 unique targets.

20 items reflects a denser 20% functionality usage.

Across all participant-target pairs, the median strength i
0.40. We also measured the correlation between strength,
confidence, and response time. We found that strength and
confidence are positively correlated € 0.46,p < 0.01)
while response time is not significantly correlated with ei-
ther strength nor confidence & —0.03 andr = 0.04 re-
spectively). This suggests our definition of strength asses
the participants’ beliefs of how well they think they know
the function locations.

6.2 Recall Session

Once training is completed, participants have developed me
tal modeld)!, .., ¥ for each of the( items in the test appli-
cation (where = 20, 40). The recall session is designed to
allow estimation of mental model strengths by asking partic
ipants to carry out a series ofcall tasks. Given menu item

k, we asked participants to recall its location on a new menu,
which has the same interface settings except menu labels ar

replaced witHiller labels. The purpose of these filler labels *To avoid having label length as an added memory cue, we ahsure
is to see how well participants remember the actual loca- neighbouring labels have roughly the same lengths anclictst

tion of the menu items. Fillers are designed to preserve theparticipants to complete the tasks as quickly as possibte sot
length of the original label using a random sequence of con- rely on additional cues.




6.3.2 Relevant Independent Variables Since one of our adaptive actions is to hide menu items, the
Using factorial ANova analysis on all the condition vari- menu always has 10% of its items hidden. Otherwise, the
ables, we found thalB and Freq have a significant effect ~ same interface with different text labels was used.

on strength§ < 0.01) and Length only marginally signif-

icant (p < 0.1). Thus, the variable®/B and Freq provide For simplicity, we use a subset of the usage frequencies from
sufficient context to explain the data, so our strength egém  Sec. 6 to create our target items. We randomly chose three
function is best modeled g4 Freq”, NB*). target items and assigned them frequencies 1, 4, 16 respec-
tively, creating 21 selection tasks with three distincté&s.

We then augmented this set of tasks with adaptive actions
and additional selection tasks as follows: after selecting
targetp times (wherep is the item’s associated usage fre-

6.3.3 Quantitative Relationships
As we expected frequency to have less effect as it increases

we chose to fit the data using a logarithmic function. We ; ; ;
fit a separate function for each value 3. Fig. 6 shows quency), the system moves its location (as dictated by the

: hosen actiom) and asks the participant to select the (po-
itﬂesz\ée;rageld szti:\,rg 1t1h E)gr?(?;SFS;Sqn J:els)u:t_s(.) %Sva;ﬁsemet‘aentially) moved target. With three target items, this adds
et Pl high andb.lllog(0.44Fre§+ 1)+ three new tasks, yielding a total of 24 menu selection tasks.

0.50 with 72 = 0.9 when NB = low. This is the function . , . . . .
used to define the model strength induced with the new usageSmce_we_are interested in learning the disruption _for every
context in Sec. 3.2. comblnatlor_w of usage_frequency and system action under
each experiment condition, we desigrfedr sets of target
1 items and associated selection tasks according to the above
procedure. In total, we created 12 distinct target itemsnd
menu selection tasks. Ideally, a separate experiment would
be run for each combination of the condition variables and
system action. However, the resulting protocol is too large
and would either be overwhelming for participants in a withi
subjects experiment design or logistically infeasible dor
between-subjects design. As a compromise, our conditions

0.91

" 7] [~—NB=high data !
=04% L1 . NB=high function 0.1110g(0.51Freq+1)+0.56 here vary only inLength and Freq, and aggregated the other
03r  |-©-NB=lowdata variables into one experiment. This experiment thus takes
0p} L NB=lowfunction 011%09(0 44Freq+1)+050 just an initial step in assessing disruption time.
0.1
% 2 4 6 8 10 12 14 16 7.2 Results
Freq To estimate disruption time, we subtracted task completion
Figure 6. Resulting functions for mental mode! strength. time of the corresponding condition from the training phase
from the task time in this new disruption phase. For example,
7. LEARNING THE COST OF DISRUPTION a participant selects itefawith Freq = 16 in the training

The experiment described in this section attempts to assesphase. Disruption time is the task completion time for se-

the degree of disruption induced by adaptive actions in menujectingk 17 times (after it has potentially moved), minus its
selection. It was conducted as a continuation of the Recall 15t task completion time. This gives us a crude assessment

experimentin Sec. 6 with the same 48 participants. of the additional search time induced by the adaptive action
Correlation between disruption time and self-reported dis

7.1 Experimental Set-Up ruption scores are positive and significant=£ 0.40,p <

As defined in Sec. 4.2, the disruption of moving functios 0.01). On average, we found the mean disruption time is

given by D¥ = g(A|MF). Our aim is to learn this function  aboutl.5s with a disruption score of (which corresponds

in the menu selection task, while restricting the actibto to noticing a small amount of disruption), and the mean dis-

changing only one menu item at a time (i.8.,= 1). For ruption time is abouts with a disruption score o (highly

convenience in this initial study, we treat disruption adiad  disruptive). We used these times to compiie Eq. (5).

tive in what follows, with total disruption being the sum of

the disruptions over all functions. (The accuracy of this as Since this experiment is conducted following the Recall ex-

sumption will need to be verified in follow-up experiments.) periment, we took the estimated strength values from the
same participant’s corresponding conditions and used them

We trained the participant’s mental model as described in in fitting Df. The data was noisy in general, so we binned

Sec. 6.1 while keeping track of all task completion times. To the strength estimates into three equally-sized buckets an

induce disruption on the mental model, we applied one of the analyzed the disruption times with respect to a weak, medium

four adaptive actions (@P, SwAP, HIDE, NONE) and then strength, and strong mental model. The mean values for

asked the participant to select the (potentially) movegigar ~ these bins aré.26, 0.66, and0.90 respectively.

Thereafter, we asked the participant to indicate whether th

target was moved. If no, a self-reported disruption score of In general, we expect disruption time to increase as sthengt

0 was recorded. If yes, we further asked the participant to increases. Using the empirical disruption timesAo=NONE

report the disruptiveness of that adaptation on a Likefesca as a baseline, we chose to fit the data using linear regres-



A=Swap data Estimated Total Percent
12000} A=Swap function D = 1423M + 158 Task Disrupt. | Strong  Strong
—— A=Top data Method N | Time Time | Models  Moves
4 A=Top function D = 2865M + 0 BESTSTATIC 0 | 1513 0 134 0.0
10000 | —=—A=Hide data RANDOM 4 | 2966 779 82 59.9
- = A=Hide function D = 6033M + 2901 SPLIT 4 1760 26 111 9.8
€ 8000/ WER(all) 4 | 1817 21 121 5.2
£ WER(.I) 41 2123 24 135 3.7
' 6000 WER(.5) 4 | 1864 23 118 5.1
£ WER(.9) 4 | 1651 17 119 5.8

g Aooor L —— 1 Table 3. Usability results using a Zipf distribution. Timesin msec.

20001 A [
1 imals). The second part follows the same design except it
or . . . . .
uses a uniform distribution rather than Zipf. In all cases, w

0 02 o4 08 08 1 used an interface similar to the one shown in Fig. 5 and fixed
e 7 Resulting functions for disruotion ti menu length t®0. The presentation order of the 4 sy§'gems

igure 7. Resufting tunctions for disruption time. and the two parts were counter-balanced across partisipant
sion for simplicity. Fig. 7 shows the averaged data and the We let participants explore the interface usingN®@om-4
following regression results: wheA = Swap, we have  until they were comfortable. To determine their preference
D = 1423 M + 158 with r? = 0.5, whenA = Top, we have toward adaptive systems, we asked a multiple choice ques-
D = 2865M with r? = 0.8, and whend = Hide, we have  tion, “Would you use adaptive menus if they were designed
D = 6033M + 2901 with »2 = 0.9. Overall, we see that to SPEED UP the tasks?” To a response of “yes”, we as-
disruption time is positively correlated with model strémg  signed the weight setting, = .9 in our WER system (with
and most significantly so with IBE. Note that existing pre-  w,; = 1 — w,), denoting the participant has a strong pref-
dictive pointing models (e.g., Fitts law) do not account for erence to maximize savings at the expense of added disrup-
a user’s mental model, and at best attempt to reflect only ation. On the other hand, a response of “no” was assigned
user’s expertise level (e.g., [3]), neither of which addglya  w, = .1, denoting the participant has a strong preference to
accounts for added disruption time. Our results suggest theminimize disruption. Finally, a response of “maybe” was as-

need for such a model in adaptive systems. signedw, = .5. At the end of each part of the experiment,
we asked participants to rate each system on a Likert scale
8. USABILITY EXPERIMENT based on frustration, ease of use, and efficiency.

We concluded this study with a usability experiment designe
to test and verify the simulation results from Sec. 5 witH rea

; . . 8.2 Results
users, adopting model parameters estimated via the preced
ing experiments. We adopt the same set-up and evaluatio
metrics as those in the simulation experiments from Sec. 5
In total, we collected data from 8 participants.

in each trial, we logged the task completion time (as opposed
"o the predicted selection time in the simulation evalugtio
"and estimated the corresponding disruption time. Follgwin
the format from the simulation, we report the objective us-
ability results from the Zipf condition in Table 3. Among the

8.1 Experimental Set-Up 8 participants, 3 used the weight settinguaf = .9 for our
Following the experiment in Sec. 5, we created menu se- WER system, 4 used, = .5, and 1 usedv; = .1. Since we
lection tasks with these systemse8r STATIC, RANDOM- do not have an equal number of participants for each weight
4, SPLIT-4, and WER(ws)-4. We chose BST STATIC and setting, we also aggregated their results together to geovi
RANDOM-4 as they provide baseline results, arel 8-4 an overall performance on K.

as a plausible competitor to our model. Another competing
approach not investigated here is the copy variant of split In general, we see similar results as those in the simutation
menus [6]—items are copied rather than moved to more con- WER is competitive with $L1T-4 when comparing task and
venient locations—which has been shown to be preferred bydisruption times. In contrast to the predicted selectiores
users. To offer a fair comparison, we could augment our from the simulation results, thmeasuredask times for the
adaptive WER(w;)-4 policy with a Gpry action. We leave  three adaptive systems are much higher. We suspect this ef-
this possibility to future research. To create the sameabisu fectis due to the participant’s subjective annoyance faoto
menus in each system, the line typically separating the topward the system’s adaptations which resulted in an inctease
and bottom partitions in split menus is removed. All param- overhead. Unlike the simulation, ¥®(.9)-4, whose goal is
eter values used in this study are identical to those in Sec. 5 to maximize savings, does better thawL8-4 on all dimen-
sions. Thet-test results show WR(.1)-4, whose goal is to
There are two parts to this experiment. The first is a within- minimize disruption, offers significantly more opportieg
subjects experiment which asked participants to compare th for learning strong models tharp8iT-4 (p < 0.05). Sim-
4 systems by carrying out 50 menu selection tasks with tar- ilar to the simulation results, the ¥® policy has a lower
gets sampled from a Zipf frequency distribution. To help percentage of strong moves but (generally) a higher task
differentiate the experience, each system was designéd wit time, suggesting that the ¥® prefers to move functions
a different set of menu labels (e.g., fish, colors, fruits, an with weaker mental models when adaptation is necessary.



Estimated Total Percent

Task Disrupt. | Strong  Strong

Method N | Time Time | Models  Moves
BESTSTATIC 0 | 2335 0] 82 0.0
RANDOM 4 | 3322 993 54 50.9
SPLIT 4 | 3311 75 56 25.6
WER(all) 4 | 2913 47 60 29.7
WER(.1) 4| 3546 53 84 1.2
WER(.5) 4 | 2792 27 63 335
WER(.9) 4 | 2865 31 49 34.2

Table 4. Usability resultsusing a uniform distribution. Timesin msec.

the mental model distribution itself. Due to the number of
parameters involved, such an approach demands much more
data than is empirically feasible (even with the simplerrep
resentation here we had to place constraints on our experi-
ments.) Therefore, a tradeoff must be made between a more
accurate, theoretical model and the ability to provide sup-
porting, empirical evidence for it. Finally, investigatiof
richer disruption-sensitive adaptive policies (e.g.piming

a wider space of actions, including €y action) would be

of value, as would comparison to additional customization

techniques (e.g., [6]).

Significant advantages of our method are made more obvi-

ous when the tasks are created from a uniform distribution. Acknowledgement: We thank all the participants for their

Table 4 shows these usability results. Usintpst analy-
sis, we see that WBR(.5)-4 is significantly faster in task
time than $LIT-4 (p < 0.05) and WER(.1)-4 offers signif-
icantly more opportunities to develop strong mental models
(p < 0.01). 1
Lastly, we report the post-questionnaire results in Fighl8.
though no significance was found, in large part due to having ».
to divide the number of participants into threee®/weight

cases, we see that on average, participants reported that ou 3.
WER-4 system is less frustrating, easier to use, and more ef-
ficient than $LIT-4. Overall, our usability results confirm 4
and amplify the conclusions in the simulation experiment.

] 5
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B Random
4 o Split
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Frustrated? Easy to use? Efficient?
Figure 8. Subjective results 10

9. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a probabilistic model of thesiser 11

mental model of function locations and defined three men-
tal operations based on model strength. We implemented a
decision-theoretic system that trades off the long-terma sa 5
ings of its adaptive actions with the costs of disruption, de

fined as a function of model strength. To model individual 14,

preferences, we parameterized our system with weights that

capture a user’s tradeoff between maximizing savings ver- 15.

sus minimizing disruption. In addition, we conducted two
empirical experiments to learn model parameters and eval-

uated the resulting model in simulation and with a usabil- 16.

ity study. Overall, our user adaptive approach respects use
preferences, minimizes disruption of strong mental madels 4,
and is competitive with split menus in task selection perfor
mance in both simulation and the usability study.

18.

A natural extension of this work is removal of the indepen-
dence assumption over mental model distributions. Our re-
sults demonstrate value in estimating the cost of disraptio
as a function of model strength; we would like to further our
approach by estimating disruption directly as a function of

12.

time. Thanks to the anonymous referees for valuable sug-
gestions. This work was supported by NSERC.
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