
Who’s Asking For Help?
A Bayesian Approach to Intelligent Assistance

Bowen Hui
Department of Computer Science

University of Toronto

bowen@cs.utoronto.ca

Craig Boutilier
Department of Computer Science

University of Toronto

cebly@cs.utoronto.ca

ABSTRACT
Automated software customization is drawing increasing attention
as a means to help users deal with the scope, complexity, potential
intrusiveness, and ever-changing nature of modern software. The
ability to automatically customize functionality, interfaces, and ad-
vice to specific users is made more difficult by the uncertainty about
the needs of specific individuals and their preferences for interac-
tion. Following recent probabilistic techniques in user modeling,
we model our user with a dynamic Bayesian network (DBN) and
propose to explicitly infer the “user’s type” — a composite of per-
sonality and affect variables — in real time. We design the system
to reason about the impact of its actions given the user’s current
attitudes. To illustrate the benefits of this approach, we describe a
DBN model for a text-editing help task. We show, through sim-
ulations, that user types can be inferred quickly, and that a my-
opic policy offers considerable benefit by adapting to both differ-
ent types and changing attitudes. We then develop a more realistic
user model, using behavioural data from 45 users to learn model
parameters and the topology of our proposed user types. With the
new model, we conduct a usability experiment with 4 users and
4 different policies. These experiments, while preliminary, show
encouraging results for our adaptive policy.

Categories and Subject Descriptors:I.2.11 [Artificial Intelligence]:
Intelligent agents H.5 [Information Interfaces and Presentation]:
Miscellaneous

General Terms: Human Factors

Keywords: User modeling, dynamic Bayesian networks, intelli-
gent assistance

1. INTRODUCTION
Online software customization has become increasingly impor-

tant as users are faced with larger, more complex applications. For
a variety of reasons, software must be tailored to specific individ-
uals and circumstances [18]. For example, adaptive interfaces are
critical as different users may require different functionality from
multi-purpose software [5], prefer different modes of interaction,

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
IUI’06 January 29–February 1, 2006, Sydney, Australia.
Copyright 2006 ACM 1-59593-287-9/06/0001 ...$5.00.

or use software on a variety of hardware devices [10]. Because
of software complexity, online and automated help systems are be-
coming increasingly prevalent to help users identify and master dif-
ferent software functions [16]. Such systems should ideally adapt
the help they provide and the decision to interrupt [15] to account
for specific user preferences.

One of the difficulties facing developers of adaptive software, in-
terfaces, and help systems is the uncertainty associated with assess-
ing the needs of a specific user. While hard-coded rules offer some
benefits, it is becoming apparent that probabilistic assessment of a
user’s needs based on observed behaviour offers considerable ad-
vantages [16, 1, 11]. Such approaches employ detailed models (ei-
ther handcrafted or partially learned) and often multimodal inputs
to infer the user’s goals in the current system environment. Few of
these approaches model user features explicitly (though some ex-
ceptions exist, e.g., systems in which user features are taken as in-
put [6, 19, 3]). It is rarer still to learn such features. One exception
is the work of Zhou and Conati [23] which infers a user’s emotional
states; but it is unclear how this information impacts the system’s
actions. We argue that it is more natural to model human-computer
interaction as asequentialstochastic process where theusermoves
from state to state. Here, states reflect the user’s attitudes and abil-
ities (cognitive, motor, etc.) as well as the system’s environment.
In this way, our method infers and adapts to the user’s current at-
titudes, and learns an on-going user profile that may be transferred
to other applications.

In addition, complex tradeoffs must be assessed when deciding
if and when to offer help to a user, hide a specific function, etc.
For example, deciding to offer help must balance the uncertain as-
sessment as to whether help is needed, the costs of unwanted in-
terruption, the benefits of providing the right type of help, and the
costs of providing the wrong type of help or of doing nothing when
help is needed. In a number of settings, decision-theoretic models
have been adopted for precisely this reason [16, 1, 15, 3, 19, 10,
9, 2], allowing a system to make the right decision based on such
decision-theoretic tradeoffs. We adopt this general perspective, but
tailor our approach so that decisions are influenced by the system’s
beliefs about the (generally evolving) user state. We achieve this
via onlinebelief state monitoring, which we show to be tractable in
the system prototype.

Our aim is the development of systems that can actively monitor
user behaviour and tailor an interface, help system, or functionality
to the needs of that user. Furthermore, we want systems that con-
struct models of a user over time to support this customization, and
whose actions are influenced by the need to develop accurate user
models. We focus on an automated help system for a text-editing
task (with an eye toward users with mild cognitive or physical im-
pairments), but the general principles apply more broadly.

More precisely, we develop a generic model ofstatic user type
and transient user statein which both the type and the state are
inferred (or learned) over time based on observations of user be-
haviour. We model the dynamics of user state and the interaction
with a help system using a dynamic Bayesian network, and the rel-
ative benefits of various types of help (and their interaction with
user state) using a generalized additive utility model. The proba-
bilistically estimated user state is then used determine the expected
utility of a specific course of action (various forms of help or lack
of help) at any point in time. This generic model is elaborated in
Section 2. We instantiate this model in a specific text-editing task in
Section 3, with assistance for users with mild cognitive or physical
impairments in mind. However, the general principles illustrated in
this task carry over to any form of automated software assistance.
We discuss simulation results in Section 4, a protocol for learning
model parameters in Section 5, and the results of a preliminary user
study in Section 6. While the user study suggests certain problems
with the prototype implementation, the qualitative results are quite
encouraging and do suggest that this general decision-theoretic ap-
proach to assistance we propose is indeed useful.

2. A GENERIC USER MODEL
We begin by proposing a generic model that allows an automated

assistant to learn about its user.

2.1 User State and User Types
First we consider the factors that influence whether a user accepts

help from an automated assistant, and the value of such assistance,
as shown in Figure 1 (left). Whether a user accepts automated help
depends on the quality of the assistance (QUAL) as well as the
user’s tendency to work independently (TI) and the amount of at-
tention that is directed toward considering help (CONS). For exam-
ple, a user who is highly independent may not consider or accept
help even if it is perfect. The degree to which a user might consider
help depends on the user’s current attitudes toward the automated
agent and general personality traits while working in a computing
setting. Relevant user attitudes include those directed toward the
computing environment, such as frustration (F), and those toward
the immediate task, such as neediness (N). Relevant personality
traits include the user’s tendency to get distracted (TD) and ten-
dency to work independently (TI) on a computer. These influences
are illustrated in Figure 1 (right). Other factors can be modeled
similarly.

Independence
(Work By Self)

Independence
(Work By Self)

Quality
of Help

Considers
Help

Accept
Help

Need Help
With Task

Now

Tendency

Distracted
To Be

With System
Now

Frustrated

Considers
Help

Figure 1: Influential factors. Left: Causes for accepting help.
Right: Causes for considering help.

Together, the variables{F, N, TD, TI} make up the user’sstate.
As we will see, these are sufficient to predict the probability of spe-
cific user behaviours (including accepting help) and how costly or
rewarding a user perceives his experience with the automated sys-
tem at any point in time. Consider the follow examples: someone
who is easily distracted may find automated assistance costly be-
cause it prevents the user from completing the task; someone who

currently needs help with a difficult task may benefit greatly from
partial suggestions that helps the user identify the next steps; some-
one who is generally dependent may not mind receiving imperfect
suggestions as much as someone who is highly independent; some-
one who is frustrated with the system now is likely to become more
frustrated with further interruptions and suggestions. We discuss
the precise structure of the reward and cost functions below.

VariablesTD andTI arestatic, reflecting specific user traits that
do not change over time.1 In contrast,F andN are transient, re-
flecting user attitudes that can change, often frequently, during a
specific session. How these transient variables evolve can also be
modeled by assuming additional static user traits. For this purpose,
we propose latent variablesTF andTN, representing the user’sten-
denciestoward frustration and neediness in the application. These
influence the (stochastic) evolution ofF andN. We define a user’s
typeto be the state of all static user traits:{TF, TN, TD, TI}.

In our prototype application, these user variables are discrete,
with variablesF, N, TDandTI having 3 values each, andTNandTD
having 2 values each.F = 1 denotes that the user is not frustrated,
F = 2 the user is somewhat frustrated, andF = 3 the user is very
frustrated. Other variables are defined similarly. As a result, there
are 81 user states and 36 user types.

2.2 Model Structure and Dynamics
Since the user state is partially observable, the system must main-

tain a probability distribution, or belief stateBEL(F, N, TD, TI)
(BEL for short), over user states given all past observations of user
behaviour (reflecting the relative likelihood that the user is in a par-
ticular state). Based on the current belief state, the system reasons
about the rewards and costs of its actions in order to make an appro-
priate decision, and updates its beliefs after each user observation.
A user’s type (over traitsTF, TN, TD, TI), despite having a fixed
value for a specific user, is not knowna priori to the system and
thus must also be estimated probabilistically.

The causal relationships in Figure 1 form the basis of our model.
In addition, the availability of automated assistance (HELP) affects
when the user can consider suggestions. Our model incorporates
additional system variables (SYS) and user observations (OBS).
An example of a system variable is the status of an interface widget
that allows the user to directly manipulate its settings. User ob-
servations should be abstracted at a behavioural level, and useful
for inferring the user’s state. Since these observations are domain-
specific, we leave further discussion to Section 3.1.

At a given point in time, the system observes the user’s action,
infers the user’s current state, and decides whether to offer help
at the next time step. Naturally, certain variable values may per-
sist over time, or influence the values of other variables at the next
point in time. For example, a user may be frustrated now, but over
time, the frustration level will decrease if nothing else aggravates
him. To model these temporal characteristics, we adopt a two-stage
dynamic Bayesian network (DBN) model [7], as shown in Figure
2. In this model, variables F, N, and CONS have temporal depen-
dencies on their counterparts in the future, and the values of the
user type variables persist over time. This model allows the system
to learn the user’s type through behavioural observations.

Formally, a two-stage DBN models a joint distribution over a
set ofn random variablesX = {X1, ..., Xn} at time t − 1 and
t. We denote the parameterization asθ, which specifies the set of
conditional probability distributions,Pr(Xi|Pai) for eachXi and
its parentsPai. In particular,θijk = Pr(Xi = xk

i |Pai = paj
i) for

1Naturally, these can change over certain time scales, but we take
these to be static at least over the time frame associated with a rea-
sonably small series of application sessions.

TN TD TITF HELP

OBS

N
CONS

F

QUAL

SYS

TN TD TITF HELP

OBS

N
CONS

F

QUAL

SYS

t−1 t

Figure 2: A two time-step DBN user model. Solid arcs indicate
intra-temporal links while dashed lines indicate inter-temporal
links. Observations are drawn with double lines.

thekth value ofXi and thejth parent configuration. We discuss
these parameters in more detail in the next section.

The parameters of a DBN are defined by a prior distribution at
time t = 0, a transition function, and an observation model. As an
initial step, we handcrafted these parameters using expert domain
knowledge. The transition function for the user types is the identity
function, since these variables represent persistent traits of a user.
The transition functionsPr(Ft|Ft−1, TFt) andPr(Nt|Nt−1, TNt)
capture frustration and neediness patterns and how they evolve.
The transition function forCONSt and the observation model for
OBSt are more complicated due to the size of the distributions.
Here, we exploit their common substructure. For example, if help
is not available, the user is not considering it,Pr(CONSt =
not|HELPt = none) = 1.0. If help is available and the user was
considering it (CONSt−1 = yes), then the probability of the user
considering help now is defined asPr(CONSt|Ft, Nt, HELPt),
which is independent ofTDt andTIt. The intuition is that whether
one will (dis)continue to consider help depends on changes in the
levels of frustration or neediness. On the other hand, if the user was
not considering help already, then the current consideration level
will depend on the difficulty of the task and the user’s tendency to
work alone,Pr(CONSt|Nt, TIt, HELPt).

Exact inference in DBNs is done via theclique treealgorithm
[17]. The performance of this algorithm depends on the size of
the cliques which are created based on the dependencies in the
DBN. In the context of user modeling, we are interested in monitor-
ing the system’s belief distribution over the user’s state over time,
given past observations:Pr(BELt|OBS1:t). Let Xt denote the
clique consisting of elementsBELt, TFt, TNt, andCONSt. Then
Pr(BELt|OBS1:t) =

P
TFt,TNt,CONSt

Pr(Xt|OBS1:t) which is pro-
portional to

P
TFt,TNt,CONSt

Pr(OBSt|Xt)Pr(Xt|OBS1:t−1). This
equation corresponds to arollup step in the inference algorithm. In
Section 4, we discuss simulation results that gauge the speed and
accuracy of this process.

We are also interested in predicting the likelihood of a user ac-
cepting help given its quality, the system environment, and past evi-
dence:Pr(OBSt+1 = acc|HELPt+1,QUALt+1, SY St+1|OBS1:t).
This term can also be computed readily using the clique tree algo-
rithm and is used in the system’s decision making policy, which is
described in Section 3.3.

2.3 Reward Function
In modeling a wide range of user types, we must consider multi-

ple conflicting objectives: for general users, a level of independent
functioning is considered desirable, so there is some cost to help;
there is benefit of providing the right help when needed or desired;
there is a cost to providing incorrect suggestions, or suggestions
when not needed or desired. Furthermore, the system should cus-
tomize the degree of help based on its beliefs about the user’s cur-
rent attitudes.

To evaluate automated help, we define a reward and cost func-
tion that incorporate user preferences toward automated assistance.
The reward function depends on the user state and the quality of
the suggestion,R(F, N, TD, TI, QUAL) and is decomposed as fol-
lows: R(F, TI, QUAL) + R(N, TI, QUAL) + R(TD, QUAL). This
generalized additive decomposition reflects the assumption that the
overall perceived value of help (of some specified quality) can be
determined by independent contributions given the current levels of
frustration and neediness (each of these conditioned on degree of
independence) and degree of distractibility. The cost of interrupting
the user is defined asC(F, N, TD, TI), irrespective of the quality of
the automated help. We assume additive independence of the cost
function: C(F) + C(N) + C(TD) + C(TI). We normalize the
range of the rewards and costs to be in [-40,40].

3. TEXT-EDITING ASSISTANCE
In order to infer a user’s state, we need to identify observations

that correlate with those states. Therefore, the detailed structure of
the model must be domain-specific. We chose a text editor as a test-
bed application because it is familiar to many computer users and
its functions are common to other communication software such as
email and online chat. Furthermore, people with vocabulary and
motor disadvantages often find that word processing and word pre-
diction software allow them to concentrate on the quality of writing
and give them a sense of authorship [14]. Within the editor, word
prediction is treated as automated help. The architecture is pre-
sented in Figure 3. Unlike other word prediction software, our sys-
tem will not offer suggestions whenever a letter is typed. Rather, it
learns the user’s traits and needs and make suggestions only when
it believes that the user can benefit from them. This methodology
is generalizable to more complex software and tasks.

Model

User Decision Making

Policy

Language

Model

HELP,QUAL

Abstract Event Interface

letteractionOBS,HELP,QUAL,SYS

BEL

Figure 3: Overall system architecture.

3.1 Deriving Fully Observable Variables
In a typical computing environment, keyboard and mouse events

are the source of fully observable variables. We abstract these
events intobehaviouralpatterns that correlate with user character-
istics. The resulting set of observations modeled in the variable
OBScan be roughly categorized according to the various user state
characteristics with which they are correlated:

• Frustration: continuously pressing a key down, moving the
mouse back and forth quickly, jamming into the keyboard,
multiple fast mouse clicks, explicitly indicating a need for
fewer suggestions

• Neediness:erasing many characters, browsing (surfing menus,
switching applications) for help, pausing

• Distractibility: browsing (surfing menus, switching appli-
cations) due to distraction, pausing

• Independence:explicitly indicating a need for more or fewer
suggestions, accepting help/suggestions (as a function of qual-
ity)

Note that browsing and pausing are common to both neediness
and distractibility, which is consistent with other proposed models
[16]. This ambiguity creates additional uncertainty that the system
needs to manage and further suggests the importance of a proba-
bilistic model that account for multiple “causes” for observed be-
haviour. Other user behaviours include responses to automated sug-
gestions, such as accepting help (acc), hovering over the suggestion
box (hh), and pausing when suggestions are present (hp). We also
created a slider widget, SDR, that allows the user to explicitly indi-
cate whether more or fewer suggestions are desired.

Under this design, the system has 2 actions — to offer a set of
completion words (POP), or to remain passive (¬POP). Together,
there are 972 hidden states and 420 observations, yielding a total
of 408,240 system states. The DBN model allows us to keep the
representation compact in terms of the local distributions, rather
than using aflat state representation (whose size is exponentially
larger).

3.2 Language Model
The word prediction component is treated as a plug-in module

in the system’s reasoning process. This module takes as input the
previously typed word,wt−1 and the current prefix,wprefix. As
output, it returns a set of suggestions with a quality estimate. This
quality value is important because it directly impacts whether a user
will accept automated assistance. Furthermore, in a word predic-
tion domain, the quality of the predictions vary widely depending
on the prediction algorithm used. These factors have a strong influ-
ence on the system’s decision whether to offer help as we will see
below.

Standard word prediction software makes use of collocation statis-
tics such asn-gram probabilities[22]. In particular, forn = 2,
a bigram probability is defined asPr(wt|wt−1). (In a predic-
tion task,wt must be consistent withwprefix.) Our system also
adopts a bigram model, which is trained on 40% of the 100 mil-
lion word British National Corpus (BNC). The system maintains
the top 20,000 bigrams and 20,000 unigrams with backoff weights
in its lexicon at runtime. In addition to using the bigram probabili-
ties, we want the suggestion feature to offer completion words that
aredifferentfrom each other. In other words, we want the comple-
tions to cover a larger probability mass. For example, withwt−1 =
“the” andwprefix = “nu”, a bigram model may offer suggestions
“number”, “numbers”, and “nuclear” even though “number” and
“numbers” only differ by one letter. Therefore, we propose a simi-
larity metric that captures theexpected savingsa word provides to
the user.

At a given point in time, there is a set of{c1, ..., cK} words that
are plausible (i.e., non-zero probability) completions givenwt−1

andwprefix. Eachck has an associated bigram probability,pk.
To attribute a utility measure to a suggestion, we first define its
utility with respect to a true words defining U(ck|s) to be the
number of identical prefix characters less the number of charac-
ters erased less the number of characters added to changeck into
s [9]. For example, U(“are”|“all”) = 1 − 2 − 2 = −3, while
U(“apples”|“apple”) = 5 − 1 − 0 = +4. GivenU(ck|s), we de-
fine theexpected savingsof ck asES(ck) =

PK
i=1 U(ck|ci)pi,

wherepi is ci’s bigram probability. We define thejoint expected
savingsJES(c1, ..., cJ) =

PK
i=1 argmaxcj U(cj |ci)pi for a sug-

gestion withJ words. The intuition is that, for any trueci, the user
will accept the suggestion (among theJ) offering maximum sav-
ings. In the example withwt−1 = “the” and wprefix = “nu”,
the JES model chooses the suggestions: “number”, “nuclear”, and
“nurses”.

Unfortunately, whenJ ≥ 2, the number of comparisons in-

creases exponentially. We propose a greedy implementation for our
JES model. First, amongK words, chooses1 = argmaxckES(ck).
With K− 1 words left, choose the second best completion with re-
spect tos1; that is,s2 = argmaxckJES(s1, ck); and so on. This
greedy approach results inO(J − 1 · K) comparisons. The esti-
mated quality of a suggestion is simply its joint expected savings.

Table 1 shows a comparison of these algorithms through exper-
iments implemented in Matlab and ran in Linux with 3.60G Hz
CPU, withK = 40 andJ = 3. We use bigrams as the baseline
comparison by taking theJ most probable words, and we show the
speed performance of using JES for word prediction, implemented
both greedily and by full enumeration. We ran the three algorithms
through a text of length 11,718 characters (with 7917 word predic-
tion opportunities). We see that the average and maximum times
for the bigram and greedy techniques are similar, while the enu-
merative method is too slow for an online task. We kept track of
the number of correct predictions made (Exact), the number of pre-
dictions that contained a substring of the true word (Substr), and
the actual character savings (Util). The JES greedy implementation
scores almost as well as the bigram model on correct predictions,
but this is not our main concern. Critically, the JES model provides
much greater utility with respect to character savings. It is also
significantly faster than full enumeration but still offers acceptable
performance with respect to utility (note that Enum provides opti-
mal suggestions). Results from the usability experiments in Section
6 also suggest that the expected savings metric is more helpful for
users.

Table 1: Comparison of prediction techniques
Method Avg (s) Max (s) Exact Substr Util
Bigrams 0.1485 0.9693 3629 5674 9151
Greedy 0.1743 1.0285 3578 5706 9740
Enum 0.7110 3.5008 3708 5806 10169

3.3 Decision Policy
The decision problem faced by the help system is characterized

by considerable uncertainty. Obviously, the word a specific user
is typing cannot be predicted with certainty, though the language
model allows us to quantify this probabilistically and rather pre-
cisely. More importantly, whether a user could benefit from the
system’s help, or desires such help, cannot be assessed with cer-
tainty either. Our model is designed to (probabilistically) predict
whether a user needs or wants help based on past observed user
behaviour.

We define a myopic policy that models the uncertainty and sys-
tematically trades off the conflicting objectives as follows.2 At each
time step, the system takes an action and the user can either accept
it (OBS = acc) or not (OBS = ¬acc). Considering these pos-
sible outcomes, theexpected utilityof an action isEU(POP) =
EU(POP |acc)Pr(acc) + EU(POP |¬acc)Pr(¬acc). If the user
accepts a suggestion, the system will “receive a reward” reflecting
the net benefit of the suggestion (incorporating any costs of inter-
ruption, etc.). Of course, the system can only compute theexpected
reward since the user state is not fully known. Thus, we define
EU(POP |acc) =

X
F,N,TD,TI

R(F, N, TD, TI, QUAL)BEL(F, N, TD, TI)

2Ultimately, we expect much better performance taking sequen-
tially informed decisions by solving the partially observable
Markov decision process (POMDP) induced by this model. We
discuss this in the concluding section.

On the other hand, if the user rejects the suggestion, the system will
receive a penalty, again, in expectation given the user’s type. We
defineEU(POP |¬acc) =

X
F,N,TD,TI

C(F, N, TD, TI)BEL(F, N, TD, TI)

We predict the value of making a suggestion by taking the ex-
pected value ofPOP with respect to the probability of accep-
tance. The overall system policy is to take the action with the maxi-
mum expected utility (MEU):pop up a suggestion ifEU(POP) >
EU(¬POP).

4. SIMULATION RESULTS
To assess our user model, we ran text editing simulations with

word prediction, as described in Section 3. The test text consisted
of sentences drawn randomly from 10% of an unseen portion of the
BNC. We sampled from a simulated user model based on the DBN
described in Figure 2.

For each user type, we ran 100 simulations with texts about 200
words long. The averaged results show that the system’s beliefs
converged to the true type in all 36 cases. The time it took the
system to reach convergence varied from about 20 to 150 words.
Examples of convergence curves for three different user types (as a
function of the number of observations) are shown in Figure 4.

0 500 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

number of observations

Pr(
TD

=1
,TI

=1
,TN

=1
,TF

=2
)

Type 2
TN−>2

0 500 1000 1500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

number of observations

Pr(
TD

=2
,TI

=1
,TN

=1
,TF

=2
)

Type 6
TD−>3
TI−>2

0 500 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

number of observations

Pr(
TD

=3
,TI

=3
,TN

=1
,TF

=1
) Type 33

TD−>2
TN−>1

Figure 4: Examples of belief monitoring. Left: early conver-
gence. Middle: convergence with respect to competing types.
Right: slow convergence.

In our model, we chose an abstract representation of behavioural
observations that is intuitive from a designer’s perspective and that
reduces the number of temporal dependencies (see the discussion
in Section 3.1). Belief state monitoring is currently implemented in
Matlab 6.5 R13. On average, this computation takes approximately
0.57 second on a Pentium M, 1.2G Hz CPU, 386 MB RAM proces-
sor.3 When observational abstraction of the type used here is not
feasible, or does not provide enough decomposition of the infer-
ence task to allow real-time belief state monitoring, approximation
algorithms for monitoring (e.g., [4]) can be considered. Further-
more, belief update based on aggregate observations (e.g., every
k steps) can also be used; since user state will generally evolve on
much longer time scales than individual observational events, slight
lags in user state estimation will generally have a negligible effect
on performance.

A system’s overall utility is quantified in terms of the rewards
and costs it receives during its interaction with the user. In Section
3.3, we defined implicit reward and cost functions that vary accord-
ing to the user’s state in Section 2.3. Here, we use them to define
the overall utility given the sampled user state and the actual quality

3This prototype implementation can be considerably accelerated,
so real-time inference is not a concern in this task.

of the suggestions,U(F, N, TD, TI, QUAL):

U =

8
>>><
>>>:

0 ¬POP

R(F, N, TD, TI, QUAL) POP and OBS = acc

0 POP and OBS = hh,hp

C(F, N, TD, TI) POP and OBS o/w

For each type, observed “reward patterns” reflect the system’s adap-
tivity to the user’s responses — more acceptances encourage more
suggestions, and fewer acceptances fewer suggestions. Across user
types, the patterns also show that more needy and dependent types
receive higher overall utility, while more frustrated, distractible,
and independent types receive lower utility. In Figure 5, we show
some examples of the patterns of average accumulated rewards that
the system receives for different types.

500 1000 1500

−10

−5

0

5

10

15

20

25

Av
g R

ew
ard

s (
To

tal
= 1

12
5.5

0)
number of observations

500 1000 1500

−10

−5

0

5

10

15

Av
g R

ew
ard

s (
To

tal
= 2

77
.50

)

number of observations
500 1000 1500

−20

−15

−10

−5

0

5

10

15

Av
g R

ew
ard

s (
To

tal
= 7

0.6
3)

number of observations

Figure 5: Examples of system behaviour according to inferred
user type. Left: a user who welcomes help so the system of-
fers them regularly. Middle: a sporadic user so help is sparse.
Right: a user who rejects help so the system learns to back off.

For comparison purposes, we conducted experiments with other
system policies. The policies we chose for this comparison are:
suggest only if the quality is greater than a threshold (THRESH, for
QUAL > 3), always make suggestions (ALWAYS), and never make
suggestions (NEVER). We refer to our system policy asMEU. Table
2 compares average reward per time step for these different policies
with respect to some representative user types. Generally,ALWAYS

outperforms the other policies with dependent users who tend to
need help, as we see in the first row of the table. However, it does
poorly (often extremely) in all other cases. The second row shows
that even with dependent users who are easily distracted or frus-
trated, the users may benefit more from the adaptive policies. In
the remaining cases, an independent user, either easily frustrated
or easily distracted or neither, benefits most from a system that
learns to back off when help is undesired. These cases illustrate
that a static policy, such asALWAYS , or a policy that disregards the
user type, such asTHRESH, suffers most. Overall,MEU dominates
THRESHfor 17 of the 36 user types (sometimes quite significantly);
for 12 of the types,MEU andTHRESHperform comparably (within
0.05 of each other); and for 7 of the types,THRESH performs bet-
ter thanMEU, but only slightly. AlthoughNEVER receives zero
rewards in all the cases, it is unable to detect cases when the user
in fact needs help, which is a state that could change from time to
time.

5. LEARNING MODEL PARAMETERS
To replace the handcrafted parameters in the user model, we de-

signed controlled experiments that explore different user states and
logged corresponding user behaviour. Because user states are not
directly accessible and cannot be explicitly elicited at every time
step, our experiments collected data in a semi-supervised fashion.

Table 2: Comparison of policies using average rewards by user
profile {TF,TN,TD,TI }

User Type ALWAYS MEU THRESH NEVER

{1,2,1,1} 1.64 0.93 0.91 0
{2,1,2,1} 0.46 0.62 0.65 0
{1,1,3,2} -0.64 0.39 0.31 0
{1,1,1,3} -10.29 -2.15 -2.29 0
{2,1,1,3} -10.89 -1.89 -2.93 0
{2,1,3,3} -6.04 -0.07 -1.43 0

5.1 Data Collection Experiments
Since most potential participants can type quickly without help,

we designed a procedure that requires the user to type with a Dvo-
rak keyboard. There were 45 users and each participated in 3 con-
ditions. First, artificial delays of 2-5 seconds and sticky keys were
introduced into the system at fixed intervals. The second condition
presented a mix of audio and visual pop-up distractors at regular in-
tervals. These distractors have a lifetime of 7 seconds and can end
earlier if the user closes their residing windows. In the third condi-
tion, the text to be typed by the user contains a higher percentage
of long words and esoteric vocabulary, as measured using the Fog
index [13]. The first two conditions used text with Fog index =
11, while the third used Fog index = 30. To assess the user’s cur-
rent state, questions to elicit the user’s current F and N values were
posed at the end of each clause in all the trials. A post-questionnaire
was designed to assess the user’s general attitudes and tendencies
under this computing environment so that we could elicit the user’s
type.

We developed a Java interface over the system described above.
Based on informal observations, we identified a wide range of be-
haviours. For example, some participants ignored pop-up anima-
tions and audios, some laughed at them, while a few explicitly
closed them. Participants also varied in their strategies for dealing
with suggestions. Some typed one letter at a time while anticipating
a suggestion and accepted it when it appeared, some buffered a few
characters, typed them, and watched for suggestions, while others
just did not accept the suggestions at all. Frustration was either
not shown or appeared as a pause or sigh, but rarely as a physi-
cal action. We suspect this subtlety is influenced by the controlled
environment and the presence of a researcher.

5.2 Parameter Estimation
The learning task at hand is known structure with incomplete

data. With 45 participants and 3 sequences of observations each,
there areM = 135 training cases. Each sequence on average con-
sists of845 observations, but ranges from99 to 3097. Our goal
was to learn the prior distributionsF0, N0, CONS0, the transition
functionsFt, Nt, CONSt, and the observation function,OBSt. We
applied a standard algorithm, expectation-maximization (EM) [8,
21]. The initial parameters were set randomly. EM iterates be-
tween computing the expected values of the hidden variables (given
parameter estimates) in an E-step and maximizing the parameters
given the data in an M-step, as follows:

• E-step: given θ̂ and data setD = {yl}, compute:

EPr(x|D,θ̂)(Cijk) =

MX

l=1

Pr(xk
i , paj

i |yl, θ̂)

• M-step: given the sufficient statistics, compute:

θijk =
αijk + EPr(x|D,θ̂)(Cijk)Pri

k=1(αijk + EPr(x|D,θ̂)(Cijk))

whereCijk is the number of timesxk
i andpaj

i occur in the data set
andαijk is a bias on the correspondingθijk.

EM is guaranteed to converge to a local minimum. To avoid the
sparse data problem and to incorporate prior knowledge, we used
the handcrafted parameters in the simulations as biases in the M-
step. We report on the training results using different weights in
Section 5.3.2.

5.3 Model Comparison
In this section, we describe the procedures for discretizing the

user variables and learning the parameters of the DBN.

5.3.1 Topology of Users
The post-questionnaire in our experiments elicited the values of

TF, TD, and TI using 19 items, with each item intending to elicit a
particular variable. Sample questions asked the user to self-report
on a Likert scale whether they felt frustrated with the sticky keys,
whether they were distracted by the pop-up animations, or whether
imperfect suggestions were selected. Since this questionnaire was
newly designed for this experiment, we carried out factor analysis
on the responses to identify possible clusters and underlying factors
[12]. Due to the small sample size (45), this analysis is a prelim-
inary step in checking for strong correlations only. According to
the Kaiser criterion, 4 factors had eigenvalue higher than 1.0; the
scree test indicates 3 to 7 factors; using the percentage of variance
explained, we obtain 3 factors for 74%, 4 factors for 84%, and 5
factors for 93%. Finally, we retain 3 factors by the interpretability
criterion so that one factor corresponds to one design variable.

We used variance maximizing rotation to extract principal com-
ponents. The resulting factor loadings confirmed that 10 items clus-
tered with the intended factor, 2 items clustered incorrectly, and 7
items were undetermined. The incorrect items were reclassified
into their clustered factors while the others maintained their origi-
nal classes. Thereafter, we used the responses to compute the par-
ticipants’ score for TF, TD, and TI as

Pl
i=1

ri
l

, whereri is a score
andl is the number of items in the factor. By inspection, we par-
titioned the results into the domain of our model variables, i.e., 2
categories for TF and 3 for TD and TI.

For TN, we used typing speed (spd) as the motor attribute and
the percentage of unfamiliar vocabulary (vocab) as the cognitive
attribute in a user’s neediness level. Letf1 andf2 be the normalized
factor loadings forspd andvocab respectively. ThenTN = f1 ∗
spd + f2 ∗ vocab. By inspection, we partitioned the results into 2
categories for TN.

Based on this procedure, each participant has a user type profile
{TF,TN,TD,TI} capturing their general tendencies in a computer
setting. We plotted these profiles in Figure 6 to identify the types
of users in our pool. As shown, our pool did not cover all the user
types — the reason could be due to the small sample size or that
some types do not exist. In many cases, we had one or two partic-
ipants of a type (e.g.,{1,2,2,1}). For type{2,2,3,3}, five partici-
pants had this profile. This plot suggests that users who are highly
independent (TI=3) tend to get frustrated (TF=2) by the system.
It also suggests a correlation between dependent and needy users
(with TN negatively correlated to TI).

5.3.2 Parameter Settings
In training our model, we tried different weightings of the data

and biases. The weights we used are: 0% of priors (i.e., data only),

Figure 6: The topology of our participants. Each box indicates
the number of users in that type.

10%, 30%, and 50%. If given enough representative data, we could
compare these results using cross validation. However, our data set
is very small relative to the state space so we discuss our choices
informally.

With respect to the distributions using handcrafted parameters,
we computed the Kullack-Leibler (KL) divergence [20] to assess
the relative entropy of the learned distributions usingKL(P ||Qw)

=
P

x∈X P (x)log P (x)
Qw(x)

, whereP is the handcrafted distribution
andQw is the learned one trained with weightw. The maximum
KL divergence shows little difference among them: 3.1455 for the
prior for CONS, 0.015 for the prior for N, and less than 0.01 for the
others. If we had significant differences we could compare their
performance further. However, with our results, we chose to use
the learned distributions trained withw = 10%.

6. USABILITY EXPERIMENTS
We designed a usability experiment to validate the learned model

with real users by comparing their preferences with other system
policies.

6.1 Pilot Study
We adopted a similar computing environment to the one used in

data collection (cf. Section 5.1). In addition, the inference engine
necessary to maintain the user model was implemented in Matlab.
A Matlab-Java server was implemented so that the Java interface
connects to it as a client.

The user’s task was to copy 10 sentences into our editor using a
Dvorak keyboard. These sentences were taken from an unseen test
set (Fog index = 15). There are four conditions in this experiment,
each employing a different system policy. The four policies we
chose for this initial comparison are those used in the simulations
(Section 4): THRESH, MEU (our system),ALWAYS , and NEVER.
Participants were asked to type as accurately as possible. A ques-
tionnaire was given at the end of each condition and at the end of
the entire experiment. In total, we had 4 participants.

6.2 Results
Since the users in the pilot are all novices with Dvorak (typing

speeds between 4-8 wpm), they all preferred having as much help
as possible. Contrary to other findings [9], one user commented
that the system should provide completions even for short words

like “and” and “to”. We suspect that if we had users with a wider
variation in typing speeds (i.e., different levels of neediness, TN),
the results would reveal greater differences in their preferences.

Three users preferredALWAYS to both adaptive strategies, which
were in turn preferred toNEVER (i.e., “the more help the better”).
This pattern is supported by the average percentage of characters
typed using the four policies, as well as the subjective responses to
whether a particular policy helped reduced effort and time. The
actual time, however, revealed that typing withNEVER was the
fastest, followed by the two adaptive strategies, andALWAYS was
the slowest. The fourth user preferred the two static strategies
equally over the adaptive ones, because he could not predict ex-
actly when the suggestions would appear (we discuss this further
below).

Between the two adaptive strategies, we found that the overhead
associated with the Matlab-Java engine4 causedMEU to be ranked
lower for two users. They added that if the system were faster,
they would have preferred it overTHRESH. All four users noted
the quality of the suggestions inMEU was notably better than those
in THRESH, although in three of the four cases, the percentage of
correct suggestions were higher inTHRESH. This suggests that the
users are perceiving the utility of character savings as part of the
quality of a suggestion. Also, the percentage of acceptances were
higher in THRESH. This behaviour indicates they are dependent
users in our model. Indeed, from plotting the system’s inferred
belief states, all four users were inferred as dependent (TI = 1) and
needy (TN = 2). The number of characters typed usingMEU was
on average lower than those usingTHRESH.

Finally, about 20% of all the acceptances were partial sugges-
tions, where users accept non-exact words and erase the endings.
This indicates that the utility metric used in our language model
(cf. Section 3.2) is more helpful than one that only uses a bigram
statistic.

Despite the overall ranking by the users, which suggests that the
adaptive strategies were not as useful as the static strategies, overall
we find the results quite encouraging. Apart from a time-delay arti-
fact, and concerns about predictability, user comments suggest that
utility-based help is more desirable than suggestions made purely
based on probability of acceptance. The task itself was also per-
haps more difficult than anticipated, leading to a bias forALWAYS ,
which may not be present over time (as skill levels improve) or in
less unfamiliar tasks.

7. DISCUSSION AND CONCLUSIONS
We have outlined a general methodology for incorporating user

models in automated assistance that encompasses a wide range of
user types. In particular, we proposed to model user features ex-
plicitly so that they can be inferred and learned throughout over the
course of interaction with the system. We demonstrated our ap-
proach in the word prediction domain via simulations with a hand-
crafted model and usability experiments after learning the param-
eters from extensive studies. Our results show that the model is
able to adapt to different (static) user types and to evolving (tran-
sient) user state — changes in user attitude — during the course of
the interaction. Although our model employs a myopic policy, its
adaptive nature allows greater reward to be obtained over a wider
range of user types than other fixed policies.

Of course, several drawbacks must be addressed within the gen-
eral framework. One of the participants in the usability study in-

4Unfortunately, an artifact of the implementation created extra
threading and file I/O delays; there is no inherent problem in the
model itself that causes these delays.

dicated a preference for much more predictable system behaviour
(a common theme in interface design). We can model these prefer-
ences as user features in the state space to reflect different attitudes
toward usability goals. In this way, the cost model can weigh the
amount of disturbance each action imposes on, say, a user’s mental
model of the application.

In an effort to exploit the sequential nature of human-computer
interaction, we are currently exploring the construction of deci-
sion policies usingpartially observable Markov decision processes
(POMDPs). This model enables the system to evaluate the long-
term impact of system actions optimally, giving the system the
ability to take exploratory actions (for example) to directly learn
about user types. Scalability is typically a concern for POMDP
models, but recently they have come to be used in more and more
realistic applications (see, e.g., work on using POMDP models in
a prompting system for Alzheimer’s patients that adapts to inferred
user characteristics [2]).

Informal observations of the participants in our experiments clearly
indicated a range of user types and the need to customize system
response to account for their preferences. Feedback from several
participants pointed to users having different reward (cost) func-
tions, varying in value and structure. In particular, the usability
results show that our adaptive policy was unable to always pro-
vide suggestions, even after learning that the user type is needy and
dependent. This problem is caused by having predefined reward
and cost functions that are insensitive to finer, numeric differences
among individuals. To truly assess the system’s overall utility, the
user’s reward function needs to be assessed or learned in real time.
In the current system, system utility is a plausible function reflect-
ing dependence on coarse-grained user types and a fixed model of
character savings. Next steps in extending our methodology in-
clude incorporating means for more direct reward, cost, and utility
model assessment tailored to individual users. Possibilities include
using a distribution over a richer set of utility models, and updating
this in response to observed user behaviour.

8. ACKNOWLEDGMENTS
We would like to thank all the participants in our experiments.

This project was funded by NSERC, OGS, and PRECARN/IRIS.

9. REFERENCES
[1] D. Albrecht, I. Zukerman, and A. Nicholson. Pre-sending documents

on the WWW: A comparative study. InProceedings of the
International Joint Conference on Artificial Intelligence, pages
1274–1279, Stockholm, Sweden, 1999.

[2] J. Boger, P. Poupart, J. Hoey, C. Boutilier, G. Fernie, and
A. Mihailidis. A decision-theoretic approach to task assistance for
persons with dementia. InProceedings of the Nineteenth
International Joint Conference on Artificial Intelligence, pages
1293–1299, Edinburgh, Scotland, 2005.

[3] T. Bohnenberger and A. Jameson. When policies are better than
plans: Decision-theoretic planning of recommendation sequences. In
Proceedings of the International Conference on Intelligent User
Interfaces, pages 21–24, Santa Fe, NM, 2001.

[4] X. Boyen and D. Koller. Tractable inference for complex stochastic
processes. InProceedings of the 14th Conference on Uncertainty in
Artificial Intelligence, pages 33–42, Madison, WI, 1998.

[5] A. Bunt, C. Conati, and J. McGrenere. What role can adaptive
support play in an adaptable system? InProceedings of the
International Conference on Intelligent User Interfaces, pages
117–124, Madeira, Portugal, 2004.

[6] C. Conati, A. Gertner, and K. VanLehn. Using Bayesian networks to
manage uncertainty in student modeling.User Modeling and
User-Adaptive Interaction, 12(4):371–417, 2002.

[7] T. Dean and K. Kanazawa. A model for reasoning about persistence
and causation.Computational Intelligence, 5(3):142–150, 1989.

[8] A. Dempster, N. Laird, and D. Rubin. Maximum likelihood from
incomplete data via the em algorithm.Journal of the Royal Statistical
Society, Series B, 1(39):1–38, 1977.

[9] G. Foster, P. Langlais, and G. Lapalme. TransType: Text prediction
for translators. InProceedings of the Association of Computational
Linguistics Demonstrations, pages 93–94, Philadelphia, 2002.

[10] K. Gajos and D.S. Weld. SUPPLE: Automatically generating user
interfaces. InProceedings of the International Conference on
Intelligent User Interfaces, pages 93–100, Madeira, Portugal, 2004.

[11] P. Gorniak and D. Poole. Building a stochastic dynamic model of
application use. InProceedings of the 16th Conference on
Uncertainty in Artificial Intelligence, pages 230–237, Stanford, CA,
2000.

[12] R.L. Gorsuch.Factor Analysis. Hillsdale, NJ: Lawrence Erlbaum,
1983.

[13] R. Gunning.The techniques of Clear Writing. New York:
McGraw-Hill, 1968.

[14] T. Hasselbring and C. Glaser. Use of computer technology to help
students with special needs.The Future of Children: Children and
Computer Technology, 10(2):102–122, 2000.

[15] E. Horvitz and J. Apacible. Learning and reasoning about
interruption. InInternational Conference on Multimodal Interfaces,
pages 20–27, Vancouver, BC, 2003.

[16] E. Horvitz, J. Breese, D. Heckerman, D. Hovel, and K. Rommelse.
The Lumìere Project: Bayesian User Modeling for Inferring the
Goals and Needs of Software Users. InProceedings of the 14th
Conference on Uncertainty in Artificial Intelligence, pages 256–265,
Madison, WI, 1998.

[17] C. Huang and A. Darwiche. Inference in Belief Networks: A
Procedural Guide.International Journal of Approximate Reasoning,
15(3):225–263, 1996.

[18] B. Hui, S. Liaskos, and J. Mylopoulos. Requirements Analysis for
Customizable Software: A Goals-Skills- Preferences Framework. In
Proceedings of the 11th IEEE International Conference on
Requirements Engineering, pages 117–126, Monterey Bay, CA,
2003.

[19] A. Jameson, B. Großmann-Hutter, L. March, R. Rummer,
T. Bohnenberger, and F. Wittig. When actions have consequences:
Empirically based decision making for intelligent user interfaces.
Knowlege Based Systems, 14(1–2):75–92, 2001.

[20] S. Kullback and R. Leibler. On information and sufficiency.Annals
of Mathematical Statistics, 22(1):79–86, 1951.

[21] K. Murphy.Dynamic Bayesian Networks: Representation, Inference
and Learning. PhD thesis, Department of Computer Science, UC
Berkeley, CA, USA, 2002.

[22] F. Shein, T. Nantais, R. Nishiyama, C. Tam, and P. Marshall. Word
cueing for persons with writing difficulties: WordQ. InProceedings
of the 16th Annual International Conference on Technology and
Persons with Disabilities, Los Angeles, 2001.

[23] X. Zhou and C. Conati. Inferring user goals from personality and
behaviour in a causal model of user affect. InProceedings of the
International Conference on Intelligent User Interfaces, pages
211–218, Miami, 2003.

