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ABSTRACT

The development of intelligent assistants has largelyfitexdd€rom

the adoption of decision-theoretic (DT) approaches thabknan
agent to reason and account for the uncertain nature of @ser b
haviour in a complex software domain. At the same time, most
intelligent assistants fail to consider the numerous factelevant
from a human-computer interaction perspective. While DT ap
proaches offer a sound foundation for designing intelligagents,
these systems need to be equipped witlindgraction cost model

in order to reason the impact of how (static or adaptiveyattion

is perceived by different users. In a DT framework, we folizel
four common interaction factors — information processisgy-
ings, visual occlusion, and bloat. We empirically derivedwig for
bloat and occlusion based on the results of two users expatim
These factors are incorporated in a simulated help assistaare
decisions are modeled as a Markov decision process. Outaimu
tion results reveal that our model can easily adapt to a widge

of user types with varying preferences.

Categories and Subject Descriptors

H.5 [Information Interfaces and Presentation]: Miscellaneous;
1.2.11 [Artificial Intelligence ]: Intelligent agents

General Terms
Interaction models and techniques, User interaction etudi

Keywords

Information processing, visual occlusion, bloat, peredigavings

1. INTRODUCTION

Software customization has become increasingly imporant
users are faced with larger, more complex applications. aRa-
riety of reasons, software must be tailored to specific iddigls
and circumstances [14]. Online and automated help systems a
becoming increasingly prevalent to assist users identify mas-
ter different software functions [11]. In this paper, we deoon
adaptive interfaces where the user’s preferences over interface at-
tributes (e.g., location, transparency, perceived savirignterface
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widgets) determine how the system customizes the interi@ce
objective is to develop adaptive interfaces that maximikzesiser’s
ease of interaction with the system.

Many decision-theoretic (DT) approaches have been appied
develop assistants that provide intelligent help for défe users
(e.g., [11, 1, 6, 3, 2, 13]). These approaches typically arielp
the user accomplish a task more efficiently by using macleiamk
ing techniques to estimate user-specific information, aghhe
user’s current task, whether the user needs help, or hotdtad
the user is with the system. At the same time, every system ac-
tion has a value (i.e., cost or benefit) that may be perceiiféet-d
ently depending on the user or the circumstance. In supp@To
approaches, Horvitz proposed that a central principle gigiéng
intelligent systems is the ability to evaluate titdity of system ac-
tions “in light of costs, benefits, and uncertainties” [1Bgllowing
these approaches, we adopt a DT framework to design an dgeént t
makes rational decisions about its customization undeeniaioty.

In order to model the utility of system actions, we need to di-
rectly account for the impact that the system’s custonbmatic-
tions have on the user. Since an interface is a compositiendf
gets, we design the system to adapt the interface by chatiging
attributes of individual widgets. We refer to such changesystem
actions, which an intelligent agent may decide to take. However,
different actions have different consequences: an adajptigrface
that hides unused menu items may be preferable for one user be
cause it saves him from scanning unnecessary functionssae
ings from processing extraneous items), but the same bmivavi
may be detrimental to other users who prefer to see all dlaila
functions (i.e., high tolerance to bloat). Furthermorestssn ac-
tions have effects beyond immediate consequences. Forpéxam
a user who likes unused menu items hidden may find it annoying
when he needs to use one of those functions in the futuredast
of re-discovery). These consequences are, in fact, ways tinser
determines the level of satisfaction with a software. Tfueee to
quantify the impact of system actions, we identify intei@tfac-
tors that are relevant to intelligent interfaces and forpegthe costs
and benefits of adaptive actions usingiaeraction cost model.

The benefits of developing an explicit interaction cost nhade
two-fold. From an HCI perspective, quantitative modelshéaae-
signers to compare a variety of interaction mechanisms@adame
grounds and predict the performance and satisfaction gvatisers
experience with these mechanisms. From an intelligenesyst
perspective, the interaction cost model provides a waytferslys-
tem to evaluate the utility of its own actiomefore adapting the
interface. In developing DT systems, we employ the intépact
cost model to evaluate the impact of different adaptiveoasti By
adopting the formalism that takeser types as parameters in the
interaction cost model [13], the agent is able to quantify ithn-



pact of its actions with respect to specific types of userd,thos,
adapting its overall behaviour toward specific user types.

In Section 2, we describe the approach of an intelligentesyst
in a DT framework. Our focus is on modeling the utility of sys-
tem actions. For this purpose, we identify four common axt&on
factors for adaptive interfaces — information processsayings,
visual occlusion, bloat — and formalize their cost models.ah
effort to derive a quantitative model for occlusion and blage
conduct two experiments to explore the relevant parameieds
structure in Section 3. Using these experiment results,myge-
ment our interaction cost model in a simulated help systeah th
adds or deletes unused menu items. The simulation is impietie
as aMarkov decision process (MDP) [17]. Our results show that
the system is able to adapt its behaviour to different typesers.
While usability studies are needed to confirm our simulatien
sults, this work suggests that using a DT framework to maueti
action benefits and costs is a formal, general, and usefubapp.

2. DECISION-THEORETIC FRAMEWORK

In designing an adaptive interface system, we view the Byste
as an intelligent agent that reasons about the impact thatfions
have on the user. Considering adaptive menus in the conftaxt o
terface bloat as an example, the agent observes which nema it
have been selected, evaluates the (long term) utility ahbidne
or more unused menu items, and carries out the action thatis o
timal for the user (i.e., (un)hiding menu items or doing mag).

In general, there are uncertainties in assessing theyufligystem
actions — how much faster is it for the user to search in thatume
after hiding unused items, how tolerant is the user witheesfm
bloated interfaces, or how likely, and at what frequencyhésuser
going to require a hidden menu item in the (near) future? &hes
questions illustrate the need to quantify two parts of thet@miza-
tion problem: (i) the costs and benefits of actions with respe
relevant interaction factors (e.g., “how fast”, “how taet”), and
(ii) the likelihood of events (e.g., the probability thaketliser is
highly tolerant to bloat, the probability of a hidden merenit be-
ing executed in the near future). Since the focus of this wsrk
utility assessment, we will assume probability estimatofeasi-
ble in the system.Section 2.1 explains the concept of utility and its
relation to user preferences. In Section 2.2, we turn to ibeud-
sion of adaptive interface systems and relevant intenadéotors.
Section 2.3 formalizes our interaction cost model and éxplaow
itis used in the DT framework.

2.1 Objective Value versus Subjective Utility

Utility theory is used to systematically quantify the totalsts
and benefits of decision outcomes: if a person has highétyutil
one situation than another, that person prefers the forigtion
over the latter. In designing intelligent systems, we warkriow
the utility of adaptive actions in a way that reflects the sgmefer-
ences over possible interaction mechanisms. Intuitioelygoal is
to quantify the utility of specific system actions with respt the
factors that influence the user’s interaction experienceteNhat
utility is subjective in nature since it reflects individymeferences.
Therefore, our goal is to determine the perceived utilityegi an
interaction setting (i.e., in terms of system actions arlie@tion
states). To do this, we first define an interaction cost mdui t
specifies theobjective value of an interaction setting. Then, we
introduce user characteristics that influence individuefgrences

Indeed, the user modeling literature provides a suite ofhinac
learning techniques that can be used to estimate user iafmm
quickly (e.g., see [13]).

for interaction, in terms of their objective quantities. sklg, we
define a parametric utility function that maps the objectratue
and user characteristics t@abjective utility. When computing the
utility of actions to evaluate which one is best, the systamstthis
utility function by “plugging in” the necessary parametbesed on
the current state and action. Since this function definegstine
utility, the system'’s reasoning process chooses the attiatrbest
satisfies the user’s interaction preferences.

2.2 Impact of Intelligent Actions

Different interface designs serve different purposes. eGaly
speaking, there are two main objectives in intelligentsdasice: (i)
to minimize user effort in task completions, and/or (ii) taximize
the ease of interaction during application use. In deskpypiea-
tions, many kinds of system actions can be implemented teiipo
tially) achieve these objectives. Examples include: dommdane
work on the user’s behalf (e.g., auto-completion), movinig-w
gets to another location for more convenient selection,(adyling,
moving, deleting widgets), changing the delivery of widgét.g.,
via animation), changing the presentation of widgets (dayel
of transparency), sending reminders (e.g., using a texodi3),
making suggestions (e.g., via a toolbar), asking questapsic-
itly (e.g., via a dialog box), etc. Each of these actions cavith
associated benefits and costs. For example, adding a friygaen
ecuted item to the menu can increase selection conveni¢itice a
risk of inducing more bloat. Among the many interaction éast
proposed in the literature, we focus on the following:

e information processing: cost of evaluating a set of items

e savings: manual effort that would have otherwise been required
e occlusion: cost of displaying widgets in the user’s workspace

e bloat: cost of displaying excessive functionality

For a detailed rationale of our choices, please see [12]. Md&ept
a formal model for these interaction factors in Section 2.3.

2.3 An Objective Interaction Cost Model

Since processing and savings are well-studied interadtion
tors, we adopt the existing quantitative models. Specificdie
cost of processing is linear for naive users [9] and logarithfor
expert users [8, 15]. To combine the two models, we defitve =
f(Expertise, Len), Where Expertise is either naive or expert,
Len is the number of items to process, afids linear for naive
users and logarithmic for experts. To model savings, we tithep
GOMS-KLM model [5] that quantifies user effort in terms of the
mode used to carry out an event, such as menu selection ging t
mouse versus keyboard shortcuts. We define the objectivegsav
asquality = Num*GOM S(Mode), whereNum is the number
of events and~OM S(Mode) is the effort required for that mode.

Both occlusion and bloat are often mentioned in the destgn li
ature but, to our knowledge, there are no formal attemptsadein
them. For this reason, we conduct experiments to explorpdhe
rameters and structure of a quantitative model. As a rewudt,
obtainedo = f(Opac, B) as objective occlusion, whe@pac is
the level of opacity of an occluding widget, attlis whether the
user’s immediate focus is occluded. For objective bloat¢éss”),
we obtainedrs = f(Unused), whereUnused is the difference
between the number of functions shown and used. We refer the
reader to Sections 3.1 and 3.2 for the definition of thesetiune
and the corresponding experiments.

3. EXPERIMENTS AND SIMULATIONS

We conduct experiments to empirically derive quantitamad-



els for occlusion and bloat. The analysis of each experirment
vestigates the relevance of the tested parameters andiemfipir
derives a functional form. While occlusion and bloat havegety
been neglected in experimental studies, our results shaibtith
factors cause an interaction effect. This indicates theimapce of
modeling these two factors in our interaction cost model.

Both experiments had 12 volunteer participants from a gradu
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ate computer science pool, all of whom have a good command of Figure 2: Screenshot showing the target menu item and in-

written English and no motor control deficiencies.

3.1 Occlusion

The purpose of this experiment is to derive an objective mode

of occlusion in the context of intelligent assistance. Weuated

a typing task by focusing on the task of typing a single leittiest
sentence. Each trial consists of the user typing the higtdidjletter
(i.e., the target), ignoring or dismissing a pop-up boxiedin 4
parameters defined below), and then typing a second higatigh
letter. We measured the time between the two typed lettezaéh
trial. A screenshot of this program is shown in Figure 1.
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Figure 1: Screenshot showing a pop-up dialog box of size
200x 200 pixels at 80% opacity in a typing task.

Each trial varied in 4 parameters of the dialog box: direttio
size, opacity Qpac), and proximity — yielding a total of 480 con-
figurations. In addition, we logged the intersecting areaveen
the dialog box and the target letter. The measured task etiopl
time in each trial is a function of these 6 variables.

To create a simpler model, we used factor analysis to deter-
mine the most important variables. We used ANOVA to deteemin
whether each set of user data came from separate distribytio
and the F-test to determine the complexity of the model. As-ar
sult, we found occlusion is best explained by a non-lineacfion:

o = f(B, Opac), whereB is an indicator to denote the presence of
overlap between the dialog box and the target,@pdc is defined
above. WhemB = 0, o = ¢o, and whenB = 1, the best approx-
imation is a cubic functiom = c3Opac®+ c2Opac®+ c¢10pac+

co for half of the users and a linear function= c;Opac+ ¢ for
the other half, wherey, .., c3 are empirically derived constants for
individual users.

3.2 Bloat

The purpose of this experiment is to derive an objective mafde
bloat in the context of intelligent assistance. We designetenu
selection task with an interface that has the same menutsteuc
as Microsoft Word but using abstract menu labels. This éxper
ment has 4 conditions varying in the number of menu items show
(Shown): 18, 62, 107, and 152, out of a total of 152 possible
menu items. In all the conditions, we fixed the number of menu
items used{{ sed) to 15. The target items in the selection task are
randomized across conditions. In each trial, participéoitew an
instruction (e.g., Fruits> Papaya) and select the target menu item.
We measured the successful selection time of target mems.ita
screenshot of the program is shown in Figure 2.

structions on the right. Notice this menu has many empty sla.

Each participant carried out 15 trials per condition. Witboh-
ditions, each participant carried out a total of 60 trialthe exper-
iment. We counterbalanced the order of blocks using a sizatih L
square. The measured selection time in each trial is a fumat
Shown andU sed. Conceptually, we defineinused as the num-
ber of items shown but not used. Using this definition, we used
ANOVA and an F-test and found that bloat is best approximated
as a linear functioms = c;Unused + co for most users, and as
a quadratic functior:s = caUnused? + ciUnused + ¢ for 1
user, and as a cubic functians = czUnused® + caUnused® +
c1Unused + c¢o for 1 user, wherey, .., c3 are empirically derived
constants for individual users.

3.3 Markov Decision Process

To put the interaction cost model to use, we designed a system
that adapts menus in simulation. The first step in the desiga i
identify the relevant interaction factors for this domagiven the
objective cost models of these factors (as defined in Segtigh
we introduce user characteristics and define the overajéstine
utility function. This function is used in the system to axate the
goodness of its actions. In the simulation, we assume we know
the user characteristics and model the customization @nolbk an
MDP?. In this way, the agent optimizes its adaptive actions with
respect to the user’s preferences over repeated intemagtib the
system. When an MDP is solved, we obtaipaicy that maps
(application and user) states to an optimal action. For ailéet
introduction to MDPs, the reader is referred to [4].

The possible actions of this system are to add a menu iteetedel
a menu item, or do nothing. For simplicity, we use bloat and sa
ings in defining this system’s interaction cost mddeThese two
factors are relevant because the system can remove oructod
items that offer potential savings. To compute the subjeattil-
ity of system actions involving these factors, we use thiofol
ing functions? savings = f(Quality, N, D, F, I) — represents
the perceived savings of the resulting interface, giverotjective
quality of savings, how much help the user neel9, (how dis-
tracted the user is in generd], how frustrated the user is with the
system '), and whether the user generally likes to work indepen-
dently (I); bloat = f(X S, T, D) — represents the perceived bloat
of the resulting interface, given the objective excess ofblthe
user’s tolerance toward blodf'(denotes whether users deature-
keen or feature-shy [16]), and how distracted the user is with more
functions available D). Finally, the overall utility of an action is
the weighted sum ofavings andbloat.

2In reality, this problem should be modelled apaatially observ-
able MDP because we cannot know the user with complete cer-
tainty. However, since machine learning techniques ardadle

for learning the user, we assume we can observe the user here.
3In general, the cost of processing, interruption, and gison also

play a role in adaptive menus.

“Due to a lack of space, we refer readers for a detailed acadunt
these models elsewhere [13, 12].



In the simulation, we discretize the user variables to baryin
and tertiary (e.g.F" has 3 values, representing the user being highly,
somewhat, and not at all frustrated). With 5 user variathessys-
tem’s utility function accounts for a total of 162 user typels
addition, the MDP dynamics are defined to reflect changeseto th
interface (adding/deleting) can distract and frustragauer. In this
way, the system does not risk taking adaptive actions whalinde
with highly distracted/frustrated users.

We conducted two simulation runs. The first one investigtites
effect of bloat and the second one explores the system’sauibp
ity toward various user types in the model. At any point ingjrthe

interaction cost model that forms part of a utility functiosed
to explain different interaction preferences. Our int&oac cost
model is highly flexible so that formal models can be refinexk-si
ply by changing the corresponding formula in the model. Addi
ally, our implementation shows that designers can pick odse
the interaction concepts from the framework that are refefar
their application. By modeling the costs and benefits ofotegi
interaction factors, intelligent systems can reason ttgathof its
actions and optimize its behaviour for different users wihying
interaction preferences.

adaptive menu can have 1 to 6 items shown, and the systenypolic 5, REFERENCES

suggests to add an item, delete an item, or do nothing, bastgto
menu state and the user’s type. In the first simulation, waneéfi
a constant value for savings and focus only on bloat. A catalé
description of the results is presented in Table 1, wherentima-
ber of menu items shown is categorized as “few” (less thaf),hal
“many” (more than half), or “any” (any value between 1 to 6).

Distractibility Tolerance Shown | Policy
low/medium keen any add
high keen few add
low shy many | delete

Table 1: Results showing the effect of bloat.
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