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ABSTRACT
The development of intelligent assistants has largely benefited from
the adoption of decision-theoretic (DT) approaches that enable an
agent to reason and account for the uncertain nature of user be-
haviour in a complex software domain. At the same time, most
intelligent assistants fail to consider the numerous factors relevant
from a human-computer interaction perspective. While DT ap-
proaches offer a sound foundation for designing intelligent agents,
these systems need to be equipped with aninteraction cost model
in order to reason the impact of how (static or adaptive) interaction
is perceived by different users. In a DT framework, we formalize
four common interaction factors — information processing,sav-
ings, visual occlusion, and bloat. We empirically derive models for
bloat and occlusion based on the results of two users experiments.
These factors are incorporated in a simulated help assistant where
decisions are modeled as a Markov decision process. Our simula-
tion results reveal that our model can easily adapt to a wide range
of user types with varying preferences.

Categories and Subject Descriptors
H.5 [Information Interfaces and Presentation]: Miscellaneous;
I.2.11 [Artificial Intelligence ]: Intelligent agents

General Terms
Interaction models and techniques, User interaction studies

Keywords
Information processing, visual occlusion, bloat, perceived savings

1. INTRODUCTION
Software customization has become increasingly importantas

users are faced with larger, more complex applications. Fora va-
riety of reasons, software must be tailored to specific individuals
and circumstances [14]. Online and automated help systems are
becoming increasingly prevalent to assist users identify and mas-
ter different software functions [11]. In this paper, we focus on
adaptive interfaces where the user’s preferences over interface at-
tributes (e.g., location, transparency, perceived savings of interface
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widgets) determine how the system customizes the interface. Our
objective is to develop adaptive interfaces that maximizesthe user’s
ease of interaction with the system.

Many decision-theoretic (DT) approaches have been appliedto
develop assistants that provide intelligent help for different users
(e.g., [11, 1, 6, 3, 2, 13]). These approaches typically try to help
the user accomplish a task more efficiently by using machine learn-
ing techniques to estimate user-specific information, suchas the
user’s current task, whether the user needs help, or how frustrated
the user is with the system. At the same time, every system ac-
tion has a value (i.e., cost or benefit) that may be perceived differ-
ently depending on the user or the circumstance. In support of DT
approaches, Horvitz proposed that a central principle in designing
intelligent systems is the ability to evaluate theutility of system ac-
tions “in light of costs, benefits, and uncertainties” [10].Following
these approaches, we adopt a DT framework to design an agent that
makes rational decisions about its customization under uncertainty.

In order to model the utility of system actions, we need to di-
rectly account for the impact that the system’s customization ac-
tions have on the user. Since an interface is a composition ofwid-
gets, we design the system to adapt the interface by changingthe
attributes of individual widgets. We refer to such changes assystem
actions, which an intelligent agent may decide to take. However,
different actions have different consequences: an adaptive interface
that hides unused menu items may be preferable for one user be-
cause it saves him from scanning unnecessary functions (i.e., sav-
ings from processing extraneous items), but the same behaviour
may be detrimental to other users who prefer to see all available
functions (i.e., high tolerance to bloat). Furthermore, system ac-
tions have effects beyond immediate consequences. For example,
a user who likes unused menu items hidden may find it annoying
when he needs to use one of those functions in the future (i.e., cost
of re-discovery). These consequences are, in fact, ways that a user
determines the level of satisfaction with a software. Therefore, to
quantify the impact of system actions, we identify interaction fac-
tors that are relevant to intelligent interfaces and formalize the costs
and benefits of adaptive actions using aninteraction cost model.

The benefits of developing an explicit interaction cost model are
two-fold. From an HCI perspective, quantitative models enable de-
signers to compare a variety of interaction mechanisms on the same
grounds and predict the performance and satisfaction that new users
experience with these mechanisms. From an intelligent systems
perspective, the interaction cost model provides a way for the sys-
tem to evaluate the utility of its own actionsbefore adapting the
interface. In developing DT systems, we employ the interaction
cost model to evaluate the impact of different adaptive actions. By
adopting the formalism that takesuser types as parameters in the
interaction cost model [13], the agent is able to quantify the im-



pact of its actions with respect to specific types of users, and thus,
adapting its overall behaviour toward specific user types.

In Section 2, we describe the approach of an intelligent system
in a DT framework. Our focus is on modeling the utility of sys-
tem actions. For this purpose, we identify four common interaction
factors for adaptive interfaces — information processing,savings,
visual occlusion, bloat — and formalize their cost models. In an
effort to derive a quantitative model for occlusion and bloat, we
conduct two experiments to explore the relevant parametersand
structure in Section 3. Using these experiment results, we imple-
ment our interaction cost model in a simulated help system that
adds or deletes unused menu items. The simulation is implemented
as aMarkov decision process (MDP) [17]. Our results show that
the system is able to adapt its behaviour to different types of users.
While usability studies are needed to confirm our simulationre-
sults, this work suggests that using a DT framework to model inter-
action benefits and costs is a formal, general, and useful approach.

2. DECISION-THEORETIC FRAMEWORK
In designing an adaptive interface system, we view the system

as an intelligent agent that reasons about the impact that its actions
have on the user. Considering adaptive menus in the context of in-
terface bloat as an example, the agent observes which menu items
have been selected, evaluates the (long term) utility of hiding one
or more unused menu items, and carries out the action that is op-
timal for the user (i.e., (un)hiding menu items or doing nothing).
In general, there are uncertainties in assessing the utility of system
actions — how much faster is it for the user to search in that menu
after hiding unused items, how tolerant is the user with respect to
bloated interfaces, or how likely, and at what frequency, isthe user
going to require a hidden menu item in the (near) future? These
questions illustrate the need to quantify two parts of the customiza-
tion problem: (i) the costs and benefits of actions with respect to
relevant interaction factors (e.g., “how fast”, “how tolerant”), and
(ii) the likelihood of events (e.g., the probability that the user is
highly tolerant to bloat, the probability of a hidden menu item be-
ing executed in the near future). Since the focus of this workis
utility assessment, we will assume probability estimationis feasi-
ble in the system.1 Section 2.1 explains the concept of utility and its
relation to user preferences. In Section 2.2, we turn to the discus-
sion of adaptive interface systems and relevant interaction factors.
Section 2.3 formalizes our interaction cost model and explains how
it is used in the DT framework.

2.1 Objective Value versus Subjective Utility
Utility theory is used to systematically quantify the totalcosts

and benefits of decision outcomes: if a person has higher utility in
one situation than another, that person prefers the former situation
over the latter. In designing intelligent systems, we want to know
the utility of adaptive actions in a way that reflects the user’s prefer-
ences over possible interaction mechanisms. Intuitively,our goal is
to quantify the utility of specific system actions with respect to the
factors that influence the user’s interaction experience. Note that
utility is subjective in nature since it reflects individualpreferences.
Therefore, our goal is to determine the perceived utility given an
interaction setting (i.e., in terms of system actions and application
states). To do this, we first define an interaction cost model that
specifies theobjective value of an interaction setting. Then, we
introduce user characteristics that influence individual preferences

1Indeed, the user modeling literature provides a suite of machine
learning techniques that can be used to estimate user information
quickly (e.g., see [13]).

for interaction, in terms of their objective quantities. Lastly, we
define a parametric utility function that maps the objectivevalue
and user characteristics to asubjective utility. When computing the
utility of actions to evaluate which one is best, the system uses this
utility function by “plugging in” the necessary parametersbased on
the current state and action. Since this function defines subjective
utility, the system’s reasoning process chooses the actionthat best
satisfies the user’s interaction preferences.

2.2 Impact of Intelligent Actions
Different interface designs serve different purposes. Generally

speaking, there are two main objectives in intelligent assistance: (i)
to minimize user effort in task completions, and/or (ii) to maximize
the ease of interaction during application use. In desktop applica-
tions, many kinds of system actions can be implemented to (poten-
tially) achieve these objectives. Examples include: doingmundane
work on the user’s behalf (e.g., auto-completion), moving wid-
gets to another location for more convenient selection (e.g., adding,
moving, deleting widgets), changing the delivery of widgets (e.g.,
via animation), changing the presentation of widgets (e.g., level
of transparency), sending reminders (e.g., using a text balloon),
making suggestions (e.g., via a toolbar), asking questionsexplic-
itly (e.g., via a dialog box), etc. Each of these actions comewith
associated benefits and costs. For example, adding a frequently ex-
ecuted item to the menu can increase selection convenience at the
risk of inducing more bloat. Among the many interaction factors
proposed in the literature, we focus on the following:

• information processing: cost of evaluating a set of items

• savings: manual effort that would have otherwise been required

• occlusion: cost of displaying widgets in the user’s workspace

• bloat: cost of displaying excessive functionality

For a detailed rationale of our choices, please see [12]. We present
a formal model for these interaction factors in Section 2.3.

2.3 An Objective Interaction Cost Model
Since processing and savings are well-studied interactionfac-

tors, we adopt the existing quantitative models. Specifically, the
cost of processing is linear for naive users [9] and logarithmic for
expert users [8, 15]. To combine the two models, we defineproc =
f(Expertise,Len), whereExpertise is either naive or expert,
Len is the number of items to process, andf is linear for naive
users and logarithmic for experts. To model savings, we adopt the
GOMS-KLM model [5] that quantifies user effort in terms of the
mode used to carry out an event, such as menu selection using the
mouse versus keyboard shortcuts. We define the objective savings
asquality = Num∗GOMS(Mode), whereNum is the number
of events andGOMS(Mode) is the effort required for that mode.

Both occlusion and bloat are often mentioned in the design liter-
ature but, to our knowledge, there are no formal attempts to model
them. For this reason, we conduct experiments to explore thepa-
rameters and structure of a quantitative model. As a result,we
obtainedo = f(Opac, B) as objective occlusion, whereOpac is
the level of opacity of an occluding widget, andB is whether the
user’s immediate focus is occluded. For objective bloat (“excess”),
we obtainedxs = f(Unused), whereUnused is the difference
between the number of functions shown and used. We refer the
reader to Sections 3.1 and 3.2 for the definition of these functions
and the corresponding experiments.

3. EXPERIMENTS AND SIMULATIONS
We conduct experiments to empirically derive quantitativemod-



els for occlusion and bloat. The analysis of each experimentin-
vestigates the relevance of the tested parameters and empirically
derives a functional form. While occlusion and bloat have largely
been neglected in experimental studies, our results show that both
factors cause an interaction effect. This indicates the importance of
modeling these two factors in our interaction cost model.

Both experiments had 12 volunteer participants from a gradu-
ate computer science pool, all of whom have a good command of
written English and no motor control deficiencies.

3.1 Occlusion
The purpose of this experiment is to derive an objective model

of occlusion in the context of intelligent assistance. We simulated
a typing task by focusing on the task of typing a single letterin a
sentence. Each trial consists of the user typing the highlighted letter
(i.e., the target), ignoring or dismissing a pop-up box (varied in 4
parameters defined below), and then typing a second highlighted
letter. We measured the time between the two typed letters ineach
trial. A screenshot of this program is shown in Figure 1.

Figure 1: Screenshot showing a pop-up dialog box of size
200×200 pixels at 80% opacity in a typing task.

Each trial varied in 4 parameters of the dialog box: direction,
size, opacity (Opac), and proximity — yielding a total of 480 con-
figurations. In addition, we logged the intersecting area between
the dialog box and the target letter. The measured task completion
time in each trial is a function of these 6 variables.

To create a simpler model, we used factor analysis to deter-
mine the most important variables. We used ANOVA to determine
whether each set of user data came from separate distributions,
and the F-test to determine the complexity of the model. As a re-
sult, we found occlusion is best explained by a non-linear function:
o = f(B, Opac), whereB is an indicator to denote the presence of
overlap between the dialog box and the target, andOpac is defined
above. WhenB = 0, o = c0, and whenB = 1, the best approx-
imation is a cubic functiono = c3Opac3+ c2Opac2+ c1Opac+
c0 for half of the users and a linear functiono = c1Opac+ c0 for
the other half, wherec0, .., c3 are empirically derived constants for
individual users.

3.2 Bloat
The purpose of this experiment is to derive an objective model of

bloat in the context of intelligent assistance. We designeda menu
selection task with an interface that has the same menu structure
as Microsoft Word but using abstract menu labels. This experi-
ment has 4 conditions varying in the number of menu items shown
(Shown): 18, 62, 107, and 152, out of a total of 152 possible
menu items. In all the conditions, we fixed the number of menu
items used (Used) to 15. The target items in the selection task are
randomized across conditions. In each trial, participantsfollow an
instruction (e.g., Fruits→ Papaya) and select the target menu item.
We measured the successful selection time of target menu items. A
screenshot of the program is shown in Figure 2.

Figure 2: Screenshot showing the target menu item and in-
structions on the right. Notice this menu has many empty slots.

Each participant carried out 15 trials per condition. With 4con-
ditions, each participant carried out a total of 60 trials inthe exper-
iment. We counterbalanced the order of blocks using a size 4 Latin
square. The measured selection time in each trial is a function of
Shown andUsed. Conceptually, we definedUnused as the num-
ber of items shown but not used. Using this definition, we used
ANOVA and an F-test and found that bloat is best approximated
as a linear functionxs = c1Unused + c0 for most users, and as
a quadratic functionxs = c2Unused2 + c1Unused + c0 for 1
user, and as a cubic functionxs = c3Unused3 + c2Unused2 +
c1Unused + c0 for 1 user, wherec0, .., c3 are empirically derived
constants for individual users.

3.3 Markov Decision Process
To put the interaction cost model to use, we designed a system

that adapts menus in simulation. The first step in the design is to
identify the relevant interaction factors for this domain.Given the
objective cost models of these factors (as defined in Section2.3),
we introduce user characteristics and define the overall subjective
utility function. This function is used in the system to evaluate the
goodness of its actions. In the simulation, we assume we know
the user characteristics and model the customization problem as an
MDP2. In this way, the agent optimizes its adaptive actions with
respect to the user’s preferences over repeated interaction with the
system. When an MDP is solved, we obtain apolicy that maps
(application and user) states to an optimal action. For a detailed
introduction to MDPs, the reader is referred to [4].

The possible actions of this system are to add a menu item, delete
a menu item, or do nothing. For simplicity, we use bloat and sav-
ings in defining this system’s interaction cost model3. These two
factors are relevant because the system can remove or introduce
items that offer potential savings. To compute the subjective util-
ity of system actions involving these factors, we use the follow-
ing functions:4 savings = f(Quality, N, D, F, I) — represents
the perceived savings of the resulting interface, given theobjective
quality of savings, how much help the user needs (N ), how dis-
tracted the user is in general (D), how frustrated the user is with the
system (F ), and whether the user generally likes to work indepen-
dently (I); bloat = f(XS, T, D) — represents the perceived bloat
of the resulting interface, given the objective excess of bloat, the
user’s tolerance toward bloat (T denotes whether users arefeature-
keen or feature-shy [16]), and how distracted the user is with more
functions available (D). Finally, the overall utility of an action is
the weighted sum ofsavings andbloat.

2In reality, this problem should be modelled as apartially observ-
able MDP because we cannot know the user with complete cer-
tainty. However, since machine learning techniques are available
for learning the user, we assume we can observe the user here.
3In general, the cost of processing, interruption, and disruption also
play a role in adaptive menus.
4Due to a lack of space, we refer readers for a detailed accountof
these models elsewhere [13, 12].



In the simulation, we discretize the user variables to be binary
and tertiary (e.g.,F has 3 values, representing the user being highly,
somewhat, and not at all frustrated). With 5 user variables,the sys-
tem’s utility function accounts for a total of 162 user types. In
addition, the MDP dynamics are defined to reflect changes to the
interface (adding/deleting) can distract and frustrate the user. In this
way, the system does not risk taking adaptive actions when dealing
with highly distracted/frustrated users.

We conducted two simulation runs. The first one investigatesthe
effect of bloat and the second one explores the system’s adaptabil-
ity toward various user types in the model. At any point in time, the
adaptive menu can have 1 to 6 items shown, and the system policy
suggests to add an item, delete an item, or do nothing, based on the
menu state and the user’s type. In the first simulation, we defined
a constant value for savings and focus only on bloat. A qualitative
description of the results is presented in Table 1, where thenum-
ber of menu items shown is categorized as “few” (less than half),
“many” (more than half), or “any” (any value between 1 to 6).

Distractibility Tolerance Shown Policy
low/medium keen any add
high keen few add
low shy many delete

Table 1: Results showing the effect of bloat.

Generally, we see that the system adds items for feature-keen
users, even when they are highly distracted because an addition
offers enough savings to tradeoff the cost of annoying the user. For
all other combinations, the system opts to do nothing.

In the second simulation, we re-introduced savings to compare
the adaptive behaviour toward different user types. When the user’s
frustration and independence levels are low and the neediness level
is high, we expect this type of user to be most receptive to help. We
define this user type as our “best case”. Analogously, we define the
“worst case”. The qualitative results are shown in Table 2.

Case Distractibility Tolerance Shown Policy
best case low keen/shy any add
best case medium/high keen any add
worst case low keen any add
worst case low shy many delete
worst case medium shy many delete

Table 2: Results showing the effect of user types.

For the best case user type, the system tends to suggest adding
an item because these users are receptive to adaptive help. For
the worst case user type, the system is much more conservative and
only adds an item for low distractibility and feature-keen users. The
system deletes items when many are shown for feature-shy users
who are not highly distractible. For all other combinations, the
system opts to do nothing in fear of distracting the user by changing
the interface. Note that there are 160 user types “between” the best
and worst cases. These results show that the system is able toadapt
to many different user types.

4. CONCLUSIONS
In this paper, we proposed a decision-theoretic approach toac-

count for the varying user preferences with software interfaces. We
modeled four interaction factors, that when combined, result in an

interaction cost model that forms part of a utility functionused
to explain different interaction preferences. Our interaction cost
model is highly flexible so that formal models can be refined sim-
ply by changing the corresponding formula in the model. Addition-
ally, our implementation shows that designers can pick and choose
the interaction concepts from the framework that are relevant for
their application. By modeling the costs and benefits of various
interaction factors, intelligent systems can reason the impact of its
actions and optimize its behaviour for different users withvarying
interaction preferences.
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