C0OSC442:
Mobile Educational Game
Development

Dr. Bowen Hul

University of British Columbia
Okanagan

A2 Feedback

* Generally very well done

— See handout with submitted feedback on “Best part of the
game” and “Most needed improvement”

» Before early/late days: * After early/late days:
— Max: 100% — Max: 122%
— Average: 95% — Average: 104%

* Main comment:

— Game metrics to implement for A3 collects objective data based
on game events

— Heuristic evaluation can collect additional subjective data via
guestionnaire

Vote Results: Best Learning Game

Boat Racer by Ravan Klar

Vote Results: Most Fun Game

" \
— [4)
/ : ~. \
| N |
| N\
/ A !
/ . | %
| / / &
| ’ ,'/ '
/ : . _
/ : O Y J
//) ’./ Lr
/ ' /
+"‘-—‘. /‘w--/
VO
/

e l
b —— | . |]
/ You ran out-of supplies, try agairi!!!:
; // - [
_ | _ -
e~ | /

Foreign Aid Fighter by Eric Nelson

Vote Results: Most Creative Game

Get a planet to orbit around the two stars for 1S seconds Get a planet to orbit around the three stars for 1S seconds

2:e 2:2

Nice Job! You have completed level 3 Nice Job! You have completed level 4

Continue to level 4 Continue to level S

Two Stars with Different Sizes Three Stars

Thers ace o stars ke Defore, DUt NowW one is smaler - e
ree stars!? These three atars

than the cther. This Means that the grauty of the smaler
- Y @ al have the same size and grauty

star is smaler than the gravty of the larger star

The X Vector The Y Vector The X Vector The VY Vector

he X Vector is a ine v Vic y ™

wctor is & e The
ght to the right ponting str
ger the number s, The larger » The larger the number is
e quickly the planet the more q t . : cichy th

oves to the right! moves upl

-

Vector Space by Nick Borle

Vote Results: Best Graphics Game

Simple Bee by Hayun Jin and lleri Oyedele

Vote Results: Best Audio Game

T .

19y ¥) ¥y el
)] n) () *in)

Space Times by Julien Butler, Kayla Raine, and Alex Shaw

A3 Reminder

* Things to do before next week:
— Ensure A2 prototype works (doesn’t crash)
— Test your games thoroughly
— Implement event logging (objective data)
— Setup quantitative questionnaire (subjective data)

e Next week in class:
— Run heuristic evaluation to collect data with each other
— Schedule will be available at beginning of class

— Participating in evaluating others’ games contribute to in-
class exercise marks

Steps in Running Experiment

Explain to the participant what your game is about

Let them go through the tutorial or walk them through
your game activity (show them the input controls)

Answer any questions they might have

Let participant play your game for ~10 minutes
— Observe participant actions and log problems

— Resolve problems if they arise

— Watch the timer

Ask participant to complete questionnaire
Thank the participant

Logging Observations

* Remember each problem identified should
have the following fields:
— Issue identified with the game
— Severity level
— Heuristic violated
— Description

* See previous slides for examples

A3 Questionnaire

Define 5-point Likert scale questions for each of the heuristic
Automate questionnaire (e.g. use Google forms)

)

Example question for the heuristics “visibility of system status”:
In the following, indicate how much you agree with each
statement.

The system design affords good visibility of system system.

Strongly Agree
Agree

Neutral
Disagree

Strongly Disagree
11

Role of Al in Games

Graphics and rendering is given highest priority in project scope and
resources

— Al typically done last
— Al is very dependent on concrete details of game environment

Goal of Al in games:
— Imitate human-like characteristics
— Make game fun and believable
— Not to compute most optimal behaviour to win against player
— Very different from Al in research/academia

Too much unpredictability can be undesirable!
— Game designers can’t guarantee a fun game

12

Example Use of “Al” in Games

Space Invaders (1978)
— Using stored patterns to direct enemy movement
— Incorporate random movement patterns
Pacman (1980)
— Four different ghosts with different personality behaviours
Sims (2000)
— Different objects affected character’s behaviours and relationships
— Player defined characteristics that impact character choices in game
Mortal Kombat Series
— More realistic enemies
Petz (2007)

— Learns player habits and develops a deeper, more personal relationship with
player

Metal Gear Solid (2015)
— NPC hunt players through disturbances in environment (e.g. footprints)

Tuebor (2016)
— Adapts difficulty to player’s behaviour to match their ability

Al Techniques in Games

Most common is for controlling non-player characters
(NPCs)

Most common techniques used:
— Finite state machine (FSM) Why only simple Al
— Search Tree techniques?

Niche area: uses machine learning to adapt behaviour
throughout game play

— Good for developing relationship with player
— E.g. Petz

14

Al Techniques in Games

Most common is for controlling non-player characters
(NPCs)

Simple Al techniques

e Relatively predictable
behaviour

* Requires min. resources

Most common techniques used:
— Finite state machine (FSM)
— Search Tree

Niche area: uses machine learning to adapt behaviour
throughout game play

— Good for developing relationship with player
— E.g. Petz

15

Background of FSM

e System uses FSM to implement pattern
matching operations

e Pattern matching example in commands:
—E.g.Is*
—E.g. Is *.cs

* Automata theory: Study of formal languages
and machines that accept/reject them

FSM Example

* This machine has:
— States: Locked, Unlocked
— Initial state: Locked
— Actions: Push, Coin

— Transitions: Defined by arcs
— Final state: None

Push

17

A More Abstract Example

* This machine has:
— States: {q0, q1, g2, q3}
— Initial state: g0
— Alphabet: {a, b}
— Transitions: Defined by arcs
— Final state: g3

Which strings are accepted
by this FSM?

18

A More Abstract Example

* This machine has: E.g. Design FSM that accepts
— States: {q0, q1, 92, 93} language defined by:
* E 3 * E 3 *k\))k
— Initial state: g0 ((b%) (ab)* (b¥) (aab)* (b))
aaa (a*b*)

— Alphabet: {a, b}
— Transitions: Defined by arcs
— Final state: g3

b a

@a q1 ——{ q2 “

b b b 19

What is a FSM

e Abstract notion of “machine”
— Finite set of states

— Transitions indicate when one state can change to another
(don’t care how it’s done)

— Alphabet (or symbols, or actions) define possible
transitions

— One initial state
— Zero or more final states

« Commonly used to model elevators, traffic lights,
combo locks, parsing text, game character behaviour

Examples of using FSMs to model game characters?

20

Simplified FSM in Shooting Game

Need more health points

S
' Find aid \\f Evade

Sufficient Player

Player idle

health points attacks

NPC starts in }Qi Wander kAuack
“wander”
state Player is out of sight

Translating FSM into Code

* General setup:
— Class defines possible states and transitions
— Class manages initial state and current state
— Every state is defined as a method
— Repeat:

* Update method takes input action, follows predefined
transition, go to next state

 Execute code in that state

Example for Little Kids

Time + 0.5 hour

= Cranky =

Time + 1 hour Eat
Eat

Time + 3 hours

= Sleepy Playful

Time + 0.5 hour

23

Class Child

{

Code Structure for Child FSM

What does transition matrix look like?

// define possible states
// define possible actions
// encode possible transitions into matrix, one per action

constructor method()

{
// initialize current state as initial state

}

hungry method() { ... }

cranky method() { ... }

sleepy method() { ... }

playful method() { ... }

updateState method() { ... }

24

Code Structure for Child FSM

Class Child

{
// define possible states
// define possible actions
// encode possible transitions into matrix , one per action
constructor method()
{
// initialize current state as initial state
}
hungry method() { ... }
cranky method() { ... } Alternate pattern:
sleepy method() { ... } o ey .
olayful method() { ... } No transition matrix and
updateState method
teStat th e ey
\ updateState method() { }« Encode transition to next state

as last line in each state method

25

Pacman Ghost FSM

* How to define an FSM for Pacman ghost
behaviour?
— Generally just moves around the maze
— When Pacman in normal mode:
* Ghost moves towards Pacman

— When Pacman in pill mode:

* Ghost moves away from Pacman

— When Pacman in pill mode and collision occurs:
* Ghost dies

Pacman Ghost FSM

Pill
timer

- Pacman
eats pill
e

Move Toward
Pacman

Collision
with
Pacman

Move Away
From Pacman

ends

27

FSM Considerations

Fairly simple to design
Straightforward to translate into code

Models actions by NPC and reactions to player
— Actions and reactions only based on current state
— No history or future actions are considered

Simple FSMs can become very predictable

How might we make FSMs less predictable?

Modeling More Interesting Behaviour?

* How to define an FSM for a fighter behaviour?
— Can move around, fire weapon, or evade player
— When player not in sight:

 Move around in search of player
— When player is in sight:
* Fire close range weapon if player within n distance

* Fire long range weapon if player outside n distance

— When player shoots at character:

e Evade shot

Master FSM Template for Fighter NPC

Main states

Move
foreward

Sub states for
“fire weapon*

Move
backward

S —-

\

', Sub states for
\ "attack player”
1

Substates model different
types of behaviour under @‘. ors plarer
the same group of situations R

30

Personality Distribution in FSMs

- Rex
Attack

- Joel
. Retreat
g
&
3
o Stop
5
wn .

Gives Rex a
Random “tough guy” personality
| 1 | | | 1 | | 1 |

I I 1 1 1 I 1 1 1 I

0 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Probability of state

How to model using FSMs? .

Personality Distribution in FSMs

- Rex

Attack
- Joel

1:Fietreat
E Attack 50%
g 5% Retreat 20%
fandom Stop 5%
Random 25%
100%

0

| | 1 | | l | | | |

I 1 1 1 I I 1 1 I I

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Probability of state

15%
40%
30%
15%
100%

All behaviour percentages must sum up to 100% per character

32

Radii of Influence

e Character can switch behaviour based on a variable
— E.g. distance from player
— E.g. number of enemies present

How do you implement
different NPC behaviour
to reflect radii of influence?

33

Radii of Influence

Character behaviour:

Far away: non-aggressive mode
Close by: aggressive combat mode

Probability distributions
are a function of Ry

0-Radius rg use this graph

ro—r1 use this graph

]
I—
]

—

ri—r2 use this graph

—
]
1

1

Implementation: use different probability tables per situation

34

Alternative Representations

e Decision trees (behavior trees)
— No machine learning involved, just the output

Start

/ Encounter Impossible Problem / Hurrah!

Have You
Tried
Lighting it
on Fire?

You're Dead*

Light it on Fire

Alternative Representations

e Decision trees (behavior trees)

— No machine learning involved, just the output
— Can also be used in dialog generation

You don't look like you're
from around here.

.\\

.

I've lived here all my life! | came here from Newton.
e a
Oh really? Then you must Newton, eh? | heard there's

know Mr. Bowler € '\\trouble brewing down there.
Mr. Bowler is a good Who? | haven't heard about Did | say &ewton':‘ I'm

friend of mine! i any trouble. actually from Springville
o
'/ \ / -~____-__ N --"_.,--

Don't you wornry about it. Say,
do you have something to eat?
I'm starving.

You liaf There ain't no
Mr. Bowler, | made him up!

e Scripting with if-else statements

e Similar idea, different implementation
— FSMs still most popular in game industry

Next Topic: Search Tree

* One of the first topics taught in typical intro Al
course

— E.g. COSC 322 applies this in Al project

* Used for modeling game state and searching for
best strategy

e System strategy is not always the same — the best
strategy depends on the player’s current actions

— Enhances personalized game experience
(in contrast to the same behaviour given by FSMs)

Administration

e Next class:
— Search trees

* TA office hours:
— This Thursday 3:30pm
— Fix bugs from A2
— Incorporate feedback from A2
— Implement event logging in A3 as prep for next week

* Next week:
— Run heuristic evaluation with peers in class
— Have your computers and questionnaires setup and ready to go

